
Performance Engineering of Software Systems October 21, 2010 

Massachusetts Institute of Technology 6.172 

Professors Saman Amarasinghe and Charles E. Leiserson Handout 11 

Parallel Programming with Cilk II 

Project 4-2 

Parallel Programming with Cilk II 

Last Updated: November 5, 2010 

In this project you will optimize a graphical screensaver program using the Cilk parallel programming 
environment. 

1 Introduction 

With the recent revolution in mobile computing prompted by Apple’s iPhone and Google’s Android, Snail

speed is actively trying to enter the mobile computing market. Alyssa’s boss is starting a new project with 

the goal of developing a screensaver for a mobile phone. 

Since mobile processor trends indicate that mobile processors will soon switch to multi-core architec

tures, Alyssa’s boss wants her to develop a screensaver that is parallelized and multi-core ready. Your job is 

to help Alyssa with this task. 

2 Getting the Code 

This part of the project is to be done in groups of two. As before, you will be obtaining the project files 

using git. Use the following command to clone the git repository that has been set up for your group for the 

assignment. 

git clone /afs/csail/proj/courses/6.172/student-repos/project4.2/groupname/

project4.2


Remember that we expect groups to be practicing pair programming, where partners are working to

gether with one person at the keyboard and the other person serves as watchful eyes. This style of program

ming will lead to bugs being caught earlier, and both programmers always having familiarity with the code. 

You will find that it’ll be difficult to split this project into two individually-completed chunks, so don’t plan 

to divide work in this manner. 

3 Testing 

For most of our previous projects, we’ve been focusing on writing system tests, which are also known as 

end-to-end tests, or regression tests. These kinds of tests are useful because they are designed to mimic the 



Handout 11: Parallel Programming with Cilk II 2 

intended use of the code. They can give you confidence that your system as a whole works, but when there’s 

a problem, they are not very helpful for isolating it. Because this project is larger than the previous projects 

and is decomposed into multiple modules, we’re providing you with infrastructure for writing unit tests. 

You may be more familiar with this testing strategy from 6.005 or other courses that focus on unit testing. 

We chose to use the Google Test (gtest) framework, which you should find similar to any other XUnit-style 

testing framework that you may already be familiar with. 

Take a look at the Test.cpp file for two example tests which test computing the intersection of two 

lines. As you modify the code, you should be able to copy the examples and add more tests to ensure that 

you do not introduce bugs. You can find a short primer on the basic usage of Google Test at the following 

URL: http://code.google.com/p/googletest/wiki/Primer . You can build and run the tests with 

make test 
We will not be running your unit tests against other students implementations. They are tied to your 

implementation, and you can feel free to modify them in any way you see fit. We will not be doing any 

automated grading with your unit tests. We will be looking at your tests for code quality, and will factor 

them into the code quality grade of your final submission. 

4 Optimizing Collision Detection 

In this part of the project, you will be optimizing a simple screensaver. This screensaver consists of a 2D 

virtual environment filled with colored line segments. These line segments bounce around with some simple 

physics. 

Currently, the screensaver uses an extremely inefficient algorithm to detect collisions between line seg

ments. At each time step, the screensaver iterates through all pairs of line segments, testing each pair to see 

if they’ve collided. This is fairly expensive as it requires θ(n 2) collision tests. 

Your job is to optimize how collision detection works. You will be using quadtrees to improve the 

efficiency of collision detection. Note that you will not be using Cilk for this part of the project. The 

screensaver will be parallelized using Cilk in the next part. 

Running the Screensaver 

The screensaver can be executed both with and without a graphical display. 

Usage: ./Line [-g] [-i] <numFrames>

-g : show graphics

-i : show first image only (ignore numFrames)


NOTE: While collecting performance data, make sure to execute the screensaver without graphical display. 

This will lead to more accurate performance results. 

Quadtrees 

Quadtrees are trees with two important properties. First, quadtrees are used to partition two-dimensional 

spaces. A quadtree partitions a two- dimensional space by recursively subdividing it into four quadrants. 

Figure 1 illustrates how a quadtree might partition a two-dimensional space. 

http://code.google.com/p/googletest/wiki/Primer


3 Handout 11: Parallel Programming with Cilk II 

Figure 1: Two-dimensional space partitioned by a quadtree 

Second, given elements to store in a 2D space, quadtrees attempt to partition the 2D space such that 

each partition contains at most N elements. Partitions containing more than N elements are recursively 

subdivided into four quadrants until each partition contains at most N elements. 

Figure 2 illustrates how subdivisions are used to achieve the desired N elements per partition. In areas 

where elements are dense, more subdivisions are introduced, ensuring that each partition contains at most N 
elements. In Figure 2, each partition is limited to containing only three points (N = 3). 

Implementing a quadtree is fairly simple. A quadtree simply consists of quadtree nodes. Each node 

represents a region in 2D space. Each node stores information on the region that it represents. Each node 

also stores all of the elements that fall within its region. Initially, the quadtree starts out with only the root 

node. The root node represents the entire 2D space. As such, the root node initially stores all of the elements 

in the 2D space. 

For each leaf containing more than N elements, the leaf’s region is subdivided into four quadrants. The 

leaf creates four children, one for each of the four quadrants. The elements stored in the leaf are then 

redistributed to the four children. The leaf becomes an inner node and the four children become new leaves. 

This process is repeated for any leaf that contains more than N elements. Note that this also applies to the 

root node since it is the very first leaf in the tree. 

This process of subdivision grows the quadtree downwards until all of the leaves contain at most N 

elements. The final partitioning of the 2D space is represented by the regions in the leaves of the quadtree. 

Because all leaves contain at most N elements by the end of recursive subdivision, the final partitioning of 

2D space contains at most N elements in each partition. 

Note that upon subdivision, all of the elements within a node are (usually) passed down to the node’s 

four children. This actually collects all of the elements at the bottom of the tree, in the leaves. This makes 

sense as the leaves represent the final partitions for the 2D space. 

Because of theway 2D space is partitioned in a quadtree, elements at the same location are always 



4 Handout 11: Parallel Programming with Cilk II 

Figure 2: Quadtree partitioning where each partition contains at most three points 

placed together in the same partition. This is extremely helpful in collision detection. Collisions are lo

calized events. In order for two elements to collide, they must both be within the same quadtree partition. 

Correspondingly, if two elements are in different quadtree partitions, they cannot possibly collide. 

With this knowledge, you can use quadtrees to limit the number of interactions that you need to consider. 

For example, to look for colliding line segments, you only need to look at pairs of line segments within 

the same partition (assuming each line segment exists in a single partition). You can ignore all of the 

line segments that are in a different partition. While you still need to do θ(n 2) collection tests within the 

partition, n is much smaller since you’re considering only the line segments in one partition instead of all 

the line segments simultaneously. 

Exercises 

4.1 

Run the unmodified screensaver on a cloud machine using PNQ and report its runtime for 4000 frames. 

Also report the number of collisions detected during the screensaver’s execution. Make sure to be run the 

program without the graphics flag to get accurate performance results. 

4.2 

Figure 2 illustrates that quadtrees can readily handle points, and Figure 3 suggests that line segments can at 

least sometimes be handled by quadtrees. However, in Figure 4 one of the line segments can’t fit into any of 

the partitions. Is this a problem for the quadtree? What can you do about it? Can you still use quadtrees to 

effectively speed up collection detection? 



5 Handout 11: Parallel Programming with Cilk II 

Figure 3: Quadtree storing line segments 

Figure 4: Broken quadtree? 



Handout 11: Parallel Programming with Cilk II	 6 

Hint: Do all line segments need to be stored in leaf nodes? 

4.3 

Using a quadtree, rewrite collision detection to be much more efficient. Note that you should use intersect() 
from IntersectionDetection.cpp to test if two line segments will intersect in the next time step. 

To simplify your implementation, consider destroying the quadtree and reconstructing it at each time 

step. This way, you will not need to worry about updating the quadtree when line segments move to new 

positions. 

Measure and report how long it takes for the program to execute with the more efficient collision detec

tion. Compare with the original runtime. Was the speedup what you expected? 

Record the number of collisions detected during the screensaver’s execution. These numbers should be 

close to the numbers you recorded for the unmodified code. Since the simulation is sensitive to the order in 

which collisions are resolved and the calculations are done in floating point, your new results may not be 

exactly the same as the original version’s. 

4.4 

Describe any design decisions you made while rewriting collision detection to use a quadtree. For example, 

once you built a quadtree, how did you use it to extract collisions? How did you store line segments in each 

quadtree node? 

4.5 

Vary the maximum number of elements a quadtree node can store before it needs to be subdivided. Measure 

the performance impact that this has on the runtime. Briefly comment on why this did or did not have a 

performance impact. 

4.6 

Implement a maximum depth for the quadtree. Vary the maximum depth and measure the performance 

impact this has on the runtime. Briefly comment on why this did or did not have a performance impact. 

4.7 

Look for other opportunities for optimization within the screensaver and describe what you did. Here are 

some optimization ideas to help you get started: 

•	 A large percentage of calculations are repeated with each time step. For example, the collision de

tection code recalculates the length of each line segment in each time step. This is an expensive 

calculation that is unnecessarily repeated in each time step. For calculations that are repeated in each 

time step, it might be worthwhile to precompute these calculations and store results for reuse. 

•	 To simplify the implementation, we suggested that you destroy and recreate the quadtree on each time 

step to avoid having to figure out how to effectively update the quadtree. While this does make things 

simple, it is a bit wasteful. You can try finding an effective way to update the quadtree so that you 

don’t need to destroy it. 



Handout 11: Parallel Programming with Cilk II	 7 

•	 Our method for testing if two lines intersect is fairly efficient. However, you could try finding a more 

efficient way of testing if two lines intersect. 

5 Parallelization 

5.1 

Before beginning, it is useful to profile your application to determine where you should focus your time 

when parallelizing your code. The goal is to identify a region of code that comprises of a large percentage 

of the total execution time, but is amenable to a potentially large degree of coarse grained parallelism. To 

do this, build a gprof-enabled version of the screensaver binary by typing make Line.prof, then run it for 

1000 frames via PNQ using pnqsub ./Line.prof 1000, and finally run gprof ./Line.prof to see the 

resulting profiling statistics. 

Once profiled, examine the results, which are ordered ordered by self seconds. This gives you the 

amount of time spent in each function. The top of this list gives you the names of functions that, if paral

lelized, could offer significant performance improvements to the running time of the application as a whole. 

List the top six functions on the list. 

Unfortunately, since many functions do not contain code that can be executed concurrently, not all 

functions are good candidates for parallelization. 

5.2 

As it turns out, the current code does not have many hot functions that contain lots of parallelism. At first 

glance, in would appear that detectIntersections is both frequently executed and contains lots of paral

lelism. However, a significant problem is caused by the fact that collisionSolver is called immediately 

after it is determined that two lines will intersect in the next time step. Because collisionSolver up

dates the velocities of each of the two lines, the lines may now be susceptible to further intersections with 

other lines and thus further updates to their velocities. Since these updates are not commutative (or even 

associative), they cannot be executed in parallel without changing the semantics of the program. 

Fortunately, the code represents only one of many approximations to simulating the interactions between 

floating lines. As is often common when parallelizing an application, you will need to modify the semantics 

of the program slightly in order to expose some parallelism, while still meeting the specifications of the 

application (in this case, to create a semi-realistic simulation of lines bouncing off of each other). 

To do this, you can delay the calls to collisionSolver until after you obtain a list of all lines that will 

intersect with each other during the next time step. In this way, you will only need to execute the calls to 

collisionSolver sequentially, freeing you to execute parts of detectIntersections in parallel. 

Make this change to your sequential program. You should store the list of intersections in a STL list of 

type list<IntersectionInfo>, where IntersectionInfo a struct defined as: 

extern "C++" {

struct IntersectionInfo {


Line *l1;

Line *l2;

IntersectionType intersectionType;




Handout 11: Parallel Programming with Cilk II 8 

IntersectionInfo(Line *l1, Line *l2, IntersectionType

intersectionType) {


this->l1 = l1;

this->l2 = l2;

this->intersectionType = intersectionType;


}

};


}


Be sure to include the extern "C++" block as it will be necessary for Cilk later. Now simply add to the 

list whenever you detect a future intersection between two lines, and call collisionSolver on each item 

in the list once all intersections have been found. 

Execute the graphical version of the simulation to verify that the new semantics of the application con

tinue to meet the specifications of the screensaver program (the lines continue to bounce off of each other in 

a semi-realistic manner). 

5.3 

Before inserting any cilk_spawn and cilk_sync keywords, you will need to make any accesses to your list 

of intersecting lines thread-safe. Without such a change, your parallel code may see two threads attempting 

to concurrently insert an element into the list causing a data race. One solution is to protect the accesses to 

the list using a lock; however, this solution is undesirable because 1) the lock will quickly become contended, 

limiting scalability, and 2) the order of items in the list will become non-deterministic. A better approach is 

to use Cilk reducers. 

Cilk solves the problem of accumulating results by providing a unique programming construct called a 

reducer. Conceptually, a reducer is a variable that can be safely used by multiple Cilk strands running in 

parallel. When multiple Cilk strands access a reducer, each strand is given a private copy of the reducer. Each 

strand can update its private copy as much as it wants. When strands are synchronized (using cilk_sync), 

the private copies are merged together into a single variable. 

Because each strand has a private copy of the reducer, the possibility of a race is eliminated. In addition, 

because private copies are merged together during synchronization, results from multiple strands can be 

accumulated and merged in the same order as when the program is executed sequentially. 

Reducers are each defined with the following operations: 

• Identity - the default value for a reducer 

• Update - one or more operations which updates a reducer’s stored value 

• Reduce - the operation which merges two reducers when two strands join 

Cilk comes with a number of predefined reducers. For example, Cilk defines a summation reducer. The 

default value for the reducer is 0. Cilk strands can update private copies of the reducer using arithmetic 

operators. Private copies are merged during synchronization via summation. 

Another example of a Cilk reducer is the list concatenation reducer. The default value for the reducer is 

an empty list. Cilk strands can update private copies of the reducer by appending to the list. Private copies 

are merged by appending lists to each other. 

Reducers have a number of attractive properties: 



9 Handout 11: Parallel Programming with Cilk II 

•	 Multiple strands can access a reducer without races. 

•	 Reducers are shared without the need for locks, which would normally result in loss of parallelism. 

•	 Reducers can be used without significantly restructuring existing code. 

•	 Defined and used correctly, reducers retain serial semantics. The result of a Cilk++ program that uses 

reducers is the same as the serial version, and the result does not depend on the number of processors 

or how the workers are scheduled. 

•	 Reducers are implemented very efficiently, incurring little or no runtime overhead. 

Usage Example: Assume we wish to traverse an array of objects, performing an operation on each object 

and accumulating the result of the operation into an STL list variable: 

int compute(const X& v);

int test()

{


const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ...

std::list<int> result;

for (std::size_t i = 0; i < ARRAY_SIZE; ++i) {


result.push_back(compute(myArray[i]));

}

std::cout << "The result is: ";

for (std::list<int>::iterator i = result.begin(); i != result.end();


++i) {

std::cout << *i << " " << std::endl;


}

return 0;


}


Changing the for to a cilk_for will cause the loop to run in parallel, but doing so will create a data 

race on the result list. The race is solved by changing result to a reducer_list_append hyperobject: 

int compute(const X& v);

int test()

{


const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ...

cilk::hyperobject<cilk::reducer_list_append<int> > result;

cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i) {


result().push_back(compute(myArray[i]));

}

std::cout << "The result is: ";




Handout 11: Parallel Programming with Cilk II 10 

const std::list &r = result().get_value();

for (std::list<int>::iterator i = r.begin(); i != r.end(); ++i) {


std::cout << *i << " " << std::endl;

}

return 0;


}


Replace your STL list with the Cilk++ list appending reducer of type: 

cilk::hyperobject<cilk::reducer_list_append<IntersectionInfo> > 
and update the accesses to this object accordingly. Verify that the number of intersections remains the same 

as before. 

Note: The list append reducer does not have an simple way of deleting all the elements in the list. Thus, 

you will have to create a new reducer for every time step. 

5.4 

Parallelize your code by inserting cilk_spawn and cilk_sync keywords to the regions of code you have 

identified as worth parallelizing. 

If you do not see much code suitable for parallelization using the Cilk++ primitives, you may want 

to modify your intersection detection code so that it performs a recursive depth-first-search through your 

quadtree. 

You will find that cilk_for does not work with loops using STL iterators. To parallelize these, you can 

manually code up the divide and conquer strategy employed by the Cilk++ complier, or modify the loops to 

eliminate the iterators. Doing the former can be more desirable as it allows you to control the point at which 

you would like to quit spawning off new tasks. 

Describe the changes you have made and verify that your code performs the same number of collisions 

when executing in parallel and sequentially (remember, you may specify the number of workers using the 

-cilk set worker count=N command line argument). Additionally, verify that the code is race free by 

running it through the CilkScreen data race detector. 

5.5 

Determine the span and work of your parallel code by executing it through CilkView. How much parallelism 

do you see? Vary the parameters of your quadtree (such as the max depth and max number of nodes per 

quadrant), as well as any other spawn cut offs you have used in your code. What is the maximum amount of 

parallelism you can achieve? 

5.6 

Tune your code so that it executes as fast as possible when running with 12 threads. Describe any decisions, 

trade offs, and further optimizations that you made. 

6 Evaluation 

Please remember to explicitly add all new files to your repository before committing and pushing your 

final changes. Your grade will be based on all of the following: 



11 Handout 11: Parallel Programming with Cilk II 

•	 Correctness – To receive full points your code should: 

–	 Compute collisions correctly. When running in graphical mode, the collisions should look semi-

realistic as in the code given to you originally. 

–	 Yield the same number of collisions when running sequentially and when running with 12 

threads. 

–	 Contain no data races. 

You will receive partial credit for each of these requirements. 

•	 Performance – As with the previous projects, your performance grade will be computed by comparing 

the performance of your submission to the highest performance achieved by a group in the class during 

the initial submission. 

•	 Style – You code should be decomposed into functions and classes and use as few global variables 

as possible. It should have plenty of comments throughout, describing the general parallelization 

strategy as well as low level details of your optimizations. 

•	 Methodology of Performance Optimizations – You are required to submit (on Stellar) a group write

up discussing the work that you performed. You should answer all questions asked in this handout 

and include the following: 

–	 Provide a clear and concise description of your parallelization strategy and implementation. 

–	 Discuss any experimentation and optimizations performed. 

–	 Justify the choices you made. 

–	 Discuss what you decided to abandon and why. 

–	 Provide a breakdown of who did what work. 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



