
Performance Engineering of Software Systems November 4, 2010 

Massachusetts Institute of Technology 6.172 

Professors Saman Amarasinghe and Charles E. Leiserson Handout 13 

Problem Set 1 

Problem Set 1 

Parallelism and Data Synchronization 

Introduction 

The focus of this project is the theoretical side of the material taught in class. However, feel free to test 

your solutions by writing short programs and to use profiling tools to test your answers. The first half 

of the problem set focuses on data synchronization and comparing lock-based and lock-free FIFO queue 

implementations. In the second part you are asked to design, implement and analyse short Cilk++ programs. 

This project should be done individually. Please treat it like a take-home quiz. Do not discuss problems 

with classmates, and cite any external resources you use clearly (i.e. books, published papers, wikipedia ...). 

Please submit a PDF file with your answers on the class stellar web site. 

1 Data synchronization 

Figure 1 and Figure 2 are both implementing a FIFO queue. Figure 1 is a lock-based implementation and 

Figure 2 is a lock free implementation. Note that in both queue implementations, a pool of nodes is allocated 

in advance. A call to new_node() grabs a free node from the pool of nodes, and free(*node) returns the 

node to the pool. In the implementation of the lock-free queue, the Compare-And-Swap (CAS) instruction 

returns TRUE if the value stored in the memory location equals the old value and thus the memory location 

was successfully updated with the new value. Otherwise, it returns FALSE. The ABA problem is solved by 

splitting the pointer to a node into two parts - one is the pointer itself and the other one is a counter. Both 

parts fit into one machine word and are read and written together (Since we cannot use the whole word as a 

pointer to memory, we must have the pre-allocated pool of nodes, and the number of nodes we can have is 

limited by the number of bits that are used in the pointer part of the word).For the questions below, assume 

that the compiler cannot change the order of instructions, and that there is always enough free nodes in the 

pool to perform all enqueue operations. 

Read both implementations carefully. Before you start answering the questions, you may find it helpful 

to draw diagrams of an empty queue and a queue with a few nodes. Using these diagrams, try to understand 

how nodes are inserted and deleted from the queue in both implementations. 

1. What is the advantage of using two locks over one lock? 

2. In the style of comments of the lock-based FIFO queue code, add comments to the lock-free code, 

explaining what each line does. The comments should be short and precise (not more than 10 words 

each). A text file with the code is provided. Copy it to your document and add your comments at the 

end of each line. 



2 Handout 13: Problem Set 1 

3. Explain how a new node is inserted into the lock-free queue. How many CASes are needed per node? 

What happens if the CAS in E17 fails? How far can the tail lag behind? 

4. Carefully look at the code for the lock-free dequeue operation and answer the following questions: 

(a) Line D5 checks what was already assigned in line D2. Why do we need line D5 ? 

(b) In line D12 the value of the node is read before the Head is updated in line D13. Why is this 

important? What can happen if we change the order of the lines? 

(c) What happens if the CAS in line D13 is unsuccessful? 

5. Which implementation do you expect to run faster - the lock-based or the lock-free? Explain your 

answer in terms of cost of the synchronization primitives, contention, synchronization overhead, etc. 

6. Show how to simplify the lock-based code if only one process may enqueue nodes to the queue. Write 

the pseudo code and comment it. Explain in your own words why your solution is correct (i.e. any 

execution sequence keeps the FIFO ordering). 

7. Show how to simplify the lock-free code if only one process may dequeue nodes from the queue. 

Write the pseudo code and comment it. Explain in your own words why your solution is correct (i.e. 

any execution sequence keeps the FIFO ordering) and why it is non-blocking. 



Handout 13: Problem Set 1 3 

structure node_t {value: data type, next: pointer to node_t}

structure queue_t {Head: pointer to node_t, Tail: pointer to node_t,


H_lock: lock type, T_lock: lock type}


initialize(Q: pointer to queue_t)

node = new_node() // Allocate a free node

node->next = NULL // Make it the only node in the linked list

Q->Head = Q->Tail = node // Both Head and Tail point to it

Q->H_lock = Q->T_lock = FREE // Locks are initially free


enqueue(Q: pointer to queue_t, value: data type)

node = new_node() // Allocate a new node from the free list

node->value = value // Copy enqueued value into node

node->next = NULL // Set next pointer of node to NULL

lock(&Q->T_lock) // Acquire T_lock in order to access Tail


Q->Tail->next = node // Link node at the end of the linked list

Q->Tail = node // Swing Tail to node


unlock(&Q->T_lock) // Release T_lock


dequeue(Q: pointer to queue_t, pvalue: pointer to data type): boolean 
lock(&Q->H_lock) // Acquire H_lock in order to access Head


node = Q->Head // Read Head

new_head = node->next // Read next pointer

if new_head == NULL // Is queue empty?


unlock(&Q->H_lock) // Release H_lock before return 
return FALSE // Queue was empty


endif

*pvalue = new_head->value // Queue not empty. Read value before release

Q->Head = new_head // Swing Head to next node


unlock(&Q->H_lock) // Release H_lock

free(node) // Free node

return} TRUE // Queue was not empty, dequeue succeeded


Figure 1: Lock based FIFO queue 

2 Parallelism using Cilk++ 

1. Write a short Cilk++ program that uses a reducer of your own design to determine whether a string of 

parentheses over the set { ”(”, ”)” } is well formed. For example, “(())()” is well formed, but “(()))(()” 

is not. Your reduce function should run in O(1) time. Analyze the asymptotic work and span of your 

solution. 

2. Answer problem 27-4 from CLRS third edition. The chapter on Multithreaded Algorithms is available 

on the class stellar site. 



4 Handout 13: Problem Set 1 

structure pointer_t {ptr: pointer to node_t, count: unsigned integer} 
structure node_t {value: data type, next: pointer_t} 
structure queue_t {Head: pointer_t, Tail: pointer_t} 

initialize(Q: pointer to queue_t)

node = new_node()

node->next.ptr = NULL

Q->Head.ptr = Q->Tail.ptr = node


enqueue(Q: pointer to queue_t, value: data type) 
E1: node = new_node() 
E2: node->value = value 
E3: node->next.ptr = NULL 
E4: loop 
E5: tail = Q->Tail 
E6: next = tail.ptr->next 
E7: if tail == Q->Tail 
E8: if next.ptr == NULL 
E9: if CAS(&tail.ptr->next, next, <node, next.count+1>) 
E10: break 
E11: endif 
E12: else 
E13: CAS(&Q->Tail, tail, <next.ptr, tail.count+1>) 
E14: endif 
E15: endif 
E16: endloop 
E17: CAS(&Q->Tail, tail, <node, tail.count+1>) 

dequeue(Q: pointer to queue_t, pvalue: pointer to data type): boolean 
D1: loop 
D2: head = Q->Head 
D3: tail = Q->Tail 
D4: next = head.ptr->next 
D5: if head == Q->Head 
D6: if head.ptr == tail.ptr 
D7: if next.ptr == NULL 
D8: return FALSE 
D9: endif 
D10: CAS(&Q->Tail, tail, <next.ptr, tail.count+1>) 
D11: else 
D12: *pvalue = next.ptr->value 
D13: if CAS(&Q->Head, head, <next.ptr, head.count+1>) 
D14: break 
D15: endif 
D16: endif 
D17: endif 
D18: endloop 
D19: free(head.ptr) 
D20: return TRUE 

Figure 2: Lock Free FIFO queue 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



