
Performance Engineering of Software Systems October 21, 2010

Massachusetts Institute of Technology 6.172

Professors Saman Amarasinghe and Charles E. Leiserson Handout 10

Parallel Programming with Cilk I

Last Updated: October 26, 2010

In this project you will learn how to parallel program with Cilk. In the first part of the project, you will

be introduced to the Cilk parallel programming platform and learn how to use the Cilkview and Cilkscreen

tools. Project 4.1 is to be done indvidually. (The next part, Project 4.2, will be done in groups of two.)

Please answer the questions in this handout and submit an individual writeup on Stellar. There is no

code to be submitted for this part of the project.

Getting the Code

Use the following command to clone the git repository containing the project 4.1 code:

git clone /afs/csail/proj/courses/6.172/student-repos/project4.1/ project4.1
This should check out three directories: qsort, mm, and nbodies.

Helpful Hints

•	 When running a Cilk program, you may specify the number of worker threads to N using the

-cilk_set_worker_count=N command line parameter (defaults to the number of cores on the sys

tem).

•	 When using Cilkview or Cilkscreen, you should run your programs on smaller inputs than when

simply running them standalone since there is a large performance penalty for instrumentation.

1 Quicksort

In this problem, you will experiment with an existing Cilk++ project, and learn how to use the Cilkview

Performance Analyzer and Cilkscreen Race Detector. You should make running your Cilk applications

through Cilkview and Cilkscreen a standard practice.

1.1

Build the qsort binary by running make. This will produce a parallel quicksort binary. The binary takes two

optional arguments. The first specifies the number of data points (defaults to 10 million), and the second

specifies the number of trials to run (defaults to 1).

Run quicksort with the 50,000,000 data points (the default) using 1 through 20 threads using the Cilkview

tool:

pnqsub $LOCKER64/cilkview -trials all 20 ./qsort.64

�

Handout 10: Parallel Programming with Cilk I 2

What are the execution times? What happens when you run qsort with more threads than there are proces

sors on the cloud machines (12)?

When running Cilkview directly on the cloud machines (rather than through PNQ), a speedup graph is

automatically displayed with parallelism bounds and measured speedup. You may try this with:

cilkview -trials all ./qsort.64
(You must have an X server running on your local machine and have X11 forwarding enabled on your SSH

connection to view the graph on your local machine.)

When submitting CilkView jobs over the PNQ batch system, the results are saved to a file, so you

can load the results into gnuplot manually to view the results. To do this, run gnuplot and enter load
"qsort.plt". (Again, X must be configured properly.)

1.2

Uncomment the following line near the top of the file to introduce a race condition in the parallel code:

#define INTENTIONAL_RACE
Look at the code enabled by this change and explain how the race could cause quicksort to fail to sort the

array of integers.

1.3

Run qsort through Cilkscreen using the following command:

pnqsub $LOCKER64/cilkscreen ./qsort.64 10000
or

cilkscreen ./qsort.64 10000
Is Cilkscreen able to detect the race? Obtain the approximate failure rate when sorting 10000 integers with

12 threads. Run qsort.64 with at least 1000 trials to obtain the failure rate.

2 Matrix Multiplication

In this part, you will write a multithreaded program in Cilk++ to implement matrix multiplication. One of the

goals of this assignment is for you to get a feeling of how work, span, and parallelism affect performance.

First, you will parallelize a program that performs matrix multiplication using three nested loops. Then,

you will write a serial program to perform matrix multiplication by divide-and-conquer and parallelize it by

inserting Cilk keywords.

For those of you who have not looked at matrix multiplication in a little while, the problem is to compute

the matrix product

C = AB ,

where C, A, and B are n× n matrices. Each element ci j of the product C can be computed by multiplying

each element aik of row i in A by the corresponding element bk j in column j in B, and then summing the

results, that is,
n

ci j = aikbk j .
k=1

For more information on matrix multiplication, please see http://en.wikipedia.org/wiki/Matrix_
multiplication#Ordinary_matrix_product.

http://en.wikipedia.org/wiki/Matrix_

� � � � � �

Handout 10: Parallel Programming with Cilk I 3

The nested-loop and divide-and-conquer versions of these programs can be adapted to work with arbi

trary rectangular matrices. To simplify the interface, however, we limit ourselves to n×n square matrices.

Matrix multiplication using loop parallelism

The file mm_loops.cilk contains two copies of a Θ(n 3)-work matrix multiplication algorithm using a

triply nested loop. The first copy (mm_loop_serial) is the control for verifying your results — leave it un

changed. The second copy (mm_loop_parallel) is the one that you will parallelize. This file also contains

a test program that verifies the results of your parallel implementation and also provides infrastructure for

timing and measuring parallelism.

2.1

Compile mm_loops with optimization, and verify that it operates correctly. Supply the --verify command-

line option to force running all tests.

Now parallelize the mm_loop_parallel function by changing the outermost for loop into a cilk_for
loop. Verify correct results with the --verify option. Run Cilkview on your program and report the

theoretical and actual speedup. Do not use the --verify option when running Cilkview.

2.2

Change the outermost cilk_for back into a serial for loop and change the middle for loop into a

cilk_for loop. Repeat the test with the --verify option, and then report the results from Cilkview.

Did any results change? Try making both loops parallel. Which of these combinations produces the best

results?

Matrix multiplication by divide-and-conquer

Divide-and-conquer algorithms often run faster than looping algorithms, because they exploit the micropro

cessor cache hierarchy more effectively. This section asks you to write a divide-and-conquer implementation

of matrix multiplication. You will find the source code for the incomplete program in mm_recursive.cilk.

The program contains two implementations of matrix multiplication. The mm_loop_serial function is the

same as before and is provided for verification and timing comparisons. The mm_recursive_parallel
function is the skeleton of a divide-and-conquer implementation.

Your recursive implementation will be based on the identity

A11 A12 B11 B12 A11 · B11 + A12 · B21 A11 · B12 + A12 · B22 = ,
A21 A22 B21 B22 A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

where A11, A12, etc., are submatrices of A. In other words, matrix multiplication can be performed by sub

dividing each matrix into four parts, then treating each part as a single element and (recursively) performing

matrix multiplication on these partitioned matrices. (The number of columns in A11 must match the number

of rows in B11, and so forth.) Although the algorithm operates recursively, its work is still Θ(n 3), the same

as the straightforward algorithm that employs triply nested loops.

Handout 10: Parallel Programming with Cilk I 4

2.3

Compile mm_recursive, and verify that it compiles but fails to run successfully when using the --verify
command-line argument. The failure is caused by the fact that the mm_recursive_parallel has not been

fully implemented yet.

2.4

In the file mm_recursive.cilk, fill in code in the mm_internal function to implement the divide-and

conquer algorithm. The error-prone task of subdividing the matrices into four parts has been done for

you. All you need to do is to fill in the recursive calls (eight in total – one for each of the eight matrix

multiplications in the algorithm). Compile and run your new mm_recursive program and verify that it runs

successfully.

2.5

Which recursive calls to mm_internal may be legally executed in parallel with one another and why?

Make your recursive function parallel by adding the cilk_spawn keyword in front of some of the

recursive calls. You will need to add calls to cilk_sync as well in order to separate recursive calls that

would otherwise cause a data race and to ensure that all of the work is complete before returning from the

function.

Compile and run your new mm_recursive program. Verify that it is correct and report the results given

by Cilkview. For large matrices, how does the performance of the recursive algorithm compare with the

nested-loops algorithm on a single processor?

2.6

Uncomment the line near the top of the program that reads:

#define USE_LOOPS_FOR_SMALL_MATRICES”.

This change causes the algorithm to change from divide-and-conquer recursion to a triply nested loop for

small matrices. How does this change impact performance? How does the performance of this new version

compare to the previous versions?

3 N-Bodies Simulation

In this part, you will modify a program that simulates a set of planetary bodies drifting in space in the

neighborhood of a single, massive “sun.” Each body bi (including the sun) has a mass mi and an initial

velocity vi, and is attracted to another body bj of mass m j by a force fi j, which obeys the formula for

gravitational attraction,
mim j

fi j = G
2

,
r

where G is the gravitational constant, and r is the distance between the bodies. The force on bi is directional

and pulls bi towards bj. The total force fi on body bi is the vector sum of the forces fi j for all j �= i.
The N-bodies simulation program begins by creating N bodies (the number N is specified on the com

mand line) with randomly-selected masses in a random distribution around the sun. All of the bodies are

Handout 10: Parallel Programming with Cilk I 5

given initial velocities such that the entire system appears to have a clockwise spin. A two-dimensional

coordinate system is used for simplicity.

The simulation progresses by computing successive positions of each of the N bodies for successive

moments in time using a two-pass algorithm. The first pass computes the force on each body as the sum of

the forces exerted on it by all of the other bodies in the system. The second pass adjusts the velocity of each

body according to the force computed in the first pass and moves the body’s position according to its average

velocity during that quantum of time. Every few time quanta, a snapshot of the entire system is rendered as a

picture in png format. You can view the result as a short movie using the provided JavaScript-powered web

page. After running the nbodies binary, type make publish to copy the nbodies.html file and your PNG

outputs to your CSAIL webpage. Then visit http://people.csail.mit.edu/<username>/nbodies/
to view your movie.

Note that the execution times for these programs can be fairly long. Since Cilkview runs the program

at least 5 times, expect to wait several minutes for a Cilkview run to complete. You may wish to reduce the

number of images produced to save time. If you choose to do so, do not reduce the number of bodies in the

simulation, or you will reduce the total parallelism in your program.

When running Cilkscreen to detect races, you can and should reduce the number of bodies and images

produced to a bare minimum (e.g. 10 bodies and 2 images). Note that if you produce fewer images the

visualization will be truncated, and the web page may display some parts of the previous run if there were

leftover PNG files in your directory.

Burdened parallelism in the N-bodies simulation

The file nbodies_loops.cilk implements the n-body simulation. The calculate_forces function uses

a pair of nested loops to compute the forces for every pair of bodies. The update_positions function uses

a single loop to update the position of each body.

The nbodies binary accepts two arguments: the first is the number of bodies in the simulation (defaults

to 800), and the second is the number of PNG frames to produce (defaults to 100). The number of simulation

steps computed between frames is 40. All of these defaults and constants may be changed by modifying the

#defines at the top of the common.h file.

3.1

Compile nbodies_loops with optimization, and run it with the default number of bodies (800). View the

simulation in a web browser by running make publish and visiting:

http://people.csail.mit.edu/<username>/nbodies/.

Click the “Start” button to view the movie. (JavaScript must be enabled.) Parallelize the program by

changing the loop in update_positions and the inner loop in calculate_forces to cilk_for. Run the

program in Cilkview and report the results.

3.2

Insert the line “#pragma cilk_grainsize=1” just before the cilk_for in calculate_forces. Run the

program in Cilkview and compare its performance with the previous run. Explain these results.

Handout 10: Parallel Programming with Cilk I 6

3.3

Unlike in the matrix-multiplication example, you cannot parallelize the outer loop in calculate_forces,

because doing so would cause multiple iterations to race on updating a single body’s forces. (Try it in

Cilkscreen if you want.) However, you can invert the inner and outer loops of your current code so that the

cilk_for loop over i is on the outside. Try it, and report your results from Cilkview. (You should remove

the grainsize pragma.) Which version is faster and why?

Resolving races with locks

The formula for computing the gravitational force between two bodies bi and bj is symmetrical such that

f ji = − fi j (i.e., the magnitude of the force on both bodies is the same, but the direction is reversed.) Our

current implementation of the N-bodies simulation, however, computes each force twice: once when com

puting the force that bj applies to bi, and again when computing the force that bi applies to bj. We can halve

the total number of iterations in calculate_forces if we take advantage of this fact and compute the force

only once for each pair of bodies.

In the file nbodies_symmetric.cilk, we have modified the inner loop in calculate_forces to

avoid calculating forces that have already been computed in an earlier iteration (according to the serial

ordering). When computing a force fi j and adding it to fi, we also compute the inverse force ji and add it

to f j. Unfortunately, this simple optimization has its problems, as we shall see.

3.4

In nbodies_symmetric, parallelize update_positions and the outer (i) loop of calculate_forces.

Compile nbodies_symmetric and run it with a command-line argument of 800. Did we see the expected

speedup of 2 versus the (parallel) version of nbodies_loops? Run the program again in the Cilkscreen

race detector, but shorten the run time by using a command-line argument of 10 instead of 800 (and you

shouldn’t have to use PNQ for this). Where did the races come from, and why weren’t they visible in the

initial run?

3.5

One way to fix the race is to use a mutex (mutual exclusion) lock to mediate concurrent access to each

object. Add a member mtx, of type cilk::mutex to the Body struct. In add_forces, insert the statement

“b->mtx.lock();” before updating b->xf and b->yf and insert “b->mtx.unlock();” after updating

them. Run the program with Cilkview (using the original command-line argument of 800) and report the

theoretical and actual speedup.

Solving races without locks

For sufficiently large data sets, the previous solution should produce little lock contention. Nevertheless,

both locks and atomic instructions are expensive, even in the absence of contention, because they interrupt

the CPUs’ pipelines and force serializing operations that the CPU would have internally performed in par

allel. It would be ideal if we could parallelize the N-bodies problem without introducing data races at all,

thus eliminating the need for locks or atomic instructions.

Handout 10: Parallel Programming with Cilk I 7

One such solution, due to Matteo Frigo, uses divide-and-conquer parallelism in a way that ensures that

no two parallel strands attempt to modify the same body. The algorithm, with the Cilk keywords removed,

is implemented in the file nbodies_nolocks.cilk.

Figure 1 shows the core of the program. The lines labeled [A] (Lines 44–45) can be executed in parallel

with each other. Similarly, the lines labeled [B] (lines 16–17) can be executed in parallel with each other, and

the lines labeled [C] (lines 18–19) can be executed in parallel with each other. This program is not meant to

be obvious. Let’s explore what it does.

The serial program is equivalent to calling add_force(&bodies[i], fx, fy); and

add_force(&bodies[j], fx, fy); for all 0 ≤ i ≤ j < N. Another way to look at it is that a plot of the

points (i, j) such that 0 ≤ i ≤ j < N comprise the shaded area shown in Figure 2.

Procedure triangle traverses this triangle in parallel, and in fact it is a little bit more general, because

it traverses any triangle of the form n0 ≤ i ≤ j < n1. Initially, we set n0 = 0 and n1 = N in cilk_main.

Procedure triangle works by recursively partitioning the triangle. If the triangle consists of only one

point, then it visits the point (n0,n0) directly. Otherwise, the procedure cuts the triangle into one rectangle

and two triangles, as shown in Figure 3.

The two smaller triangles can be executed in parallel, because one consists only of points (i, j) such

that i < nm and j < nm, and the other consists only of points (i, j) such that i ≥ nm and j ≥ nm. Thus,

the two triangles update nonoverlapping regions of the force array, and thus they do not race with each

other. However, the rectangle races with both triangles, and thus we need a cilk_sync statement before

processing the rectangle.

To traverse a rectangle we use procedure rect, which also works recursively. Specifically, if the rectan

gle is large enough, the procedure cuts the rectangle i0 ≤ i < i1, j0 ≤ j < j1, into four smaller subrectangles,

as shown in Figure 4.

The amazing thing is that the two black subrectangles can be traversed in parallel with each other without

races. Similarly, the two gray subrectangles can be traversed in parallel with each other without races. Since

the black and gray subrectangles race with each other, however, we must use a cilk_sync statement after

processing the first pair of subrectangles.

To see why there are no races between the two black subrectangles (the same argument applies to the

gray) observe that the i-ranges of the two subrectangles do not overlap, because one is smaller than im and

the other is larger. For the same reason, neither do the j-ranges overlap. In order for races not to occur,

however, we must also prove that the i-range of one subrectangle does not overlap with the j-range of the

other, because we are updating both bi and bj. This property holds because when triangle calls rect
initially, the i-range is n0 ≤ i < nm, whereas the j-range is nm ≤ j < n1, so the two ranges never overlap.

This algorithm partitions the original data into smaller and smaller subsets. Thus, in addition to avoid

ing races and locks, the algorithm exploits cache locality in a way similar to that of the recursive matrix-

multiplication example.

3.6

The file nbodies_norace.cilk implements the divide-and-conquer algorithm as a serial program. Notice

that the rect routine coarsens the recursion and reverts to a looping implementation when the rectangle is

sufficiently small (one of the sides has length at most THRESHOLD). The triangle routine is not similarly

coarsened, however. Explain why coarsening triangle would not improve performance significantly for

large problem sizes.

Handout 10: Parallel Programming with Cilk I	 8

1 //	 update the force vectors on bi and bj exerted on each by the

other.

2 void add_force(Body* b, double fx, double fy)

3 {

4 b->xf += fx;

5 b->yf += fy;

6 }

7

8 /* traverse the rectangle i0 <= i < i1 , j0 <= j < j1 */

9 void rect(int i0, int i1 , int j0 , int j1 , Body *bodies)

10 {

11 int di = i1 - i0, dj = j1 - j0;

12 const int THRESHOLD = 16;

13 if (di > THRESHOLD && dj > THRESHOLD) {

14 int im = i0 + di / 2;

15 int jm = j0 + dj / 2;

16 rect(i0 , im, j0, jm , bodies); // [B]

17 rect(im , i1, jm, j1 , bodies); // [B]

18 rect(i0 , im, jm, j1 , bodies); // [C]

19 rect(im , i1, j0, jm , bodies); // [C]

20 }

21 else {

22 for (int i = i0; i < i1; ++i) {

23 for (int j = j0; j < j1; ++j) {

24 // update the force vector on bodies[i] exerted by

bodies[j]

25 // and , symmetrically , the force vector on bodies[j

] exerted

26	 // by bodies[i].
27	 if (i == j) continue;
28
29	 double fx , fy;
30	 calculate_force(&fx , &fy , bodies[i], bodies[j]);
31	 add_force(& bodies[i], fx , fy);
32	 add_force(& bodies[j], -fx , -fy);
33	 }
34 }
35 }
36 }
37
38 // traverse the triangle n0 <= i <= j < n1
39 void triangle(int n0, int n1 , Body *bodies)
40 {
41 int dn = n1 - n0;
42 if (dn > 1) {
43 int nm = n0 + dn / 2;
44 triangle(n0, nm, bodies); // [A]
45 triangle(nm, n1, bodies); // [A]
46 rect(n0 , nm, nm, n1 , bodies);
47 }
48 else if (dn == 1) {
49 // Do nothing. A single body has no interaction with

itself.

50 }

51 }

52

53 void calculate_forces(int nbodies , Body *bodies) {

54 triangle(0, nbodies , bodies);

55 }

Figure 1: A lock-free code for N-bodies.

9 Handout 10: Parallel Programming with Cilk I

j

N

N

i

Figure 2: Traversing the space, 0 ≤ i ≤ j < N

i

jn0 n1nm

Figure 3: Cutting a triangle into two smaller triangles and a rectangle

i

i1

im

i0

j0 jm j1
j

Figure 4: Dividing a rectangle into four

Handout 10: Parallel Programming with Cilk I 10

3.7

Add cilk_spawn and cilk_sync statements to implement the divide-and-conquer parallel algorithm.

Briefly describe the changes you made. Also add a cilk_for to parallelize the update_positions func

tion.

3.8

Confirm that the program is race free by running it in the race detector (use only 10 bodies to avoid long

run times). Run the program in Cilkview and report the results. Compare the performance to runs of earlier

versions of the program.

MIT OpenCourseWare
http://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

