
MITOCW | MIT6_172_F10_lec01_300k-mp4
The following content is provided under a Creative Commons license. Your support will help MIT
OpenCourseWare continue to offer high-quality educational resources for free. To make a donation, or
view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: Welcome to 6.172, Performance Engineering of Software Systems. This is a fun

class. It's all about going fast. We all like to go fast-- well, not all of us. But

everybody in this class likes to go fast. Otherwise you won't like the class very

much.

It's all about making stuff go fast. So a couple of brief announcements. We're going

to be videotaping for OpenCourseWare. So if you don't want to be videotaped, you

should sit it in a place where the camera won't catch you.

Because we're in such a large classroom, I'd like everybody to sort of every day,

without me having to draw-- I'm not really an artist. My sister's an artist, actually.

She's a painter. But maybe that gene escaped me. It went that way and not this

way. So I don't want to have to draw it up again. So everybody, try to confine

yourself to this sort of quarter of the classroom. And that way, it'll feel more like a

size room that we ought to be in.

Let me go to our course information sheet. Did everybody get a copy of the course

information handout? So we're going to the class-- we're going to start at the

beginning with the Administrivia stuff, try to run through that as quickly as we can.

And then my co-lecturer, professor Saman Amarasinghe-- if you can't pronounce or

spell his last name, you can just say "Saman"-- will give today's lecture.

And we have four teaching assistants. So teaching assistants, please stand up.

They are Josh, John, Reed, and Eric. And let me tell you, what they have done in

the last few days to get us ready for this course is nothing short of superhuman. So

you really need to accord them your respect, and they're going to really work hard

to help you folks do well in this class.

We have, I think, a pretty decent ratio. I think even with concerns about cutbacks, et

cetera, to have four TAs for this is really good. And we need it, because it's a

software class. And software is, as you know, bugs can take an arbitrarily long time

1



to find. You guys can sit.

Besides our teaching assistants, we have two support staff people helping us, Mary

McDavitt, who works for Saman, and Marcia Davidson, who works for me. And

they're generally pretty good about being able to track us down if we're in some far

corner of the world or something. Our lectures are going to be held on Tuesdays

and Thursdays in this room, 2:30 to 4:00 PM. You should plan to attend regularly.

We dispense all kinds of wonderful gems that you will miss if you think you're going

to get it just from reading and even looking at videotapes or whatever.

I'm not sure what our arrangement is going to be about having videos available. OK,

they're not going to be available, except unless there's something really extenuating

circumstance. You have to go into a hospital to have your forebrain removed or

something-- something serious, OK?

All material in the lecture, even if it's delivered oral, is fair game for projects and

quizzes. We will post the lecture slides, but they don't generally convey all of the

information. And we're going to be video-recorded, as I mentioned. If you don't want

to appear, sit behind the camera, and you won't appear. We have no recitations in

this class.

However, the teaching assistants will periodically hold primers where we will bring

you up to speed on various technologies that you may not be up to speed in, such

as C. How many people have programmed in C before? And how many have not

programmed in C before? A few. OK. Tools such as VTune. Who's used VTune

before? Who has not used VTune? Good.

Pin-- who's used Pin? OK. Who has used Cilk++? OK, a couple people. So you see,

we're going to have some primers to bring you up to speed in those kinds of things.

We don't expect that you came in knowing any of those things, particularly.

We're going to be using Stellar for our course management. And here's the URL.

And you should make sure that you're registered as a member of 6.172, because

otherwise, you're not going to get any announcements. We're going to do all of our

2



administration through Stellar. So make sure that you're registered there. At the end

of today, I think it is, we'll send out an announcement to the student mailing list. If

you don't get something by the end today-- so you wake up tomorrow morning, you

have no email from the course staff. What that means is you should email us.

AUDIENCE: Well, that mailing list would be the preregistered ones.

PROFESSOR: That'd be the preregistered ones. And then that way, we'll get all the people. So if

you know you're not preregistered, you can send us email before then. There are

two one-hour quizzes given during class time.

AUDIENCE: One and a half.

PROFESSOR: What's that?

AUDIENCE: One and a half hour.

PROFESSOR: Oh, you're right. It's one and a half hour quizzes. Yes, two one and a half hour

quizzes. We'll correct that in the online version. Given during class time. Can

somebody, by the way, correct this as we go along? Great.

The dates are on the course calendar, which is available on Stellar. We've had

mixed results with the ICS feed from Stellar, but you're supposed to be able to

download the calendar to your iPhone or other ICS-capable devices. But we were

successful in downloading, but all the times were screwed up.

But anyway, hopefully, maybe they'll allow that. But anyway, the calendar is there.

The quizzes will generally be closed book and closed notes, but you will be

permitted crib sheets, one sheet that you summarize anything that you feel that you

need to know.

Generally, everything that we cover in here is fair game for the quizzes, including

things that are in prerequisite courses. There is no final exam because we have a

final project.

This is a fast-moving class, so if you get caught behind, it's not a good sign,

3



because it's really hard to work double-hard to keep up in this class. You really have

to keep on top of things. And so for that reason and others-- because it's really

difficult for us-- it's fast moving for us as well-- we generally cannot accept late

projects. If you haven't been able to complete a project, you should just package up

your partial solution and hand that in, and you'll get partial credit on it. Do not just

say, oh, I'm not going to hand something in, and expect it to get it done later.

If you do find yourself in an unusual situation which you think there are some

extenuating circumstances, like the aforementioned brain surgery or something, let

us know in advance. So if you're going to get in a car accident, it's really helpful if

you tell us the day before so that we can plan. Obviously can't always do that, but if

it is something for which there is any reasonable expectation it should be done

beforehand, you should let us know. And we may require, for those kinds of

exceptions, some kind of confirmation from a dean or medical professional. So if

that's the route that you're in, you can plan a little bit and make sure that those

confirmations are on their way.

The grading, this is essentially approximately how we're going to grade. As you can

see, there's a bunch of content in the projects and a bunch in the quizzes. And then

there's also participation grade. And the participation is both in-- we will have design

reviews and such, so that's part of the participation, as well as asking questions and

such in class. And because we're video-recording everything, we know exactly

who's asking questions, unless you choose to sit outside the video zone.

In addition, if there is a significant missing element to your work, it doesn't matter

how well you did on the other things, you will receive a failing grade. You must,

essentially, do all the work. So if you do not get substantial credit on the final project

or any other two assignments, for example, you can expect to receive a failing

grade.

It goes downhill very quickly. If you're missing one assignment, generally don't

expect to get higher than a C, for example. It goes downhill very, very quickly,

because that's what this is all about is hands on.

4



What's permissible in this class? So it's your responsibility to satisfy both the letter

and spirit of the rules. So if you have any questions, let us know. Here's what the

rules are. Also, let me just say how Saman and I treat this. We have been involved

in cheating incidents off and on over the years. I've been at MIT almost 30 years.

Saman, you've been here--

PROFESSOR: 13.

PROFESSOR: 13 years. So we've been here long time, longer than you folks. We've been through

this a bunch of times. It's really a pain when somebody cheats. It robs me of a huge

amount of my time that I could otherwise be spending on teaching and students and

my own professional development.

However, we both take cheating incidents extremely seriously. So we have this thing

that is sometimes really inconvenient called integrity. And I'd rather, if I find

somebody's cheating, just give you an F and not deal with it. Drat. Instead, when

somebody's cheating, I tend to want to take it to the Committee on Discipline, where

you face things like expulsion, et cetera.

So I don't like to do that. It's very time consuming for me. But I find it hard to just

look the other way, because I view the issue of integrity as protecting the vast

majority of students who are obeying the rules. So when a cheating incident occurs,

I sort of feel honor bound to push it to its proper conclusion.

So please don't cheat. We will use a variety of means at our disposal, including

technological ones, to detect cheating. Also, if you think that sharing your results

with somebody else means that they're cheating and you're not-- in some cultures

that's the way it's treated-- no. In this culture, in particular the culture in this

classroom, they're both equally guilty of academic dishonesty, whether you are the

giver or the taker. Equally, we treat that as equal offense.

So here's the particular things. You may not share, generally, your solutions with

people who are not in your group. So we will have a bunch of group projects,

generally in pairs. And that includes both people in the class and people outside the

5



class. So generally, you keep things to yourself. When you're in a group, of course,

you can share ideas within the group. But we expect that everybody's making a fair

contribution.

So you should be concerned if you are not holding up your end of your group

participation. And we're going to ask you to describe the contributions of the people

in your group. Generally, the group, as I say, is two. So it's basically saying, what

did you do? How did you divide up your project? What did you do? What did the

other person do?

You generally can't share it with anybody else. You can't copy or transcribe

solutions from other places. The work you submit must be your own. Pretty

straightforward. You may go out and use general conceptual material, such that you

might get from a good textbook or from Wikipedia or someplace like that. That's

perfectly fine, resources you would ordinarily have available. But if you do use any

material from an external source, you should properly cite it in normal academic that

fashion. Cite where it is so that somebody else can go and find and look to see what

it is that you're citing.

If you feel that you have transgressed in some way, let us know. It always goes way

easier. I generally tend to be kind of a nice guy when somebody comes to me

saying, oops, verses I hear from somewhere else or one of our tools detects

something else. Then I'm kind of cranky. So I'd rather, if you come to me, we could

work something out, generally.

Most of your out-of-class time will spent completing six projects. And there's an

outline of what the projects are. They're all fun projects. You can ask the TAs. The

TAs will tell you how much fun they are, because they've generally helped to design

and built their own solutions to them. Some will be done in pairs, some individually.

The final project can either be done in pairs or in threes, I think we said.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes, we also have-- we didn't put that in here. We also have a Project 0, which will

6



be available today after class. So you should go to Stellar and get Project 0. Project

0 is not to be handed in. It's getting warmed up with all of the machines and tools

that we'll be using in the class. We have been very fortunate to have very nice

contributions from Dell and Intel of a new Cluster facility that has 16 12-core

machines. And they're Intel Core i7 machines.

Each chip has six cores, and there's two cores per machine, each with 48 gigabytes

of memory. So these are kind of honking modern facility. So as I say, it's fun. It's fun

when you do something on your laptop, and then you go and you do it on one of

these machines and it goes like this. It's really fun when these things go fast.

So Project 0, you should start on today. And it's basically the handout called Getting

Started. It will be available on Stellar. And it will take you through getting access to

these machines and so forth. In particular, in order to use these machines, you

must have a CSAIL account. Who does not have a CSAIL account? So that is going

to be the first thing you need to do, because you've got to get that.

So what you want to do is get registered for a CSAIL account-- and we give

instructions in there. It's basically going to a web page-- pretty much as soon as you

get out of the classroom. Because you won't be able to start anything until you have

this CSAIL account. And hopefully, we'll be able to give you access within a few

hours after you register. Yeah, question?

AUDIENCE: What operating systems are the tools--

PROFESSOR: Linux. We'll be using Linux. So there are a variety of ways that we describe for how

you use these machines remotely. We have the Andrew File System-- AFS-- which

you can use so that you can edit things locally but have an SSH terminal window on

the machine, which makes it very convenient. On the other hand, for some people,

often some dorm rooms with poor connectivity, doing things by AFS may be too

slow for you.

But there are a variety of other ways that you can-- you can actually edit right on the

machine. And there are a variety of ways of having a repository on your machine,

7



because we'll be using Git as our versioning mechanism. So you'd be able to have it

there and be able to make copies back on the other machine.

So there are a variety of ways to work. And you're free to make the software run on

your own laptops or workstations. The one thing I'll say is we will not support that.

We don't have the resources to support beyond using the machines that we actually

provide.

I think I've got to go faster here. So let's see. So software engineering. So research

in programmer productivity has demonstrated that pair programming, where two

programmers sit together, one at the keyboard and one looking on, is actually faster

than two programmers coding separately. Why do you suppose that is? Yeah?

AUDIENCE: You don't get stuck. The other person can tell you-- it's like when you're

[INAUDIBLE] writing on the blackboard, you get nervous. You don't know what

you're doing. [INAUDIBLE]

PROFESSOR: Yeah, you could be stuck. What else?

AUDIENCE: You don't procrastinate.

PROFESSOR: Yeah, you don't procrastinate. That's a good one. Don't procrastinate.

AUDIENCE: Finding bugs.

PROFESSOR: Yeah, finding bugs. So the main one is finding bugs, that the person who's looking

on finds bugs. In fact, I was just pair programming with Reed the other day, and we

were trying to figure out, why is this thing not working? And I say, gee, it looks fine.

It says, next y equals x. And he says, no, next y is supposed to equal y.

And it's like, we had both read over that code, but as soon as I spelled it out, I didn't

even notice. But of course, him in hearing it says, oh, it's supposed to be x and y

and y, not x and y. So anyway, that kind of thing, you pick up very quickly. It makes

it very easy to debug.

Likewise, regression testing demonstrably promotes fast co-development. So this is

8



where you build a battery of tests that includes tests for every mistake that you've

ever made. And it can also be helpful to write unit tests, where you test individual

ones. And you should also use tools like the assert package. And some of these

things will be taken through in Project 0.

The MIT POSSE. We have recruited senior software engineers in the region to

share with you their invaluable knowledge and experience. We call them Masters In

The Practice Of Software Systems Engineering, which has the great acronym MIT

POSSE. These are people who are not being paid. And they're senior. They're

doing this because they're volunteering, because they want to help.

You have a lot to learn from these people, and we will have code and design

reviews with these people with your assigned master. You want to treat them nicely.

They're not doing this so that some snotty-nosed kid can say, I don't care about

you. That's not what they're doing. They're there to help you get a good grade.

And these are some really talented people, people who are very famous in their

own areas of expertise. So be gracious, is the main thing I would say. Be gracious.

Let's see. The assignments. You can read about the assignments. Basically,

generally, what we're going to do is have a beta submission in which we're going to

test everything. And we're also going to take all your tests. We're going to throw all

the tests into a big pool and run everybody's tests against everybody software. You

will lose points if you fail some of the tests, assuming the tests are correct tests. You

will lose points if you have an incorrect test.

You will lose points if somebody passes your test and they have a bug. You will get

points if your test picks up something that very few other groups tested for. So you

have to both submit code and submit tests, which is OK, because you've got to test

your own stuff before you hand it in. But we're also going to be using it to test each

other.

After beta, we will have a design and code review with your master. And let me just

say, the master's there not affecting your grade in any way. They do give us reports

9



about what happened in their meeting, but they have no bearing on the grade.

They're just there to help.

So you don't have to view them as-- they're not part of the course staff. If you want

to get angry at somebody about how things are done, get angry at Saman and me.

Don't get angry at them.

The final submission is generally due a couple weeks after the beta. And it's after

you've gotten feedback on your design, feedback on things. We'll give you the

whole battery of everybody's regression tests, so you can test out your code against

everybody's regression test and use that. And then generally, the scoring is such

that people who get fast code get high marks. People who get slow codes get lower

marks.

If you need help, [UNINTELLIGIBLE]. Speed is fun. Enjoy the class. Yeah, question?

AUDIENCE: In terms of the bug testing, I'm thinking of bugs like-- I don't know-- [INAUDIBLE] or

something like that. If you happen to not have made a bug in your own program

[INAUDIBLE] would that count against you in the final testing.

PROFESSOR: You have to view your beta test as testing other peoples' code also.

PROFESSOR: But if you [UNINTELLIGIBLE] a test that finds bugs in somebody's program, and if

very few people wrote that test, then you will get points. So you don't have to test for

the world, everything. If you fail somebody's test, but not yours, you will be deducted

points. If your test finds other people's bugs, you will gain points for that.

But on the other hand, if you don't have a test for-- what you said, I think you don't

have to go and test for every possible condition in there. The negative side is, if you

miss something, we will deduct points. Positive side is, if your test finds somebody

else's bugs, you'll get points for it. We'll go into detail exactly how

[UNINTELLIGIBLE].

Another thing we did last year, which was kind of interesting-- I think there were

mixed-- some people really liked it, some people were not that happy-- is a little bit

10



of competitive grading. So here, what we are doing is not the full grade-- small part

of the grade. What you do is when you first submit your beta, rerun performance

tests of everybody.

And of course, one of you are going to get the fastest code for that. At that point, we

are going to say, OK, this is the fastest code. And how [UNINTELLIGIBLE]

everybody else with that code? And the person who gets fastest code for that part

of the grade gets the full points. And everybody else will get a partial part of the

points.

However, you get a chance in your final submission to basically improve your code.

If you do better than the last time's best code, you won't get any more additional

points, because then we don't want to create [? an arms race. ?] So you at least

had to match the previous times to get full points. So you get a chance to see how

you stand against your peers and get a chance to actually [UNINTELLIGIBLE] math

with your peers.

So first time we did it, we said, OK, it's the fraction of your performance against the

performance of the best code. The problem was, there were a couple of codes that

1000x performance improvement, and everybody got 10x. So you've got, like, 0.25

grade. That didn't help.

So now we actually are doing a logarithmic log scale. So we'll get the fraction, and

we'll take the log off that. So there will be a little bit more equality. So you will know

how worse off you are, and you get a chance to [UNINTELLIGIBLE]. Because it is

very important, because a lot of times, there might be a crucial thing that you

missed. And instead of trying to be, "aha, got you" in this class, we are trying to give

you a chance to actually learn.

So if you missed it, OK, you missed it the first time. But you get the second chance

to come and fix it and see whether you can do well. And of course, if you do better

than the best grade, there are bragging rights, but you don't get extra points.

With that, let me-- where are we? So again, as Charles pointed out, I'm pretty

11



excited about this class. This is a really fun class. Unfortunately, I'm a little bit under

the weather. So I'm going to sit down. And if I don't sound that enthusiastic,

hopefully I'll get enthusiastic later.

And that's one reason we ask you to come forward, because we don't have to come

here and shout. So hopefully people in the back can here. If you don't, still, there

are some seats in the front. You can move forward.

So for the rest of the class, what we want to do is go through an example and look

at why performance matters. For that, I selected matrix multiply. And I think your

Project 0, you are going to also play with matrix multiply. And I think that you'll get a

feel for what kind of things will happened and how much room you have in doing

well in here.

And at the same time, as I go through this, you'll get a feel for what's the process

that you might be following through the class and what kind of things-- because

linear programming, after taking a bunch of programming classes, probably, you

have a methodology set up in your mind, how to go about doing that. And the same

thing after this class, we want you to have a methodology of going through and

improving performance. And this is basically a little bit of a contrite example, but

you'll get a feel.

So what's matrix multiply? It's a very fundamental operation for many computations.

So you are going to produce Matrix A by multiplying Matrix B and C. So you want to

calculate each value in here to take a row of B and a column of C, and you get each

element of A. And you do that for every element of A. And this is the possible

simplest code you can write in a language like C, a [? three-loop nest, ?] and this

matrix multiply.

So, so far, things should be pretty simple. So what I did was I looked at matrix

multiply and said, look, you have taken software engineering class. You have

thought about object-oriented programming, lot of nice techniques to build very

useful, portable software. And let's try to write matrix multiply with some of those

concepts.

12



So the first thing I want to do is matrix multiply write object oriented using immutable

classes, and that, in fact, I want matrix class to represent both integers and doubles.

So here's my class structuring here. And actually, I'm going to show you a bunch of

code now, next couple of slides.

I'm not expecting you to follow everything instantaneously. I'm going to go through

somewhat faster. But you have the slides. So I always expect you to, perhaps, in

some free time, to go and look at some of the slides, get a little bit of better feel for

what happened.

So here's what matrix multiply does. I have a value class that figures out the matrix

type. And if it's integer, it keep integers. If it's a double, I keep a double. And here,

basically, do this value in here. And then I have a matrix class. Basically, given a

matrix type and a matrix, it can create a matrix here. This basically creates your

matrix in here by first creating a bunch of rows here, and then instantiating each row

in here, whether it's integer or double, depending on the type you want.

And then, of course, there are other things in matrix, basically, in here. And you can

update a matrix. This is going to be a little bit interesting. I will give a little bit here,

because what I'm going is I'm doing immutable types. That means I can't change

anything in the matrix. If you are updating, you have to create a new matrix.

So I'll show a little bit about how to go about doing that. And then there's this row

class. I'm going through this fast, because it's not that important. If you get a

chance, go through this and get a feel for what I'm doing. But the idea is doing this

very software engineering way of implementing a matrix multiply.

So then here's my matrix multiply in here, that what I'm doing is I'm updating each

of these matrices by giving a value of B and C and adding it to A and updating A

again in here. So when I run matrix multiply, 1,024 by 1,024 matrix, this is the time I

got. Actually, it took a long time, in fact. And the key thing, is the performance good?

That's the first question to ask. Because you run, you get a result. When the result

is correct, OK, great. You get the correct result. But how do you do? And this is

13



sometimes a very hard thing, to know that you have a problem is itself a huge win--

that you figure out you have a problem.

And what I'm going to do is go through a little bit of a calculation to see how we did

it. It took about five hours to do this matrix multiply, and that doesn't look right

already. So if you think about matrix multiply, it's an N-cube operation, basically,

what matrix multiply is doing. That's the algorithmic [? class. ?] If you look at

Charles' book, that's what it would say. It's N-cube operation. So this is the number

of operations you want to do.

And for each matrix operation, you only do three index updaters, add, a multiply,

and a check-- probably six ops to do, basically. And that means I need to do this

many operations. Basically, you can think about machine operations to do, basically,

because you have to read three values, update one, do a multiply and add, and do

a branch.

And if I look at that with my hours, I am doing this many operations per second,

which looks high. Big number. But my machine, actually, on my somewhat old PC,

transfers even much faster. So if you think about it, I am taking about 8,300 cycles

to do any kind of a machine operation. This doesn't look right.

So at this point, this is what I would call a "backup [UNINTELLIGIBLE] calculation." I

haven't proven anything. This one worked well in the theory class, but if you can just

jot down a couple of these things, you can get a feel for where you stand very fast.

And then you realize, OK, I am a couple of orders of magnitude off here on what

best I could do. And that should give you a feel for what's going on.

OK, so what's going on here? How can we improve performance? Because we

know we have a problem. So what we can do is we can look deeply into the

program execution.

And at some points, OK, this program runs slow. [UNINTELLIGIBLE] time spent. So

we can figure out time spent, basically, things like by method-- which method you

spend most of the time running. Sometimes by line. And we will learn a bunch of

14



profiling tools that will give you this feel. So instead of reading a million lines of code,

looking at every line in there, you can very fast converge onto the culprits where

most of the time being spent. And that's a very easy way of triaging your problem.

And you look at things like time spent, cumulative time spent within that and

everything called underneath, number of invocations of the functions. And a lot

times, you have a feel for what it should be. And when you look at this, if it doesn't

look right, you say, wait a minute, this goes against my intuition. Perhaps there's a

problem.

So what you can do is, by doing this, you can identify hot spots. Basically, if 90% of

the time it's it one routine, that's what you want to fix. And hopefully, that routine is

doing something too slow. Then you can actually get good performance in here.

So here's the profile I ran for a matrix multiply. And interestingly, what I found was,

most of the time spent in basically creating doubles-- number of calls, time spent

here, this much time was spending, basically creating new values in here, this

initializing a double in here. So I'm doing matrix multiply. Why should I be initializing

values? So this is an issue. And I have the most number of calls to that too. So we

can go look at it and say, hey, that would seem to be a problem here.

So the problem here was kind of obvious. What happened was I didn't use

immutable [? class. ?] So this is my matrix representation. I have a bunch of

pointers pointing to each row. And now assume I won't update this element. And of

course, I can't modify the entire thing. It's immutable.

So what I had to do is create a copy that updates. And then, of course, I had to

create a new matrix. I don't have to copy everybody else, because these guys were

not changed. So I can place a pointer to these things and create this new matrix

that points to these things.

And then, if you think about what's going on, in fact, and this is my new matrix after I

do that, I [? updated ?] two end copies for each update, because what I had to do is

I had to copy this entire row up to get that. And I had to create this entire index

15



again for each point in each row. So just to update one element, I am creating two

end copies.

So what that means is now our N cube matrix multiply ends up being N to the power

of 4 algorithm. So suddenly, you realize, wait a minute, I'm doing something bad in

here. I'm actually [UNINTELLIGIBLE] N-cube algorithm, and the way I saw, it

becomes n to the power of 4 because I'm making all these copies in there.

So this is a bad thing to do, of course. And copying is very costly, because you're

making duplicates in here. And of course, you're creating a huge amount of

garbage, because you are just copying and leaving the previous value for garbage

collection. So garbage collector's coming up all the time, and huge memory

footprint. So this is no good. And can we do better? Hopefully, we can.

So the next thing we did was, OK, just get rid of these immutable types. That

seemed to be a [UNINTELLIGIBLE] here. And then, I actually have-- I will go faster

over the code, so if you are interested, you can go look at the code in here. So

here, what we did was, still we have the issues like object oriented and ability to

represent both integers and doubles.

So what that means is each matrix can be the integer matrix or a double matrix. So

this is where you're instantiating with integers or doubles in here. So we do that.

And how much you think this can improve performance by doing that? In fact, this

was pretty nice. I actually got a 219x performance improvement because I went

from n to the power 4 algorithm to n to the power 3 algorithm. So here is interesting,

algorithm has changed with it, and we have a pretty nice performance improvement.

So if I look at this now, what I find is I'm spending a lot of method time, I'm doing

matrix multiply. That's good. But I'm spending all this time doing get double and get

methods. I'm trying to do matrix multiply. Why am I spending all this time trying to do

get double and get?

What I found was issue is the method call overhead. Now, what happened is matrix

row has two different matrix types, the integer row and double row. So every time I

16



want to get a row, I don't know if I have integer row or double row. I have to do a

look-up to figure out my type. Am I working with the integer matrix or matrix in

doubles?

And this is what we call "dynamic dispatch." So instead of knowing exactly the

methods we are to go, I had to actually look up, OK, which method I'm supposed to

go. I have to do that since, if the matrix is integer, I might have to call a different

method than matrix is double. I have to check that.

And then that call, instead of direct call, becomes indirect branch. I have to check

that and basically branch on that. And these indirect branches are costly, because

what that means is I don't where I am going until I do that test. So no machine--

we'll go into details and pipelines and stuff as we go on. What that means is

normally, a machine can have a lot of instruction in flight.

So that means that I have to know a lot more information to get the instructions

going. But here, until you resolve the instructions, you can't do the next one. So it's

called a, basically, pipeline stall. So instead of having hundreds of instructions

going, basically, suddenly I can't do anything until the previous instruction is done.

So the machine slows down a lot because of this.

Normally, what you can do is keep fetching next instructions here. We have to fetch,

test, then the test result is available, then that's when you can fetch the next

instruction. Let me go through that file. So direct batch means target address is

known. You can fetch ahead of the targets/ If I know where I am going, even if I

don't get there, I can fetch ahead of the target. I can go start fetching what happens

next ahead, basically, into [? the branch. ?]

Sometimes, you can even fetch both directions, or the direction you might always go

might get fetched by the architect. We'll talk about a lot of architecture details in the

future lectures. Indirect branch means until I calculate the address, I have no idea

where I'm going. That address is only calculated. And because of that, hardware

slows down like crazy.

17



So this seems to be not a good thing to have these integers and doubles instead of

having one nice class of just [UNINTELLIGIBLE] might be nice. I just basically create

a double class. It's all matrices are doubles. If I want integers, I will just rewrite my

matrix class or copy and replace.

Now my matrix class becomes much more simpler. This is what I got, and this is my

row in here. And voila, minute I do that, I basically went up about a 2.4x

performance improvement, because now I don't have to keep doing that.

And altogether now, I have improved my performance by about 500x here. And for

ops per cycle, we have gone down from 8,000 to 38 to 16. So we do still better. And

now we look at, again, my profile data. And what I see is, OK, I am spending a lot of

time in matrix multiply. That's OK. But also, I am spending time in this matrix get

method. I am trying to get each, basically, row and data elements of the matrix.

So here is the summary of these things. I'm going to just keep that one, because I

gave you [INAUDIBLE]. So the problem in this object-orientedness is I [? handle ?]

each row is represented separately-- nice objects. These objects overload the

memory. And in fact, if I want to get to my row, I have to appoint a [? chase ?] to go

get that. It's not contiguous in memory. And to get to every row, I have to actually go

through this [? point ?] indexing in here.

[UNINTELLIGIBLE] matrices are one, nice, simple objects. So we can say, OK, wait

a minute. This method call overhead actually keeps dominating. And because I

have done this nice object-oriented thing in here, so I can get to the object-oriented

file here and say, OK, get to the objects.

And I write this nice loop of [UNINTELLIGIBLE]. And I have two-dimensional

matrices in here. And voila, I got another 2.2x performance improvement in here.

OK, now I am down to about seven cycles for each operation in here. That's good.

So what can we do here? So we did all of these things in Java, because it's

supposed to be a nice language. But Java has a lot of overhead. It's like you do

memory-bound checks. You have to do this bytecode interpreter and stuff like that.

18



On the other hand, C can run much faster. You don't have to do any kind of

memory-bound checks. The compilation happens before you run, so it is not part of

your cost of doing anything. So this can work very much like C. You can just almost

cut and paste.

And if you know, C is [? index chain, ?] [? and this ?] to C is just changing a few

lines. And I did that, and this is, basically, the C code in here. This is the matrix

multiply. This is the kind of allocation in here. C can be a little bit painful to allocate.

This is my matrix multiply. It will look similar.

And I got 2.1x just by going from Java to C. This, I was surprised, because that

piece of Java code looked very much close to C. But by just doing that, I actually got

another 2.1x performance gain.

Now this is kind of the high-level stuff. Now we have to go to nitty-gritty details in the

hardware. So in modern hardware, there are these things called "performance

counters" that hardware [UNINTELLIGIBLE] that we can look at what's happening

inside hardware. We can get a feel for what happens inside hardware.

And there are things called CPI, which clock cycles per instruction. So that means if

the instructions are running very slow, you will have multiple clock cycles per

instructions. That means instructions are stalling. Something is wrong.

Cache misses. So data [UNINTELLIGIBLE] [? pay attention to ?] caches and stuff

like that. If data are supposed to be in cache and have cache hits all the time, but if

you are getting cache misses, something is wrong. Accesses are not good.

And then also the instructions retired. That means, how many instructions are being

executed and retired? If you are doing too much work, the number of instructions

retired will go high in here. This will give you a few how many [? work been done. ?]

So if you look at this one, I have a CPI of 4. That means for every instruction, need

about almost close to five clock cycles, which is not good. I have pretty high cache

miss rate, too-- L1 cache miss rate and some L2 cache miss rate. This shows how

many instruction are in what they call [? vector in the ?] instruction form called SSE
19



instructions. And here's the number of instructions got retired. So we just use that

baseline case.

So one thing I can look at was my cache miss rates seem to be pretty darn high.

What might be happening here? So if you look at matrix multiply-- so I have Matrix A

in here and Matrix B-- what happens is, to calculate this value in [? Matrix A ?] here,

basically, I'm going to go through this row in here, and I'm going through column in

here.

Problem with the column is it's all [? low in ?] the cache. This is your linear memory.

So because this is here two dimensional, but inside your hardware, there's no two-

dimensional memory. You have a linear memory, so this is your linear memory. This

is how the memory look like. And this is how the memory look like.

So each row and column is in these areas. But here, to calculate this value, this is

nice. I go through memory that is contiguous. But C, I am jumping all over my

memory. And jumping on memory is not that great cache behavior.

And contiguous can do much better, because what you do is, when you get a

cache, you get a cache line that has more than one word. So in here, what you're

doing is you are getting large cache lines only using one word before you go to the

next one. So that's not great in cache behavior. So what you can do is you can

make this memory contiguous.

So what you can do is, in matrix multiply, normally, n to the cubed computation to

the squared data. So to help on n to the cubed, it's OK to do some n to the squared

processing. That means you can do a data transport before you start matrix

multiply. Do some pre-processing. So this will also come in handy.

A lot of these problems you'll do, you'll say, wait a minute, can I do a pre-process

that's cheaper that will really improve my main processing? This is a theme that

comes again and again. And then we can get this n to the cubed running faster

since this n to the cubed is much larger than n to the squared. You can amortize the

cost of doing that.

20



And basically, to get that, we can transpose some matrix going into the squared

operations. And then now n to the cubed might run much faster. And in fact, what I

have done here is do the transpose of this matrix. And now we run this one, and

then everything will be in contiguous memory. And voila, I got another 3.4x

performance improvement.

Now I am running almost at one cycle per op, which is really nice. But modern

superscalars actually can do better, so we can actually end up being even better.

So let's see. So we are doing that.

So here is the interesting thing. Now I look at my transpose [? spot. ?] So if you look

at that number of retired instructions, it's more or less the same. Number of SSE

instructions, more or less the same. I have a 2x improvement in my L1 cache miss

rate. But more than that, I have a 5x improvement in the CPI.

That means my instructions are stalling a lot less now than before. So this is where I

got all my performance [UNINTELLIGIBLE], because my instructions are running

much faster. So by looking at data-- this is the kind of things you're learning during

the class-- then you can get a feel for what actually is happening and why you are

getting that.

You can go do more in the cache, in memory system. So remember, the memory

system, if you're [UNINTELLIGIBLE], if you look at cache, what they're doing is we

have a small amount of memory called cache that are very fast access. And you

have a large amount of memory that is sitting out that has slow access. So what you

want to give user feel as if they have a lot of memory, everything is very fast access.

So hardware does a lot of crazy things to give you the illusion that you have very

fast memory and you have a huge amount of that.

Of course, that's not true, because you have these caches. And what happens is, if

you do things wrong, these get to slow down. So in the cache system, you have

cache [UNINTELLIGIBLE] You have each multicore going to its own L1 cache that

goes L2 cache, which goes to L3 cache, which goes to the main memory system.

21



And you want all of the data to be here. If that's the case, things run very fast. If not,

you have to go here. It will be a lot more slow, here, even slower, here, very slow.

So the key thing is to get the data as much as possible here.

So here's the kind of cycles, basically. One cycle to get here-- three cycles. If you go

to L2 to L3, you have to do 14 cycles [UNINTELLIGIBLE]. If you go to L3 to main

memory, you might sometimes get hundreds of cycles delaying here, so it's very

costly.

So the caches are very temperamental beasts. They work beautifully, but when they

don't work, these go really haywire. So a lot of times, if there's a performance issue,

look at the cache miss rate and say, aha, the caches are not behaving. And can I

help in here?

So the interesting way to look at that is how much data I touch. These graphics

didn't show up. Let me explain. So if you do matrix multiply, I am trying to calculate

one value in here. So this is one value. I have to calculate row and the column.

This slide got screwed up a little bit. So just look at this calculating [? row bar. ?] So

if I want to calculate a row of values here, what I have to do is I have to get this row

in B, and I have to use entire C to calculate one row of A. That means I have

touched this much data items just to get one row of A. So that means I am

calculating 1,024 values of A. I am touching this much data items to get that.

On the other hand, if I do block matrix multiply, that means I calculate, basically, a

block in here. This block is also 32 by 32. It has 1,024 elements in here. But I only

need a block here and block here. Voila, I only have looked at 25,000 elements. I

got the same number of output calculated. But I have only touched much less

elements altogether to calculate that. Do you see that?

And nice thing is, if this thing fits in the cache, I am much better than this might not

fit in the cache. So I can calculate blocks in matrix multiply by looking at a lot less

number of data, that has a good chance at fitting in cache-- and of course, when

you calculate. you make sure it fits in cache-- than trying to just calculate row by

22



row.

So one thing you can do is-- this is a lot of common things we do. There's many

ways to get same results. You can change the execution order. You can change the

algorithm. You contain data structures. And some of them actually might do better

than the other.

And here, we can actually say we can do the execution of the change and make

sure we are only looking at small amount of data, you get the same number of data

calculated. And of course, sometimes you have to be careful, because if you do

things in different order, you might not get the exact same results.

So if you are a numerical [UNINTELLIGIBLE], you say, OK, of course, if you're doing

A plus B plus C, what order you do will make a difference [UNINTELLIGIBLE]. So if

you're really careful, you can't do too many things.

But most times, you can do some of these things. And in fact, in our final thing, we

might say-- the final project-- we will give you something that you can change the

algorithm as long as the outcome of the [? image ?] is the same. If you look at the [?

image, ?] and the [? image ?] outcome is the same, you can go change things.

So a lot of times, you might have a lot of freedom to change the amount of errors

you get, the precision, and, in fact, doing that, that you can actually get a lot of good

performance. So in here, we are not trying to change the matrix multiply, of course.

But we are going to change the way order of operations is being done. So some

people say you can't do that. It would make matrix multiply different. But in most

cases, it's OK.

So what we have done is done what we call block matrix multiply. So instead of

calculating rows, you calculate blocks at a time. So calculating each block, you only

need a few amount of data. So this is block matrix multiply.

And voila, by doing block matrix multiply, I got even 1.7x performance gain from

that. Now, it's very interesting. Now with each block cycle, I am doing two

operations. So my [? superscale ?] is finally coming to being. So every clock cycle, I

23



am doing multiple operations here. So this is very interesting, the number here.

So now when you look at what happens here, I am actually executing a little bit

more instructions here. Why? Because I did block matrix multiply. That means I am

doing a little bit more overhead in here. I have more loops in here. My inner loops

are small. So I'm doing more instructions to do execute there. So I'm doing more

instructions, but I have a huge cache performance gain. My cache miss rate now

going down to very, very little-- 0.02%.

And I have an 8x improvement in cache, and that means I got a 3x improvement in

my CPI in here. That's very nice. That means even though I'm doing a little bit more

work, my cache behavior really, really helped me in here. So kind of says why I am

getting this performance gain.

So what else can we do? We can go look at trying to do a lot more crazy

optimizations because if you look at the modern Intel, they have this thing called [?

retro ?] instructions. We'll get a little bit more detail into that later. And what we can

do sometimes is you can nudge the compiler to take advantage of these

instructions.

Of course, if nothing helps, you can actually go write to assembly

[UNINTELLIGIBLE]. But hey, I don't want you guys to write assembly code, at least

in this class, even though you can get really good performance sometimes. But you

can kind of give enough hints to compiler and pray and kind of [UNINTELLIGIBLE]

there's no nice way on these things, and hope for the compiler to do the right thing.

So in here, we can play with, a lot of times, compiler flags. And this is not exact size.

We keep trying those things, and sometimes we can even get information back and

say, OK, what did the compiler do? It might give you some good hints and say, I

couldn't do something because of this part of the code. And worst comes to worst,

you can actually generate assembly and stare at it. And sometimes in this class, you

might actually want to stare at assembly and see what goes on in here.

So here is the assembly for here. And this is my loop body in here. And then what I

24



can see, I'm not going to go through that. Everything is converted into SSE

instructions. At least I know what SSE instructions mean, so this seems to be doing

well, so I'm happy. And in fact, I'm really happy because I got a 2.8x improvement

by doing this.

Now what I am actually doing each clock cycle about [? five of my ?] operations. So

I'm going really fast in here. So now, incidentally, I'm running my program about

30,000x faster than when I started. So if you haven't noticed, these things slowly

add up in here.

And now, if we look at what's going on here, it's very interesting. What I have done

is actually, my each instruction is now CPI has gone down. That means each

instruction is running slower because I'm doing these SSE instructions. And in fact,

my cache miss rate has also gone up. But I am doing a lot less instructions,

because SSE means in one instruction, I am doing a vector.

So I'm actually getting four operations done in one instruction. So the number of

instructions I execute has drastically gone down. So even though my instructions

are running a little bit slower, I can basically amortize that, and I get good

performance in here.

And of course, this one says, OK, now 88% of the instructions are SSEs. So I have

[UNINTELLIGIBLE] most of the things to run on vector mode in here. And of course,

you can keep doing more and more and more. And there are these four things

[UNINTELLIGIBLE] matrix multiply, there are people who spend their entire lifetime

trying to run it faster. And they have libraries like that, and this thing called a BLAS

library and this thing called Intel Math Kernel. So they have done a lot more other

things, like pre-fetching, getting everything right.

So here what I do is basically call their library, don't do anything myself, and this

library will do it for me. And in fact, that library itself gave me another 2.7x

performance gain in there. Now I'm actually doing 11 instructions every clock cycle

by doing that.

25



And if I look at it carefully, what they have done is they are also very into SSE

heavy, so they are running almost the same amount of instructions. But they

managed to actually get, again, a better miss rate. They probably figured out some

stuff in here, things like pre-fetching instructions. And that means they actually

brought down the CPI back to where it was before. And that's why they gave that

performance [INAUDIBLE].

And finally, we are doing a little bit of parallel execution. So as you know, multicores

are here. And you're actually going to these 12-core machines, which is really nice.

Fastest possible machines you can get your hands on these days. And it's kind of

fun to work with them. And we can basically get concurrency for parallel

performance. And a large part of this class at the end is trying to get good parallel

performance.

But there are a lot of issues with parallelism. I will go a couple of issues now. Of

course, when we get to that part, we will go in detail. One thing is called Amdahl's

Law. Because if you're trying to run something parallel, you can't run everything

parallel. When you start something, there's part of the code that basically starts the

computation. And then there are the parts you can run parallel, and then other parts

you have to also wind down, measure, things like that.

So what Amdahl's Law says is, even if you have an infinite number of processors,

the maximum speedup you can get is this-- this the part of the code that are

sequential and [? parts of ?] the code are parallel. That means if you have only 90%

of the code can be parallelized, the maximum speedup you can get is 10, even if

you have an infinite number of processors. So 99% of the code is parallel, the

maximum speedup you can get is 100. So this is very interesting, because even if

you have huge [UNINTELLIGIBLE], if your code has a certain amount of sequential

part, there is a limit of what you can do.

[UNINTELLIGIBLE] also think of load balancing. That means when you get parallel,

what you are assuming is all processes are busy all the time. That's very hard to

achieve. Sometimes some processes are busy. Sometimes others are not.

26



Sometimes something's finished early. So if that happens, even though you have

parallels, you might not get really good performance in here.

And then, of course, there's a thing called granularity of parallelism. Normally, what

happens in programming, you run sequential part, you run parallel part, you run

sequential parallel part. To start parallelism is a big task. You have to tell all the

other processors, OK, look, you guys have some work. Go do that, and finish that,

and come back. And that itself is very expensive.

And the work you give is very small. You give the work. The start-up and tear-down

cost of parallelism itself might be too much than the speedup you get. In fact, you

can make programs parallel and slow them down really drastically.

So you have to be very careful in that, because you can say, oh, I'm running in

parallel, but it's running slow. Why? Because you might have a granularity issue,

because we are giving so little work that even though you're getting parallelism, you

might not get that much performance.

So if you look at matrix multiply, what happens here is you can divide the matrix into

two different parts in here and calculate as two different matrix multiplies in a

different core or a different process. Or in here, I can make it two or whatever in

matrix multiplies to do that. So this is nicely parallelized. No big issue in here. And

when I parallelize, I got rather 3.5x performance improvement.

Of course, I could have gotten more here, but because I had to start here, since I

didn't want to wait for a week for this to finish, I had to come up with a smaller matrix

size. But now, when I get here, this is so fast, my granularity is too small. So that's

why I didn't get-- because this was an eight-core machine, I didn't get 8x because

the minute I get parallelism, it just is over because it's running so fast in here.

Now, at this point, using eight cores, I am actually getting 36. So this is not that

interesting, because this is not running on one core, every clock cycle, I am trying to

get 36 operations done. So the interesting thing to follow in here is that this example

might be somewhat contrived, because I started with this immutable-type matrix

27



multiply. Hopefully, you and your colleagues who haven't taken this class probably

won't go that far.

But even if you start somewhere here, still, there's a huge gain to be made. So to

put this in perspective, OK, so if you look at here, even if I start here somewhere out

in C, I already got 131x performance improvement. That's huge. So that means in

this class, we are not talking about small things.

And in fact, this is why I had to go log scale in doing absolute grades, because we

had people who figured out exactly how, in some problems, to change data

structures, change execution ordering, do some really cool thing, get 1,000x

performance improvement. And there are other people who did little bit things and

got 2x improvement. So the fact that what you can do the best here can be really,

really high. So that's why we actually started giving you the second chance to also

go basically see, if you missed a critical point, to go back and learn that.

So to put this in perspective-- so in summary, what we have done is-- matrix multiply

might be an exception. Every time you go, you might not get that much, but in here,

going from this very software-engineered, nice [UNINTELLIGIBLE] to a BLAS

[UNINTELLIGIBLE], I got a 296,000 times performance improvement. This is huge.

If you put this in perspective, if you look at miles per gallon between these two-- a

supertanker and this scooter-- it's only 14,000x, basically. So what that means is

you have to have 20 supertankers to basically match this much improvement. So if

somebody can tell you, look, I can't get a supertanker to run at the same miles per

gallon as your scooter, that would be revolutionary.

But you can do something similar in your computer. And in fact, if you look at these

large data centers, the computers are actually burning a lot of energy, a lot of cost.

And in fact, if you can reduce that, that can have impact. So what you get out of this

class is to think through these programs this way. Learn about correctness before

[UNINTELLIGIBLE] 6.170, you hopefully are good at writing correct programs.

But that's not good enough in a lot of times. And how to think about programs, how

28



to make it run faster, there are multiple [UNINTELLIGIBLE] necessary. So for

example, in here, it's basically direct energy. So can you get the data center to burn

10% less energy, that's huge. For example, if you look at today's supercomputing

centers, they spend about $10 million a year on energy, just for the power grid. So if

you can say, I'm [? playing with ?] 10%, that's huge.

Other thing, one thing Charles says a lot of times is, what performance gives you is

currency, because performance itself might not be that directly useful, but it gives

you currency to buy something else. What it is? So assume you have a nice

application. Your GUI is doing OK. It's up to the point that people don't feel stalled.

But if you want to do something addition, if you add a feature, you don't want to slow

down the program too much, because your users are going to complain. So what

performance gives you is, if you improve the performance, it gives you currency, the

ability to buy some additional features into your system. Or you have a system that

you created a start up, and you created this nice server somewhere.

Suddenly, it became very popular, and a million people want to use your software.

And the software might not be ready to do that. It might just crash and burn, or you

might have to pay a lot of money for Amazon for the [? cycles, ?] so by actually

making programs faster, you can make it scalable, you can make it efficient. So this

gives you the ability, this currency, to go do a lot more other interesting things to

your software because now you can run it faster. It gives you this margin to play

with.

So in this class, we are going to learn a lot about these things. We are going to

learn about architecture, how looking at the architectural issues, how to identify

when something is wrong. We are going to look at algorithmic issues in here, how to

look at things. We are looking at architectural things like memory systems,

parallelism. And also we will talk about all the tools, so you will actually know

something has gone wrong. Because today, you run the program, it runs, it runs

correctly, is it good enough or not? How do you identify that? That's, I think, the very

interesting place to start.

29



So that's all I have today. Make sure you get a Project 0. And especially people who

haven't done C, we will-- Charles, are we going to do a C remediation? We did last

time, didn't we? OK, guys, one more thing. Last year, we did an evening C

remediation class.

So if you know Java, if you want to know C, we will send out a time with TAs that will

give you kind of a one-hour crash course into C in there. And we will send

information. So this class moves very fast. Get on with Project 0, and see you next

week.

30


