
MITOCW | MIT6_172_F10_mentors_300k-mp4

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: Welcome, everybody. So this is the one group meeting that we'll have with all you

folks. We really appreciate your willingness to come and help us teach 6-172.

Saman will explain what the course is all about, and then I will give a presentation, a

little bit, of what your expected responsibilities are, and then Eric, who is one of our

TAs, will present what the first project that they've been working on is all about.

We think we have a pretty good acronym, OK, MIT POSSE. Masters in the Practice

of Software Systems Engineering, OK, and it is very much like a posse, in that we're

trying to sort of deputizing you folks to help us deal with this mass of students that

we deal with. There's no way, given the resources that we have available at MIT,

that we could possibly give the attention to each of the students examples of code,

and so our strategy is to go out and deputize some people to help us teach. As we'll

discuss your responsibility is not to do any grading, OK, or even any understanding

of the course content, OK? But rather to ask good questions of the students so that

they understand what it's like to do software development, and you'll see that most

of the students are very immature when it comes to coding practices.

They have taken a minimum of one systems course before this, basically.

SAMAN

AMARASINGHE:

Probably two classes where they write very small programs--

PROFESSOR: Where they write a very small programs, so they have no sort of sense of writing

scale. Moreover the class that we're teaching because it's on the topic of

performance engineering, they are inclined to break all the rules in order to get the

best performance. And that's part of our game but of course what we want is, we

want the countervailing-- you still have to make things maintainable, you really

1



should do it this way, yeah it's fine to violate some abstractions here and there, but

then you should document that you're violating those abstractions and so forth. And

that's what we're counting on you for, is to insert some experience and common

sense. So, Saman, take it away.

SAMAN

AMARASINGHE:

OK, good, so to add to what Charles said, when I was an undergrad, when I took

something like a science class, or a physics class, or engineering class, most of the

problems had kind of right answer and a wrong answer and then it's very easy to

grade those things. But when I took something like an English class, all the papers I

wrote, somebody really went through carefully and graded it and gave me lot of

insightful comments so I can kind of develop my own style of writing. And what

happens in software is the programming there's a style that each individual has to

develop their style, but they can't develop a very haphazard style so there's a

certain set of good styles, certain bad styles. And the problem that is in a large class

we can grade for correctness very easily, we can also look at the programs and

have a very fast thing, okay, saying, here are no comments, or your comment

doesn't seem to be, it's too verbose, or some very high level feedback, but it's very

hard to help somebody build their style.

And so what you guys are coming into is to help us get these young students create

their own style of programming. The nice thing about this class-- and also

sometimes last year the masters found it a little bit hard was, we are giving them

small amount of code. They are doing performance engineering on a maximum

couple of hundred lines of code. There's no very complicated class structures or

something like that.

So we are not looking at the style and software engineering in the macro level, how

to structure large classes but more at the micro level. In each method do they have

right style? Are they is it clean? Are they commenting them properly, or can they do

it better?

So at that level at least the building blocks that they're-- as they go build a larger

and larger program they can hopefully use. So that's what we're looking at, and it

2



helps to instead of dumping you ten thousand lines of code, you only get a couple of

hundred lines of code, so you can actually go through it a lot more carefully, and

help them out. So this is starting with a crazy eye chart that is our new curriculum

that we introduced in the department.

So what you have is some early courses in here, these are basically very general

math courses, early courses that do-- they probably write about ten lines of code

type thing in these courses, and then we feed into these foundation courses and

then after that we sit at, this says 197, actually what should be 172. We sit at that

level, so we are sitting at that level, and then the prerequisite for people who are

coming is that they're taking a computer architecture course so they know a little bit

about architecture. They have taken this introductory software course, so they have

written some Java programs, and so they know a little bit about software

engineering from that course, and they have taken algorithms course, so they

understand algorithms somewhat, so this is the background of the people are

coming in.

At the low end there might be some people who have only written couple of

thousand lines of code in their lives, and there are other people who are, written half

probably-- the Linux kernel. So there are kind of very diversified group of people.

But there's some people who it's really new to them, and they don't even

understand why you had to do good nice programming, why do you have to

document these things. I mean, for them it's a very new concept, because they

haven't seen that. So OK, if you're writing ten lines, OK, why do you need document

that, I know how to do this.

So part of that is this is, for a lot of them it's eye opening, and in last year also we

talked to students, they actually gained a lot from talking to you guys. It's easy for us

to tell them do it, a lot of them say OK, just to get the grade, I will do it, but after that

I'm never going to do these things, and they just go off in very like, mad at us for

asking them to do it, but when you guys say this is what happens in industry, there's

a lot more impact on what they're going to do.

3



And so I would go through very fast, so we have done case study on Matrix Multiply

show doing how you can basically do things like algorithmic tricks, architecture

tricks, and stuff like that get really good performance on Matrix Multiply. So we

started with doing very object oriented, immutable type matrices, Matrix Multiply and

then go down to doing blast. How much a performance gap do you think that has?

AUDIENCE: It probably depends on how big the matrices are because--

SAMAN

AMARASINGHE:

Yeah it is 2k by a 2k matrix so it is, yeah-- So somebody said 200x.

AUDIENCE: 10x

SAMAN

AMARASINGHE:

Yeah 10x, so actually, in fact we've been-- since I started with the immutable matrix,

very object oriented stuff like that, and then did all to optimize I could, I got

300,000x. So this is kind of extreme case, but it illustrates how much, kind of,

performance sometimes is hidden in these applications.

And then we talk bunch about, these are done lectures, talk about some very simple

things in performance engineering, how to optimize loops, things like how to get the

compiler to do certain things. Some basic facts, we have bunch of rules in there that

we went through fast. And we are going to do introduce them to performance

analysis for a lot of these people. First of all, they don't even know their code is

running bad, because they don't know how to look at it other than getting one

number then.

Even if they know that their code is running bad, how do you go about figuring out

what's going on? They know a little bit about GDB but they don't know anything

about performance analysis, so we are introducing them to tools in here. And we

are talking about C to Machine Code, lot of them are Java programmers, we

already gave them a C primer, saying if you're Java what does C mean, kind of a

thing.

And I actually talk about computer architecture today and talk about the entire

process they're going to use. They're using this Nehalem processor and all of the

4



interesting things that happen inside the processor that they had to be aware of.

And the same, maybe I will talk about the memory system optimization, and then

Charles is going to talk about algorithms and data structures for caches in there and

some about storage allocation.

We'll have a bunch of lectures on parallelism that Charles is going to use Cilk

Language to illustrate how to write parallel programs, that's what we are going to

use in this class. And then more on parallelism, some things like data

synchronization issues, dig deep into other performance issues in parallelism in

there. And then since their final project is on Ray Tracing, we'll introduce them to a

Ray Tracing primer, and see how Ray Tracing is done and so they can go into their

final project. Then I'm going to talk a little bit about compile optimization, what

compilers can do for you, and how to get compilers to do those things for you.

And a little bit about distributed systems, so how can you scale out on this point? It's

about getting a small piece of code to run fast, now how do we get millions of users

go to this very large scale system, and get them to work, and what issues are

involved. And then we are going to also have about three or four case studies

sprinkled around.

We'll get someone from University come and talk specific problems, OK, look I had

this problem, and at the beginning it was bad. Here's how I went about figuring out

why and here are the things I tried, these are things worked, these didn't work, and

how we went go. So kind of a very hands on case studies about doing performance

because what these people has to do is develop a methodology. Their own

methodology of how to go about solving these problems, and then looking at these

case studies will give them a feel how a very experienced person will go about

looking at some of those problems. So these are the kind of lectures we are doing in

a nutshell.

So the projects we are doing. So students' mission, what we do is we write some

inefficient piece of code, not that long, and we give them the specific, here so this is

functionally correct but it runs darn slow. And what you can say is, OK, take

5



advantage of right now, the first project is basically looking at algorithmic and data

structure inefficiencies. So OK, trying to find better ways of doing that and change

this program to run faster. So that's their thing, so they don't have deal with

thousands of lines of code. Small program, it's correct, to run them faster, and this

we'll also be asking them to write tests, so you can actually test their

implementation, and make sure that implementation are also correct.

And basically there's no right answer. This drives students crazy because they are

like, "When am I done?" I'm like, "You're never done until the deadline," because

you can keep doing more and more and you could keep increasing performance in

there, and of course if you hit very marginal returns and at some point and you

might decide, OK, that's good enough.

And also more times the journey is as important as the outcome. So at the end of

the day you can say I got it very fast, but how did you get there? What's the process

you followed? Some of these programs are easy to get there, but if you haven't

learned that process you can't scale it out.

And so, a lot of times your part is to talk to them and say, "What did you do?" And

say, "Okay look why did you skip that stage, why didn't you profile it?" And get them

to get do that. And some will say, "Yeah, I just look at it, I realize what it is." Like, no

just do something there might be something hidden in there, so get through the

process, understand the process, that's the important.

So the way the project works is, we give them a project, we start them the project,

and there might be, some projects have two parts in there, and final and a project

request design document for them to give us, saying what they figure out what's

bad and what kind of optimizing they are thinking of doing in this project. And then

we have a thing called a beta turn-in. They said OK look we ran this, we got the

project and turned the product in, an we call it a beta, because I'll tell you why. And

then what we do is, we run everybody's project against everybody, basically we run

every project, and we figure out who got the fastest implementation. And we said

OK, we announced this and said this is the fastest implementation, and then we

6



figure out how off are you from the fastest, and we have a proportion of the grade

that's basically computer graded. So we figure the fastest, you'll get 100% for

something that on the other hand if you are 10x slower you get 10%. Except, the

first time we tried, the fastest was 1,000x better than the slowest, so somebody got

like 0.1%, that didn't work, so we are doing square root of the former so they'll be

little bit more, in the somebody, got 1,000x there.

So sometimes it's because somebody just missed one critical insight and so and

also they might not have done the test properly and stuff like this, so we give them

opportunity. And then after this beta turn-in you get this code, and the TAs get this

code to run and do a very fast check over that and that, and then they are going to

have a week to find a time with you, sit down for hour or 90 minutes, and go through

this code. And then they will get all the feedback, the performance feedback, and

they can talk to people and figure out what they missed and they get another

chance to fix all those things, get the performance up to turn in, and there'll be

another performance measurement, but now if they match up to that point, they can

get a full amount so of course, if people exceed they don't get extra, because we

want to limit the competition, but at least you get a chance to kind of match up the

best code.

So, what you have is this design review week, that they get to talk to you, and get

feedback and, then after that, they fix everything up and then resubmit it.

PROFESSOR: You should mention the beta tests.

SAMAN

AMARASINGHE:

Yes, so what also we do in this is we're asking them also to create a test suite, and

we are going to run everybody's programs against everybody's test suite, and also

give them points on coverage of their suite, and also how well their program does

against everybody else. So if somebody finds lot of bugs in other programs, or

some there's a test that founds couple of bugs that nobody else found we will give a

lot of points for that person, because that means they went and did a really good job

in creating a test suite. So we are actually using that to basically emphasize on

testing and testability issues in there.

7



And then final, when you're turn in, then the TAs will, at that point, will grade for

performance and also the coding style. So that time they will go to the code and

assign the grade. And so if the students have listened to you, and carried out what

you said, they should get really good grades on that part, and then they had to also

provide a write up in that. So this is kind of the flow of the projects we have.

And the project one is a simple algorithmic and data structure trick. So we did things

like data rotator, bit flip counter, and this Pentominoes Puzzle that he's going to

explain a little bit. So we give these things, that we have a pretty inefficient

representation, where most of them has a much better bit representation, and you

can do bit tricks to basically get good performance. So these are algorithmic and

data structure representations that can have huge performance gains. So this is the

first project and this is what next week you're going to get.

So project two is more about memory system performance, things like image rotator

and number sorting. We have two parts, the first part is we give them these

problems, and they're supposed to run with different data set sizes, look at

performance counter results and identify what's going on with these programs. So

there's one thing that we'll give them bunch of source compiled, and they have to

figure out which sort is which by looking at performance counters and different

ones.

So you had to identify, so basically give them idea to basically observe a program

behavior, and then we ask them to go and fix some of the performance issues as a

second part. So this is a lot about basically getting performance information,

understanding a lot of hardware, what's going on and then going and doing some

performance fixes. So there'll be two parts, to this project.

And the project three is implementing efficient storage allocator. Most of these

students find after they've done the Java and Python, they come thinking there are

these objects running in memory, with a thing called pointer that points to, and to

understand what a pointer is is sometimes hard. And this is an interesting example

that they actually do a lot of pointer manipulations, and you have to get a lot of

8



those things right and you have to have good discipline to do that, as well as getting

some performance, so this is interesting project in there.

Here you don't get too much of performance variance but students have to think

very carefully about basically aliasing data structures and stuff like that. So getting

some of this dirty little things you have to do, and learning how do it right. And then

we go into parallel programming. So first part is introducing the concept of

parallelism giving them some simple programs to basically parallelize, and then the

second part is we give them insertion detection we're inserting a bunch of lines into

a image and then they have to figure out when these lines move when they actually

intersect, and so it's not embracing a parallel, you have to actually do by

intersegmenting the data into regions and basically figuring out where

communication is.

So there's a lot of issue in there to get it done. It's a fairly complex program that

they have to to deal with and so they're going to have to think through a lot of

parallelism issues, synchronization issues, communication issues, all those things

come into play in here. And then project 5 is just a problem set because we want to

get to make sure that they understood some basic material we did, so you don't

have to deal with that. We give them, actually, a write up they don't have to do any

coding in there and they turn that in as a normal problem set. And the project six

also you don't have time to critique that because it is delivered the last day of class,

but if you're interested in basically giving them some feedback, or, just come in to

the finals and see how they do.

So there what they do is, this is a really fun project, we give them a very

unoptimized ray tracer, and we okay here's an image that it can generate. If you

generate image that looks the same to us, you'll be OK. So you can change the

algorithms you are doing, come up with other things you can do, where you can still

maintain the visual equivalence and then you can do that, you can optimize, you

can parallelize, you can do anything you want and build a ray tracer. So they go and

then we explain to them the basics of ray tracing and they do lot of cool things and a

lot of these kids actually really change, think through algorithmic issues, even look

9



at a lot of graphics and find different ways, or better ways of doing things, and come

up with really cool tricks and then do really well. So for that we will invite you guys to

come to the-- then we will have basically a bake off, everyone will come and figure

out who has the fastest ray tracer, and they have the bragging rights, as well as the

grade of having the fastest ray tracer, so--

PROFESSOR: I'm going to go through this.

SAMAN

AMARASINGHE:

Okay, you go through-- we have the schedule here. So the most programs are done

in C, and very little C++, not very complex C++ classes, or anything like that. We

want them to be very close to the metal. They have been trained in a lot of abstract

programming in Java, Python and stuff like that, now they're going to get to the

metal, and understand things like pointers, malloc and free, native data types and

stuff like that. We're not dealing with things like dealing in garbage collection and

bound checks, and all the other things, so they're really seeing what's going close to

the metal, and sometimes we are even encouraging to look at at a little bit of

assembly work, that's not really required.

AUDIENCE: Have these students had exposure to any kind of assembly language programing?

SAMAN

AMARASINGHE:

In 004, they are using some assembly programming for in the architecture class,

but I think it's a very simple, I think RISC machine inspection they're doing. And then

we will have our course website as you go about you can look at what the course is

doing and also if you change this F10 to a F09 you will see last year's code. So you

can actually even see into the future what we have been doing. So if you want to

kind of preface from the front.

AUDIENCE: I took a look at this website and found that most of it was unavailable because of--

SAMAN

AMARASINGHE:

We should have Word readable we need to make it if it's not Word readable--

AUDIENCE: It says it's Word readable. To us.

GUEST SPEAKER: Some of it is a lot of it was not I've said you need to, I mean it's all available for-

10



AUDIENCE: Certificate?

SAMAN

AMARASINGHE:

We will check that, because all this things that we have set up in the background to

get everything Word-- we want to make everything Word readable, so we'll make

sure that happens. So, OK, so that's all I have about the class and one thing

interesting more so this projects, the best to worst can sometimes be 1,000x

difference. So what that means, even for the people who are struggling, they can

get something out of the class.

But unlike other classes where you just read the limit and then you're bored, you

can really keep pushing the limit, especially things like the final product, the people

who did well really pushed the limits, they could have done that for a graphics class

type thing. I mean they pushed algorithms changes, did amazing parallelization

techniques, data partitioning, everything. And where some people just kind of

stayed within that and did some small parallelization got some like low hanging fruit

in there.

I mean what we're trying to do is, computer science these days, we get some

students, as I said, their first time they're coding anything more than ten lines and

other people who are already a submitter for open source projects, who have

written millions of lines of code, we have these two. And these codes, I think we are

trying to cater to at every level, and keep everybody basically very motivated, and

excited to be in there. And I think the last year it was a pretty good success. And

they really enjoy meeting masters last year, and after we go to discussion we can

talk about that a little bit.

PROFESSOR: So we have two websites, as Saman mentioned before, so here they are, and then

here's the schedule. So we'll run through this, in more detail for what is expected of

you, in a moment, but basically there's four projects that's sort of are organized

along here. Oops, that typo didn't get fixed. That's should be November 19

obviously there, instead of October 19 if you want to correct that on your calendars.

OK, so in general it begins with an information session which you're allowed to

attend in person but most people just dial in, it's more convenient. Then we will
11



provide you with the beta code submitted by your four students and then you'll have

two meetings that typically are 60 to 90 minutes with each of your two pairs. OK, so

let's go through how this is working. So the first thing is just to make sure you folks

recognize that you're making a commitment. It's very difficult for us, and it's even

more difficult for the students, to cope with something that happens mid-term, OK?

Where suddenly their master disappeared, or whatever, so we're very big on anti-

flakiness, if you will. And so if you believe that there's going to be a problem please

let us know as much in advance as you can. Sometimes things are unavoidable,

they come up, we don't fault you for that or anything, OK? Just let us know, we'll try

to deal with the situation. But for the most part we're really asking you to make a

strong commitment to the class, and so if your situation is such that you're unsure

it's best to talk with us or politely decline to participate, rather than putting on the

rosy glasses, say, "Oh yeah I think I can do this, even though I know that I've got a

major deadline that conflicts with one of these projects," or whatever.

It's just really difficult on the students when things change. They are sort of going I

don't know if you remember what it's like being in school as an undergraduate, but

pretty much the students go sort of hand to mouth, in terms of like, they look and

they say, OK I got this deadline this week I better work on that one. They don't really

look ahead and so forth, and so it's up to us, to some extent, to recognize that

they're in that mode and that we need to do things to make that easy for them.

When they get sick or something mid-term it can really throw a student way off for

the term, and so certainly when something happens to the staff, that sort of, at that

caliber, can really knock them off their trajectory.

The design and code reviews should normally be held at MIT, and the students will

have some locations. If you are within walking distance to campus however, you

may suggest an alternative place to meet, such as at your own workplace, if that's

more convenient for you, OK? But if a student balks at doing that you shouldn't

pressure them to accept. The content of the off campus meetings should be

professional, it's strictly the review process, no lab tours, no free lunches, or

dinners, or what have you, OK? And we'll talk a little bit more about that later.

12



But the main thing about them is that they can be scheduled in the evening or you

know whatever time you and your two students find convenient to get together, OK?

There's no limits as to when you know what time those can be. They can be on the

weekend they can be, whatever you can work out, very flexible.

So here's the basic guidelines, each master is responsible for reviewing the code

produced by four students. The students typically will work in teams of two or three

for the projects, OK? So what you will have is your four students will be organized

into two review groups of two students each, but none of the students will be on the

same project.

The reason for that is that we want to make sure that every student who goes to

represent their project can represent the whole project. So they're responsible for

the whole project. They don't have a buddy there on the same team, who can cover

for them when you're asking them questions about their project. You ask them

questions they've got to be able to answer about the whole thing, even if they didn't

code every piece of that. We're encouraging them generally to do things like pair

programming, so they really should understand what's going on throughout.

The reason for having two groups, rather than meeting them individually, it turns out

there's actually some good knowledge of one of them sort of being able to see what

the other teams are doing. So generally they're not allowed to share their solutions,

et cetera, with other teams, but in this meeting that's OK. The ideas and so forth

can come but they shouldn't be making copies for each other of the code of the

other group. But they can say, oh is that what the other team did, And so forth, and

there can be some learning for them to submit the final project.

SAMAN

AMARASINGHE:

Also last year, lot of masters very successfully used the other team members to kind

critique each other. So showing something do you understand this, and then they

can look at it and say, "Yeah, I can see what's going on, that's very useful," also

when we go to masters we can talk about of that type of thing.

PROFESSOR: Also things like documentation. You can look at the code there and ask the other

13



one, "Do you understand what that documentation says?" And so forth. It turns out

it's actually easier than that, because usually if the documentation is inadequate, the

student himself has trouble remembering what they did, right? I mean you know

how this works with code, so.

So consequently you're responsible for generally for two review meetings for each

of the four projects. Now as it turns out we'll assign things, we're going to have

things like students dropping the class, and so there will be some minor reshuffling

as we go on. Some of you may end up with only one team of two students.

Some of you may find that you're reconstituting it. In some cases if we end up-- we

may ask somebody, "Can you cover an extra team this time because somebody is

going to be out of town?" Or something like that. So there may be some variations

on this, but this is basically how things go.

Now, one thing you should understand is that you are not going to grade the

students. So, one of the things I learned long ago was that when you grade

somebody they behave differently than if you don't. So you're not grading them that

has a plus and a minus.

The plus is that then this is really pure feedback for them. This is to help them, they

know that you're supposed to have read it. The downside is some students will say,

"Eh, then I don't need to listen, because nobody's holding a stick over my head." But

the reason we do that is twofold. One is because we think that the quality of

interaction is better, and the second reason is because you're not empowered by

MIT to give grades. So you won't be grading them.

You're also not responsible for the technical content of the class. We're going to be

teaching stuff, hopefully which is sufficiently new, some of it, that some of you may

not know all of what we're teaching with respect to parallelism, and so forth. Some

of you may that's great, but that's not the role. We will take responsibility for

teaching the content of the class. What we're really after here is for you to listen as

an experienced program developer, and provide feedback to the students about

software engineering.

14



In other words explained to them what's going on. "Why didn't you write that in your

documentation? How come all your variables have only one letter? Why is this stuff

wrapping around three lines before you-- why no white space?" This kind of stuff.

So, remember they're very smart students, but they're also very immature many of

them. Some of them you'll discover are like way mature, but there's going to be

some of them that are just absolutely this is new to them, and what they need is

some encouragement and some suggestions as to what they can do to improve the

quality of their code. And since we're not in a position to review it, why we're

deputizing you as members of the MIT POSSE, is to deputize you to help them

produce better quality code, which is not something that's easy for us either to give

feedback on, or to grade.

So hopefully when we are grading them in the end on their final submission and the

quality of things, it reflects that they've learned something from you folks about

producing good code. Also you want to be careful, this is one of the bugs I have

when I interact with the students is, I tend to do most of the talking if I don't check

myself. And one of the really good things is to have a guideline that they I don't

know how many of you have teenage kids, and if you lecture them how quickly they

learn right? No, they don't.

So the goal here is to help them learn. And so lecturing usually doesn't work. What

works generally is getting them to do the talking.

And then it's great to pepper your interactions with anecdotes. I work with one

person who did this, or early in my career I did this and here's how it blew up in my

face, that kind of thing. Excellent to have anecdotes that you can give with real

world experience.

Why you might think it's like this, but in fact, if you do it that way you're headed

down a very bad path. Let me tell you story about that. That's fine, OK.

SAMAN

AMARASINGHE:

Or if you find a very stubborn person saying, "If you do that I won't hire you."

15



PROFESSOR: That counts too. You would never get a job here if you coded like that. And in fact

that's actually what Saman says, that's actually one of the big benefits of having

folks from industry providing that feedback, because we can say that, if you do it like

that you wouldn't be hired by XYZ corporation. You can say that, but if you say, I

wouldn't hire you, if you did that, that has a, it's like, oh! It has a big impact, whereas

when we do it it's like eh, you know. It's like what do they know?

So the guideline is make them do a lot of the talking, so that they're trying to explain

and you teach them a little bit what a design and code review is. Now, in fact what

your review is, is both design and code review.

SAMAN

AMARASINGHE:

To add to that, what we have told them is to prepare for what a filing statement type

thing, to walk through and explain what they did to you guys. So they will come with

some preparations stuff that they can do that, let them, both of them kind of do that,

and then start them off the instructive part.

PROFESSOR: And maybe they'll do that. But that's the goal is, you should say, "Look, when you

come you should prepare something that brings me up to speed," and teach them a

little bit about what's expected of them when you have a design or code review in

industry. So for each of the projects, as we mentioned, there will be a short

information session, typically by dialing conferencing, except for this one, which we'll

do in a minute.

After the students have submitted their beta releases we will get the code to you.

Last year we had the students responsible for getting the code to the MIT POSSE,

and that was basically a nightmare for everybody involved. So this time we will make

sure that we get you their code, and I hope that way the unreliability-- I don't know if

you remember but like, these are mostly like juniors and seniors, and when you're

juniors and seniors you're not 100% reliable in everything you do and your word is

your bond is not necessarily, oh I forgot that my word is my bond, kind of thing,

right?

So by us getting it to you, we'll remove one layer hopefully of flakiness. Next what

16



you'll do is, you'll coordinate to meet with a mutually agreeable time, and then after

the review you're going to provide us with a little bit of feed back, it doesn't have to

be long, just a short email, not as a grade or evaluation, but to help us understand

where the student's are doing well, and what they're missing. So what we may need

to stress in class and so forth.

And then, of course, after the review, they have the opportunity to make changes to

their code before they submit their final revision. Now, that's a little bit different from

industry where you would go through typically some kind of feature freeze, and

code freeze, and so forth. Our beta is beta sort of in name, but not necessarily in all

aspects, in that they can actually completely rewrite their code between the beta

and the final version.

SAMAN

AMARASINGHE:

So in your feedback you can also tell a little bit about in your interactions what

worked and what didn't. This is the first time, as far as we know anybody's doing this

kind of a thing anywhere. We are also developing a process so good practice is

very--

PROFESSOR: And since your email will go to MIT POSSE and everybody will read it, what

hopefully you can do is, some of the practices that you find useful, I tried this at

work, I tried this, it didn't work. That starts to get spread out among you and is

becomes very helpful for each other to say, "Oh, well that was an interesting idea let

me try that." And so we hopefully we'll be able then to start compiling some best

practices.

AUDIENCE: Will we be identifying students by name in those broadcasting minutes?

PROFESSOR: Yes, yes, in fact here's the thing is, what you're going to do is give, well it one,

names the students who attended, and that helps us keep track of who's actually

going to these and who isn't. The strengths and weaknesses in the student

presentations. Some suggestions for improving the assignment. That's suggestions

for us to improve the assignment for them, and any other comments.

So we got some really good feedback last year that, "Hey the code you're handing

17



out as the initial code that was really sloppily documented." Last year we were much

more behind the eight-ball in terms of trying to do this. This time we've had more

time, and in particular we also have some really outstanding TAs who've worked

very hard on the software engineering of the project. So I think that we'll be better in

that regard, this year, than we were last year.

AUDIENCE: I just had a question

PROFESSOR: Yeah, sure.

AUDIENCE: You mentioned that they're going to give to you and you're going to pass the code

out.

PROFESSOR: Yes.

AUDIENCE: Do you mean just the code or are you thinking structured more as a design review,

they really will be talking about, a review package. It would be the code plus I don't

know whether you're doing documentation generation or any sort of an intro or front

matter?

PROFESSOR: Yeah, so the question is whether in addition to the code there should there's going

to be any other documentation, or package, or whatever. In fact, most of the final

documentation is going to be for the final project and not for the beta, and so they

should have things well documented within the code, for example about what their

strategies are, and how they work, and so forth, but there won't generally be a write

up. They should be providing you at your meeting with a brief outline of what's going

on, and you can ask them after the first meeting for any other thing that you think

would be helpful to them and to you in making the design meeting more productive.

One of the things always in these things is how much do you require out of the

students and at which time. They have in this project, we're on a relentless series of

deadlines for them. And so we've tried to do as much as we can while being still

relatively minimalistic in asking for too much stuff too early. And so it would be great

if they had a complete package of here's what's going on, the fact is that they were

up really late the night before trying to get this stuff done, they've also had to submit

18



beta tests and so we decided that the final write up of how their project worked, et

cetera, we would save for the final, and it won't be something, in English written like

that will only be in the code, it won't be as a separate package.

AUDIENCE: Right.

PROFESSOR: Any other questions about that? OK, so one final word, relationships with students.

So one of the things that MIT has, and many other places have, I'm sure that you're

aware, that if you're in a power position with somebody, and this in particular applies

at MIT with students, you must ensure that all your relationships are strictly

educational.

And what that means is like a, no romance, OK, duh. But it also means in this

context, no recruiting, hints at job opportunities, offers of summer internships, lab

tours, et cetera, free dinners, and so forth. Your job has to be completely

educational.

However when the term is over you're welcome to continue your friendship in a non-

power relationship. There's no longer a power relationship you're welcome to start a

romance with one of the students if you will, but in particular, allowed to seduce

them to come to your company as a summer intern, or a job or what have you. So

you're welcome to do that but not during the term, those sorts of things are

absolutely off bounds.

Now the students themselves may say, "Hey do you guys have summer internships,

and so forth?" And it's up to you folks to draw the line and say something like, "Yes,

we do, but if you're interested in that, we can talk about that after the term is over,"

for example. So, put them off in some way, and return the conversation to the

educational mission for the term. Yeah?

AUDIENCE: So what if the students do a good job?

PROFESSOR: Yes, but then you run the risk of it being interpreted as a quid pro quo for

employment, which is exactly the thing that we're trying to steer away from. They're

smart MIT students, I think they'll figure out that if they're interested in a summer
19



internship they should be impressing their mentor. Not all of them figure this out, by

the way.

AUDIENCE: So just to clarify. Just to clarify, it's okay to say, "If you write your code this way, I

won't hire you." But it's not OK to say, "I wouldn't hire you." I just want to clarify.

PROFESSOR: You'd say I wouldn't hire you, OK, my company would not hire somebody who wrote

their code like this. You could say that.

AUDIENCE: But it's not okay to say my company looks for people who would write code this

way?

PROFESSOR: No, I think that would be OK too. No, the issue is whether you personalize it, right? If

you're interested in a summer job, I can get you a summer job, all you have to do is,

dadadadadadadaaa, and now they feel like there's another master to serve. So

what we want to avoid is having them feel like there's another obligation on top of

the obligation they have to the class. They should not feel that in some ways they're

obliged to do something for you in order, for example, to get a job.

SAMAN

AMARASINGHE:

Or get a good grade.

PROFESSOR: Or get a good grade, or--

SAMAN

AMARASINGHE:

If I say no to the summer job they're going to badmouth me and I will fail this class

or get a bad grade, and then. So, that put them in a binding situation that they won't

work for the class, but they'll feel obliged to something else.

PROFESSOR: You're in a power situation, and you're in a situation where you must not let them

have any sense that there's any power relationship there, if you will, in other words--

AUDIENCE: We shouldn't try to extort meals from them.

PROFESSOR: For example. Exactly, exactly. Also if you feel anything awkward is developing, let

Saman, or me, this is something for which the staff only email is better than

probably the MIT POSSE one.

20



SAMAN

AMARASINGHE:

Or even to us directly.

PROFESSOR: Or even to us directly, although I actually think it better to go via the staff only. It

really is much better to go get via staff only, because the TAs need to know what's

going on with all the students in class as well. Question back here.

AUDIENCE: Two logistical questions but I don't want to interrupt you before you finish.

PROFESSOR: No, that's fine.

AUDIENCE: Okay, it's not clear to me do we meet with the same four students throughout the

term?

PROFESSOR: If possible we will do that. Because otherwise what happens is, they hear it from one

and then they go to another. So this way there's some amount of continuity, but that

won't happen perfectly because students will drop and we'll have to reconstitute

groups and things.

GUEST SPEAKER: The winners get David and the losers get me. That's OK. I just wanted to be clear.

Also you e-mail the code to us before we do the sit down session?

PROFESSOR: Yes.

GUEST SPEAKER: Are we expected to review it by ourselves beforehand?

PROFESSOR: I think it helps to take a look at it, yes.

GUEST SPEAKER: As opposed to walk in cold and doing just that.

PROFESSOR: Yeah, yes, that's right, I mean I think you do a better job if you have looked at the

code beforehand to see, oh my goodness this is, and take a few notes. But for this

we're relying on you to use your best judgment for what's the best way of giving

feedback to the students. But I think generally the reason we email it to you in

advance is specifically so you have a chance to look it over.

21



Once again we're not so concerned about whether the content of what they're

learning in it as much as-- you look at it, it will take you two seconds as soon as you

see one piece of undergraduate code, it'll take you two seconds to say, I don't care

what this thing does this student needs to learn X. I mean you will see. Is that the

feedback, from people who took this--

AUDIENCE: You'll know it when you see it.

PROFESSOR: Any other comments from people from last year what--

AUDIENCE: Yeah, a couple comments. One very minor sort of procedural things. Personally, I

found it a lot more useful to me to show up in person for the information sessions

than do it by conference call, if for no other reason then a lot of people who called in

had issues with voice quality. You know, just getting a good quality voice signal over

the phone.

Also I found it very helpful to have each student review the other one's code. So I

would just do that to start with, just hand it to each other and here, what do you

think? That also gives them some experience of actually doing a review, as well as

being the person who's work is being reviewed.

PROFESSOR: That's a great technique just because one of the things that you want them to do is

empathize with the person who's going to read the code, and so, by putting them in

the situation where they have to read somebody else's code they very quickly learn

oh, this is, my goodness that's exactly what I did to the other one, so that is a great

technique.

AUDIENCE: The reference implementations are we going to get those--

PROFESSOR: Yes.

AUDIENCE: Soon? Early?

PROFESSOR: Yes, those generally we will be able to give you the reference implementations at

the information session. Or actually, we should probably get it to them before the

information session.
22



AUDIENCE: I would suggest before the--

PROFESSOR: Yeah, let's get those make sure we get those to you before the information session.

We'll get you a reference implementation at least a few days in advance.

AUDIENCE: OK, also something that was a recurring issue last year regarding the reference

supplementations which was the... there was some issues with some of the

reference implementation--

[INTERPOSING VOICES]

SAMAN

AMARASINGHE:

--software engineering.

AUDIENCE: In particular things like functions that should have been local to a file they were not

declared static or, that kind of thing, or macros that should have been used or that

were used and shouldn't have been.

PROFESSOR: Last year we were running with a much larger class than we expected, with no

infrastructure to speak of, and we had two TAs who were flat out, and so we

definitely cut corners. This year the department has been good to us, we have four

TAs, and so I think that the quality is going to be higher. That doesn't mean that the

TAs are seasoned 20 years of software development experience or more, either. So

they have some things to learn too, but already based on the first project we're

ahead of the game.

AUDIENCE: OK, also if from time to time one of us wants to attend the class?

PROFESSOR: Feel free to attend the class.

AUDIENCE: OK, where's the schedule?

PROFESSOR: It is Tuesdays and Thursdays in 26-100 at--

AUDIENCE: Is it on the website?

23



PROFESSOR: It's on the website at 2:30 to 4:00. So Tuesdays and Thursdays 2:30 to 4:00, you're

welcome to come and learn all about performance engineering. Reed, did you have

a question?

AUDIENCE: No, I guess I was just going to say that in regard to the feedback, we TAs here have

got that.

SAMAN

AMARASINGHE:

During class last week most of the TAs were students last year, so they aren't

learning anything new.

AUDIENCE: I'm sorry, where is the class?

PROFESSOR: It's in 26-100

AUDIENCE: So it's not here?

PROFESSOR: No. So this is the situation, we outgrew our classroom which seated 60, and we had

85 or 90 students, so they put us into the next smaller classroom that we would fit

into. That was 26-100 which fits 500. Then we found that in 26-100 you needed a

microphone for the students to hear you, even though we had them all crowded into

one quarter of the auditorium, you still then-- just the structure of it-- you needed a

microphone, so they said, "That will be $85 a lecture." And you say, "What do you

mean $85 a lecture?"

SAMAN

AMARASINGHE:

Someone has to walk in just to turn on--

PROFESSOR: To turn on thing thing. So, anyway we sorted all this out OK, but it was sort of funny

that you're charging us for being in a room that we have no choice as to be in?

Anyway it was very funny.

AUDIENCE: Are your lectures video taped are they available--

PROFESSOR: They are videotaped. We are not planning to put them up quick because what that

does is discourages students from attending the lectures, as you can imagine.

24



SAMAN

AMARASINGHE:

Mainly for OCW OpenCourseWare So they basically they could go to

OpenCourseWare they will process it and they have to go through a lot of legal stuff

and make sure the named are right.

PROFESSOR: Are right and so forth, yeah. There is a bunch of stuff there. Good, so it says final

words here but they aren't really final, because we still have Eric to talk about the

first project. But the feedback from the students last year was that the MIT POSSE

was one thing that made this one of their favorite classes. It was getting that kind of

seasoned feedback in a very small group setting when you look at the student

faculty ratio, that's one thing you're always battling. especially at MIT, where we are

in a very popular major, and so the ability to recruit all you folks to help that ratio in

favor of the students is really very much appreciated by students and by us, so

enjoy the term. This is really rewarding the people who have done it before we had

just tremendously positive feedback from them about just how rewarding it was to

work with these young programmers.

SAMAN

AMARASINGHE:

They are very smart people, you can see the changes, you will see the you impact

on them. You will see you're molding these people into better programmers, so

that's the fun part.

PROFESSOR: So Eric is now going to talk a little bit about project one, and this is similar to what

we will do, although most of you will probably be on the phone unless you heed

Barry's advice, for the future one. So I'll get out of your way.

ERIC: So the project one this is, I think, the one project that was substantially different

from last year. So, the code for this project we, the TAs, coded up this semester.

Did we give out the hand outs, Saman, or Charles? Yeah so these are the--

PROFESSOR: So this is the actual assignment and we'll share this with you, plus the reference

implementation, I think.

ERIC: Well we'll send out the reference implementation tonight then. In fact, now people

have already done their betas for project one. Project one has two parts, it's a part

called Every Bit Counts and a part called Tiling a Torus with Pentominoes.

25



So the first part it's an abstract data types of modeling and bit array, packed bit

array and they are a given a couple of tasks to do on long strings of bits. So you

might have eight million bits and there are two functions to rotate the substring of

the bits by some amount to the left or right, and the other operation is to count how

many flipped bits there are in a given substring. So the specific interface for this, this

an excerpt without the comments from the header file of this C module. There is a

couple of accessors which accesses bits individually those are not, well those

accessors are currently used to implement, in the reference implementation, the

rotate and count flips operations.

So what they will need to do is to go into the C module, the implementation, and

change these functions, to basically be 10,000 times faster, or whatever, I can't

remember what they actually got. In particular the rotate operation is incredibly

slow, there's one constraint for them and we're saying that, well imagine that this is

on the cell phone or something, where you have a really big bit array, but you don't

really have very much more memory to consume beyond that big bit array. So we're

asking them to only do this using a constant amount of memory.

So that's the first problem with these two parts, the rotate and the count flips. Any

problem, questions about that particular part? Does it seem clear what?

AUDIENCE: What does the count flips do?

ERIC: Oh yeah, so I should've swap those two slides. So, if you have a bit string, suppose

nine bits or something, 1, 2, 3, 4, 5, 6, 7, 8, that would have to be 8. If this is the

substring you want to count, then you count transitions from zero to one, or one to

zero. And there's some new tricks you can do by for instance, considering six--

AUDIENCE: Count the number of runs, of consecutive value.

ERIC: Yeah, the number of runs.

AUDIENCE: Plus plus one-- or minus one, yeah.

ERIC: That's right. And you don't count the beginning or the end as a transition, so in this

26



particular substring there is one there, one there, and one there. And it's not a

substrings, it's always substrings, it's not the entire string, and you can see that for

instance, you give us an argument, the bit array and you say where the starting

offset and the number of bits that the substring that the substring is and that's

where the operation is done. So our testing routines will do lots of rotations in

different parts of that substring.

AUDIENCE: For the memory constraint, do you have a fixed size that they're allowed to use or?

ERIC: We decided against the fixed size. We just say don't use malloc, and you can

allocate constant amounts of memory, and the thing is if they choose to have a 16

megabyte or four gigabyte lookup table then their performance will suffer anyway.

So yep?

AUDIENCE: What is the computer architecture?

ERIC: What's that?

AUDIENCE: What is the computer architecture?

SAMAN

AMARASINGHE:

We are running on-- we got this donation from both Intel and Dell, we have 16

machine-segments, each with two six core processors and 48 gigs of memory. So

they're doing it on 12 cores so it becomes interesting, and you got a parallel 740

gigs, so we have a lot of memory in these kinds of things and we'll be asking them

to run through that. So these were the latest what's the word?

PROFESSOR: Core i7.

SAMAN

AMARASINGHE:

Core i7s.

PROFESSOR: Nehalem.

ERIC: For this first project, we're asking them specifically not to parallelize.

AUDIENCE: It's all on Windows or Linux?

27



ERIC: Linux.

AUDIENCE: Linux?

ERIC: Yeah. So the idea here is to exploit bit operation and in particular in rotates. The

reference implementation does the really stupid thing of you want sort of 4,000 bits

to the right rotates, well I'll do it one at a time, that's the reference implementation.

But they're only allowed to us a constant amount of memory, so there is certain

amount of tricks you have to do to do it in a more efficient way.

AUDIENCE: Do you stress in the course about portable data code from one operating system to

another, one machine to the other.

PROFESSOR: This is where we want you to stress the importance of it, because that's not

something that we're in a position to do or enforce, or what have you, OK? We let

them assume for this problem, for example, that the machine they're working on is

Little Endian. We talked about the issue, but we did not insist that they wrote code

that would be that would port to a Big Endian machine, because they're running on

the Intel machines.

But this is exactly the kind of thing where code quality would say, portability,

maintainability, readability, all these kinds of things, this is exactly the kind of thing

we want you to say. You say "Hey, you did it like this, in fact did you know that

without sacrificing anything in performance, you could have made it portable from

one operating system to another?" And then you could talk about those issues, and

that's absolutely super, to do that. But we are not spending a lot of class time doing

that, we're really focusing on the performance engineering part of the course.

ERIC: The reference implementation should be portable, so this should be portable,

although we did make sure here, for instance, in the reference representation of bit

array here, that the order of the bits within each bite happened to coincide with the

low end ideas of these machines. So that if you happen to cast it to a 64-bit integer

on each of the bytes in the array then you would get something that was easy to

work with on a low end in architecture. But the reference implementation is portable

28



itself, or should be, so tell us any kind of problems with the reference

implementation like that.

The next problem is based on the puzzle, it's a puzzle solver. It's this puzzle that I'd

never heard of before. Apparently, if you generalize dominoes you get Pentominoes

and the five end cases. So there are this many configurations of dominoes with five

squares on them, I guess. And the pentominoes puzzle is you're given an eight by

eight board with four squares crossed out, and now you're supposed to arrange

these so that the entire board is filled up, and only-- what's that?

SAMAN

AMARASINGHE:

You can do flips of these--

ERIC: Oh, right. You can do flips, you rotate

SAMAN

AMARASINGHE:

And they will dissipate and all those things.

ERIC: Right so the task is find all the solutions, although I believe in our reference

implementation that was too fast, so we decided to generalize the puzzle to the

toroidal case, where the board wraps around the edges, just to make it take a little

longer, to do.

PROFESSOR: Like space boards right? You go off the right edge you come in the left edge.

AUDIENCE: Top and bottom also?

PROFESSOR: Top and bottom also, yeah.

ERIC: So these two are both examples of solutions to this puzzle.

AUDIENCE: I've got a question here.

ERIC: Yep.

AUDIENCE: Are you allowed to put the empty space where ever you want?

29



ERIC: Well, that's the input to the solver.

SAMAN

AMARASINGHE:

Given these empty spaces--

AUDIENCE: OK, and then it fills in the rest.

ERIC: That's right. Of course you can put empty spaces so that it can't solved. And then

they have to correctly determine that there's no answer.

PROFESSOR: That there's no answer.

AUDIENCE: Right.

ERIC: And, also I believe the reference solution takes days, for certain. To find all the

solutions of certain configurations of the initial four dots. So there's an option to the

program we give them, to just find the first 2,000 or something.

PROFESSOR: So once again you can see this is conducive to bit tricks, where you represent the

board as a 64-bit word and then do masking operations, and so forth, to determine

whether a piece fits and do clever shifting. It's easy to shift a piece down one row,

where you're trying it out, because that's just a shift by eight, but how do you shift it

horizontally, to come around on the other-- So they have to do some shifting, some

masking-- So anyway, the first project is all about thinking about bit representations

of things, and so forth.

ERIC: In fact, we give them a solver that we don't really-- well, a searcher, routine to

search the space of possible solutions, that we don't really expect them to change,

but they can change it if they want to do. So, the interface here is basically a board

data structure that they're free to change the internal representations of.

Or did we somehow prohibit that due to testing? No? No, no, no, that's the whole

point, right. So again, you have this basic accessor for use by the testing routines.

But then what you really need to, well, you need to change basically the entire

implementation of all of this, if you're changing the representation of the board, for

instance.
30



But this is the function that should be running faster after you're done, so I guess

that comment is misleading. This is the function that is supposed to run a lot faster

when you're done. There is actual comments in the header file. So right, you give it

a function pointer to a call back.

PROFESSOR: Now, one sort of standard thing we decided we're doing is, we're not trying to write

both 32 and 64-bit code in the classroom, we're just going to do 64-bit. So just one

more level. In practice you would want to have stuff that runs both on 32 and 64, but

for the most part it's fine if they just have it running on 64-bit.

ERIC: Right, so these by the way are the initial four points that are the input to the puzzle. I

believe that's the problem set one. Questions about, yeah?

AUDIENCE: Can students submit more than one answer?

PROFESSOR: No. Nope, they got to decide what they're doing.

AUDIENCE: I guess I have a question about the answer.

ERIC: Yeah.

AUDIENCE: Is an answer that is probabilistically correct, I mean like, it will sometimes when you

test it, you have it pass all the test cases, but mine isn't guaranteed to necessarily

always solve all test cases is that OK?

ERIC: If they can conceal that to us, then I think they--

PROFESSOR: They deserve credit.

ERIC: Keep in mind that the other half of the problem set is to write test cases that will

catch as many obscure bugs in the other students' code as possible. So they run

the risk of competing against--

PROFESSOR: They lose extra points if they don't pass their own tests.

AUDIENCE: They each need to write some tests that will be as--

31



PROFESSOR: Yeah, so then they--

AUDIENCE: They exercise somebody else's.

PROFESSOR: --to somebody else's, yeah.

SAMAN

AMARASINGHE:

We are running all the tests against everybody else.

PROFESSOR: And then for the final version we give them the full regression suite of the whole

class, so they have very good confidence, and we good confidence that they're

handing in something that is correct.

SAMAN

AMARASINGHE:

OK, so you want to open up for--

PROFESSOR: For questions or comments.

SAMAN

AMARASINGHE:

Especially, I won't even mind the people who did it last time, last time to provide

some of your feedback on how we can...

[BUZZING NOISE]

PROFESSOR: Don't want to do that?

SAMAN

AMARASINGHE:

Yeah,

PROFESSOR: I was trying to turn on the lights. Do we have more lights we can turn on?

SAMAN

AMARASINGHE:

Also, if you could turn these on, too?

PROFESSOR: Good. Yeah, so comments?

AUDIENCE: I want to say that's why I was a master last year, and I had a great time, but I

figured I'd stay--

32



[INTERPOSING VOICES]

PROFESSOR: Yeah, could you stand up so people can hear you? Thanks.

SAMAN

AMARASINGHE:

Give him a mic. Give him a mic because I think it'll be good--

PROFESSOR: It'll be good to have these-- yeah. All right?

AUDIENCE: All right. Thank you. So the first thing I found really helpful was to take the reference

solution and actually diff what the student provide because they often just provided

a solution, and if you don't know what they started from, it was hard to tell what

they'd actually done. So diffing the two, that was a good place to start.

And then I found incredibly helpful just to spend 15 or 20 minutes prior to actually

meeting with them, looking at the code and writing like two or three or four things to

talk to them about. And it might sound like it's going to be highfalutin and stuff, but it

was like they're using their returning function pointers to local variables, stuff like

that. It was really like what the hell the makefiles were doing, for example, is

something that I think they really appreciated me telling them that didn't get talked

about in class. Especially once I got a good rapport with them, they just ask

questions, and I spent the whole time answering more practical stuff about the

problem. We had a good discussion, so that's what I would suggest.

PROFESSOR: Thank you, that's great feedback. Yeah, as I say, don't underestimate-- I mean,

most people learn the kinds of things you're saying, but somebody told them that,

hey, these are practices that really don't make sense in a real software system.

AUDIENCE: People were, by the time we got to the projects, your standard pattern was highly

representative, a bunch of flags you want to encode in a bunch of fields, right? And

you've seen them a couple times, it's just a standard pattern.

PROFESSOR: Yeah, so one of the things you'll find in this first one is that they're very confused

about the difference between unsigned and signed, and how shifts work, and what

happens when, you know, how come I shifted this thing left 33 bits and I got a zero.

33



Why? I thought I was shifting a 64-bit value, but in fact, they hadn't done 1LL, they

just did 1. And so there are things like that, where they don't-- very low hanging fruit,

if you will, to talk about.

AUDIENCE: Did you tell them about valgrind by the way? Like, why would programs crash when

they said they spent a huge amount of time debugging these crazy C programs

when they're not used to the compiler not protecting them.

PROFESSOR: Actually, that's a good point because we were going to try to introduce-- maybe we

should do that as part of the next lecture, spend a little bit of time on valgrind.

SAMAN

AMARASINGHE:

Yeah.

PROFESSOR: Because the memory checker there is really a pretty useful tool for them to get

correct code.

AUDIENCE: I second that. That thing has saved my butt so many times.

PROFESSOR: So many times, exactly.

AUDIENCE: I've heard that, but more low-hanging fruit for valgrind is to always compile a -w all

to just cache all the warning and declare all warnings as errors, and it just makes--

PROFESSOR: I think that we have that as a default in our makefile. Is that right?

ERIC: At least for the first project.

PROFESSOR: The first project?

AUDIENCE: I think they should understand that in industry practice, if you don't do that, you're a

schmuck.

PROFESSOR: Right. Yep. Good, so that's good, and why, in particular, the valgrind-- we discussed

that last year, and really actually, the upcoming lecture's exactly when we should do

that.

34



SAMAN

AMARASINGHE:

Because there's also another tool called Dr. Memory.

PROFESSOR: OK, which makes sense, yeah.

AUDIENCE: One issue that I experienced a little last year was that people they specifically intend

to write a little test for their code. They've mostly relied on a few runs by hand, then

they wrote a progression producing things that they ran earlier. I guess that now

you're actually encouraging them to actually have a test suite.

PROFESSOR: Yeah, well, now they get points off if they didn't write enough test that somebody

else's code passed it that had a bug.

AUDIENCE: And in this case the testing run will be as far as the first turn in, and then the second

turn in is just you have a version to run against and then just need to optimize.

PROFESSOR: Right, that's right.

SAMAN

AMARASINGHE:

So first, about the actual tests they have write a lot of tests because that will help,

and the second, then you give them all the tests. So they will have a lot of test suite

to run and then of course we have a lot of number of points we'll deduct of you

actually fail those test. Because they have no excuse.

PROFESSOR: There's no excuse at that point, it's just a question of having--

AUDIENCE: What performance and measurement tools are you going to be using this year?

SAMAN

AMARASINGHE:

So, right now, we are going to give them perf because what we found was, the

process of ECUT is so new a lot of performance tools don't have-- like OperaFile

didn't work, because they haven't been ported properly. There's no port for it yet.

So perf we are going to use, and we are thinking of giving them gprof in there. And

then last year gave them couple Pintools we didn't ask them to write anything but for

example, account number instruction or couple of tools they do that. Those are

main tools you get, and also we need to go to Cilk, you'll do a bunch of Cilk tools in

there.

35



AUDIENCE: Everyone last year, they were given VTune, I think it was, it was too hard for them to

use.

PROFESSOR: Yeah, that was too hard for them to use because they have to use the machines

remotely, and VTune and is an interactive tool, and so that just made it very

complicated to do things. So instead we're going to go with a something that has

textual output, and is easy, therefore, to run from command line and has all the

advantages of running things that you get when you run things from command line.

AUDIENCE: So a logistical question so, meeting on MIT is fine, but where are there designated

places to meet?

SAMAN

AMARASINGHE:

We will work with student to find places for them. For example, there are locations

for PSS students to meet, and we are going to get them arranged. So if in the

organizing you guys can create probably an online scheduling something. What's

that website? Online is, online scheduling is--

PROFESSOR: Doodle.

SAMAN

AMARASINGHE:

Doodle, Doodle or something like that, and get their times and then they'll work with

us to figure out the place to meet, and then they can send it out. One thing we will

have to do is, between four students, because every project we are chaining the

pairings, so sometimes we might end up in a way that, two of your students are

paired together, and then we will tell you don't put them together in the same group,

you'll basically have to mix them in the other way. If they are not in any kind of a

pairing, then you can organize the four in any way you want.

PROFESSOR: Actually I don't even want of the four of them, I don't even want us pairing. That

shouldn't be. But we'll see what happens. Barry?

AUDIENCE: Last year of course was in classroom downstairs and I just met them just outside

the classroom. There's plenty of little space.

PROFESSOR: Also the first floor of STATA, I mean we've had a lot of people just using the first

floor of this building. There's lots of cafe and place there, and so forth, to sit there,

36



get a coffee, and so forth. So some people just did something that informally, other

people wanted a more quiet private place to talk. And I think that we'll help the

students facilitate that.

SAMAN

AMARASINGHE:

And the key thing is, especially if any students are flaking out, for example, doesn't

answer your email, or missed the meeting, or something like that, or late to the

meeting, let us know. Because that's part of their grade, even though you're not

grading them, if they are not participating in working with you guys, they will get

points deducted. So we really want to know that, and we have tried to emphasize

that they have to act, and actually do it right. So we really need to know that, if the

students are not actually cooperating with you guys.

PROFESSOR: So I hope that this year will have a better-- So the vast majority of people last year

had no trouble, but we did have a couple of people for whom it was one or two

students who just made life a little bit miserable for their master, and so hopefully

we'll provide a few more incentives this year to avoid that situation. But they're

students and so they--

AUDIENCE: When do we find out which students are assigned to us?

SAMAN

AMARASINGHE:

Probably the next two days. OK, and then who's responsible for contacting whom?

That's a good question. Who should we contact?

PROFESSOR: We decided that, didn't we, at the meeting? What did we decide?

AUDIENCE: This is what happens when you don't write things down.

SAMAN

AMARASINGHE:

You have to cover the old stuff.

PROFESSOR: Let's see, so last time I think we had it that the students contacted the mentor, and

then--

SAMAN

AMARASINGHE:

What we will do is we will set up, we'll send the intro email to everybody, we'll send

the intro email to the mentor, Cc the student then saying I am introducing you to

each other. And then one thing you can do is immediately reply and, if you have
37



Peter Doodle Paul, or something like that. And then say, OK, look, do you know your

students? So you can reply to that and hopefully they will reply back, and proceed.

So when we send you the names you will also see the emails of students.

PROFESSOR: Are people familiar with doodle? Anybody not familiar with doodle? So doodle is a

website where you can basically enter a whole bunch of times, and then people

enter their names and mark off which times they can make things. It's a poll source.

SAMAN

AMARASINGHE:

Don't do what I did the last time, I marked off all the times that I cannot participate,

so I was basically the exact opposite.

PROFESSOR: It's green and red, is what the colors they use. So green means you can make it,

and red means you can't. So, anyway you don't have to use that facility, but it is a

convenient one to use.

AUDIENCE: Can we expect students to be dropping?

SAMAN

AMARASINGHE:

There will be people dropping. They just started. This is also a group project and at

2:00 AM we got mails saying OK, I'm dropping the class, and we had to scramble

trying to add a 3:00 AM to create another group, and so, Yeah.

AUDIENCE: You shouldn't take dropping as a reflection on our end. People drop out.

SAMAN

AMARASINGHE:

You have to know that.

PROFESSOR: You can if you want.

AUDIENCE: I had like three people drop

PROFESSOR: No, that tends to be more--

AUDIENCE: I had one student, it was awesome. So easy.

PROFESSOR: Yeah.

AUDIENCE: To get an idea of the mindset the students are going to be in this sort of a really

38



tough 6-170 type thing, or is this one of the easier classes.

PROFESSOR: No this is a challenging class.

SAMAN

AMARASINGHE:

So you take 6-170 that has about four projects. We doubled the number of turn-ins

because each project has beta and a final, and some projects has two turn-ins in

there. So basically, they have all their big projects going on, because they are doing

the new project and they have submitted final on the previous project. And they're

already completed project zero that was--

PROFESSOR: Just like real life huh?

SAMAN

AMARASINGHE:

We gave them project zero. That was built to to get used to the system and we can

help them with the class, they have to finish this one. So this class just screams

excess very, very--

PROFESSOR: Yeah, and of course they're students, some of them have learned you put off things

to the end, and haven't learned the lessons of well not always. So as I said, as a

group they're relatively immature when it comes to some of these things, but there's

a large fraction of them who are incredibly mature about these kinds of things. So

our job is as lecturers in the class is to make it so that the students who start work

early don't get penalized.

And that's probably the hardest thing in the software related class because, the

classic thing is that they want to get started, they find all the bugs right? And they

waste their time doing it, and if you do it later, then the TAs have worked all the

bugs out. So one of our challenges is to make it so that students who start early are

rewarded by being able to have more time not wasting their time.

SAMAN

AMARASINGHE:

And today was the day that they turn in the project and by looking at the class, you

realize they haven't gone to sleep, and I asked and most people haven't slept in

about 30 hours. They have been up entire last night and an email conversation

when I went to sleep there was an email train going. Every five minutes, something

pop up. When I woke up, the train was still going, and amazingly, there were a

couple of TAs up and answering all through the night, and that kept continuing.

39



So these kids they can be flaky sometimes, but they're amazingly hard working. And

this is only one class they're taking. They might be taking four classes like that.

And I have seen people scheduling their schedule as by hour, scheduling and they

say, OK, look I can do the problems set or I have one hour of sleep. And a lot of

times that's their thing, and then sometimes they triage. That's why sometimes they

miss classes, they realize, OK, I can do the problem set, I can sleep, I came do that.

So I think these kids work amazingly hard.

PROFESSOR: I do think it's helpful to also counsel them on, hey, you can't do everything on a

death march. You got to learn at some point what you're capable of, and manage

your own time resources and so forth. Because the joke at MIT is, classes, friends,

sleep, pick two.

The other thing, let me just say, is that despite the obvious sleep deprivation we saw

in the class today the number of students who came up after class so charged

about working on this first project was really quite amazing. They were all very, very

excited. And very excited we also gave them the initial feedback on the

performance, and you could see, there's one group of students who clearly got it,

and then there's another tier of students who didn't get it quite this much, and then

there's the ones who their code has errors and stuff. There's no doubt that there

are a lot of students who are very charged about this. This is a fun class but it's a

hard class.

SAMAN

AMARASINGHE:

I think you'll find this is true. They will be, probably tired, but they will be soaking up

this information like a sieve, and sometimes I found last year's-- After the looking at

the first set of code, some of those the masters were really upset. How can you

teach you guys, these guys write this kind of bad code, but when they realized after

they said something, this is getting into their heads. I mean, they're improving

they're actually changing.

These guys are very smart, and they're looking for you guys for-- They're basically

sponge, really empty sponge. They're going absorb a lot in this class.

40



PROFESSOR: I have a 2 and 1/2 year old at home, and it's amazing what the progress is she's

made in six months. She talking now in complete sentences, and so forth, it's just

really amazing how how she does it, and these students are like that. They start out

and you say, oh my God, they have no skills whatsoever.

By the end of the term the progress that they've made is really astounding. You just

say, gee if you could just keep on that trajectory your whole life. But really, they

really are very smart, and they come up to speed very, very fast, especially given

good counseling. The main thing that they need right now is just the attention so

somebody actually can look at their code and say, you know you did it like this it

would be better code. Any other questions or issues? This is lots of fun. If you run

into any troubles, we're right here, just send us email.

And as I say they're young and immature, but then you get to see them grow, of

course some of them will flake out on you, but the vast majority, you'll see, are really

very dedicated and well meaning. They really want to do a good job in the class,

and really, really find the class very exciting. Our numbers, in fact, almost doubled

for last year. So the reputation got around that this was a good class to be doing.

And the other thing is, right now what I really like about the class, the students right

now compared with say 10 years ago. So 10 years ago we had the Internet boom,

and there were all kinds of students taking computer science because they thought

it was a ticket to fortune and so forth. And now we're back to what it was pre-2000,

1998, whatever.

Where the vast majority of students who are taking the class really enjoy

engineering. They really enjoy the software. They really enjoy the engineering. The

fact that you end up with a pretty good job and opportunity sometimes to do

entrepreneurship, and opportunity to explore things, it's sort of like, oh that's a

fringe benefit. But what they're really after is just the intellectual excitement and so

forth.

So it's really quite fun to work with the students and quite rewarding. Really very

nice type of class to have right now, where the students taking it because they're
41



actually interested in the material, not because it buys them a bread ticket, meal

ticket, whatever. Yeah, question?

AUDIENCE: The standard, is the coding standard in the reference, the standard is to consider

for them provided?

SAMAN

AMARASINGHE:

I don't think we have set up a standard, per se. What we want them to do is kind of

create their own style. It's like in a writing class, you don't give them a standard

writing guideline is to follow this one, you don't constrain them to that. We want to

give them the opportunity to grow into their style, but kind of guide them, so that

they don't make the classic mistakes.

That's why we need you guys, I mean, if there's a standard, we can come up with a

standard, create a script to actually check the standard, and then say, OK, thou

shall follow the standard. And you can do that and everybody will hate it. You can't

make that bad happen. One thing you want to do is make them lifelong good

coders, not something they realize OK, I need to do this to get this grade, and I'm

going to abandon everything and convince myself never to that again.

And we have had sometimes, like when we needed all this software engineering.

We went through things like thou shall write all the preconditions and postconditions,

and everything will be graded. And people did it, but half of them got into them and

said this is good things. Other half, they didn't realize why they're doing it, they just

hated it. And I don't think they left assuming I would never do this again.

So the key thing here is, we don't want force something on to them. We want them

to come through a natural process, and I think a lot of them, can, when they

understand what they're doing, they'll develop a really good kind of practice.

PROFESSOR: It's also the case, I think, that coding standards vary culturally from place to place,

and the what people expect in one place is different from what thing. So being too

prescriptive means, as Saman is saying, that it becomes a grammatical thing, rather

than is this code organized. The real thing, coding standards are very important,

especially in large software organizations of course, so that everybody can tell

42



what's going on in any particular piece of code without having been the author. But

in this kind of thing where we have something that's relatively small, what we're

mostly interested in is the organizational aspects of coding style, as opposed to the

grammatical ones.

SAMAN

AMARASINGHE:

So also don't impose your standard and say, my company this is what we do, I want

to follow that. Just figure out and kind of guide them towards something while

they're maturing, and try to make it better. That's the thing. That's why you cannot

have a cookie-cutter model.

PROFESSOR: And why it's good to have senior software engineers who understand what's really

important, as opposed to what might be required in any particular individual

situation.

SAMAN

AMARASINGHE:

One other topic I want to add is sometimes when you have two students, there

might be a case that one person might be very talkative and dominating, and one

person might be just a listener, and so you have to keep an eye on that and make

sure that you give the other person opportunities to talk, and because it might be

just like that. Encouragement and stuff like that, so make sure that you get both of

them to talk.

And also the are supposed to be responsible for all the code. You should not let

them get away by saying, oh my partner wrote it, so I don't understand. So that's

not a good answer. So get them to actually go through that, and if they don't come

prepared tell them that, and you can give them some feedback, as a next time can

you please do, this and this. Because they also don't know what to expect, and we

give them a little bit of guideline, but it'll be good, also for you, the first time around,

if you find some mistakes also for the next code review you can encourage them

what to do, how to prepare and what to do.

Don't give them too much work, because we're already giving them enough work.

Don't ask them to write extra documentation, but you can say it would have been

nice if you had this level of preparation, if you could have explained to me, or given

me a summary, or something like that. So something like that is something you can

43



expect.

And the other thing is if you had to figure out how we want to do code review. So,

for example, you might want to bring your laptop, or ask them to bring a laptop in

there, if you want each other to look at the code on the computer, so ask them to

bring the laptops or something. So think about the logistics of how you're going to

do that, and that'll be useful.

PROFESSOR: And I think any other sort of expectations you have, in your email to them the first

time say, here's what I'd like you. I think it's helpful to say I'd like you to come

prepared to give me a five minute update on how you did each of the problems, for

example. We will be telling them that, but to have it come directly from you means--

The difference if I say go do this to that person, versus you're coming to me and

expecting it. Good.

So, I want to once again, I can't thank you folks enough for being willing to give your

time. Time is the stuff life is made out of, so I really appreciate your willingness to

volunteer your time for these students, and I really think you have a dramatically

meaningful impact on the students. The students may or may not fully appreciate

that, OK, but Saman and I really appreciate that, and we will make sure the students

appreciate it.

AUDIENCE: Yeah. I just have one. What what are the guidelines for a contact outside of the

code reviews with the students. I mean are they, can we have them email us with

questions about the process and just kind of general guidance

PROFESSOR: It's your level of tolerance we don't want you to have to commit more than about 20

hours across the term, because then it becomes onerous. But if you're willing I think

it's completely open ended, in terms of how much else. I mean it's one thing if you

go into solving their problems for them, that we don't want you doing, but when it

comes to, especially the quality, and non-metrical aspects of programming, the

more you can give them the better, OK?

Because it's only making them be better programmers. And I think the fact that

44



there may be some unevenness in that across the masters is irrelevant. Really, I do

not want to hold back some students from getting good mentorship because

somebody else is not getting the same level of attention, et cetera. But really, no

expectation there, on our part, to do more than the code reviews themselves.

SAMAN

AMARASINGHE:

So, that said I want to make sure that you aren't answering their question, at some

point I don't want to be a crutch for them. For example, if they say, OK, before

prebeta, they say OK, this is my next problem, can you on a little bit, I didn't

understand. If you have that, so they're trying to get too much into that level, kind of

making you their programmer, or something like that, just let us know.

A lot of these things, there will be a lot of cases that arise that we haven't thought

through. The students are ingenious enough they will find a lot of loopholes, a lot of

kind of interesting things that we never thought through. So if you find something

that you're not feeling comfortable just send a mail and say OK, take a look.

PROFESSOR: It really is, if their questions are about course content it's not appropriate for you

folks to be dealing with, really. OK, that's what our TAs are for, and course staff. If

it's about coding style and engineering practice, and even time management, or

anything that's sort of the non-technical aspects, but things that have a strong

impact on technical, that yes. Anything you can provide there is great.

SAMAN

AMARASINGHE:

So if you find anything that's outside the norm of what we discussed if you feel a

little bit uncomfortable, just send email. Send an email, and say, hey, can I do this?

Is it OK, for me to do this? And then we can always provide guidance, so we are

responsible.

PROFESSOR: --do something and say after the fact, oh, it went past, let us know. There's rarely

anything you can do on one shot basis that is heinous or unrecoverable from, or

whatever, so.

SAMAN

AMARASINGHE:

It is always good, I mean that's why-- since we see everybody able to and we have

done these kind of situation before. We can just easily tell you what.

PROFESSOR: But, mentor them, for sure, mentor them.

45



SAMAN

AMARASINGHE:

I think a lot of times, when you talk to students last time they got a lot more

information out from the masters, other than just the coding style. I mean, they talk

about what is it like to be an engineer in a company, what are the things? And so

they get a good feel. I mean, some of them might not have done a internship in a

company. So they don't know.

I mean, they're just green, and talking to you guys they get a feel for what it's like.

And also from a non-marketing situation too. I mean you might have ulterior motives

to market your company to them, and stuff, but this is not that they're going into a

job interview.

So, for a lot of them it's rare. I mean they might not have retinues of friends that

they can go and talk at that kind of casual level. Most of the time they're on guard

because they're on an interview or they assume that information coming to them will

be sugar-coated, and here is a way that they can get-- I think it's very good for

them.

PROFESSOR: Eight minutes over time.

SAMAN

AMARASINGHE:

OK, I think we should.

PROFESSOR: So, any last final comments? Saman and I will hang around for a few minutes, for

anybody wants to chat more one one. And one and once again I thank you for all

the time that you're planning to put into the 6-172, thanks.

AUDIENCE: Thank you.

46


