
© 2010 Charles E. Leiserson 1

6.172
Performance
Engineering of
Software Systems

LECTURE 10

Dynamic Storage
Allocation

Charles E. Leiserson

October 12, 2010

© 2010 Charles E. Leiserson 2

Stack Allocation

Array and pointer

used unusedA

sp

Allocate x bytes

sp += x;

return A[sp - x];

© 2010 Charles E. Leiserson 3

Stack Allocation

Array and pointer

used unusedA

sp

Allocate x bytes

sp += x;

return A[sp - x];

Should check for
stack overflow.

© 2010 Charles E. Leiserson 4

Stack Deallocation

Array and pointer

usedA unused

Free x bytes

sp -= x;

sp

Allocate x bytes

sp += x;

return A[sp - x];

© 2010 Charles E. Leiserson 5

Stack Deallocation

Array and pointer

used unusedA

sp

Allocate x bytes Free x bytes

sp += x;

return A[sp - x];

sp -= x;

Should check for
stack underflow.

© 2010 Charles E. Leiserson 6

Stack Storage

Array and pointer

used unusedA

sp

Allocate x bytes

∙ Allocating and freeing take Θ(1) time.
∙ Must free consistent with stack discipline.
∙ Limited applicability, but great when it works!

∙ One can allocate on the call stack using alloca(),
but this function is deprecated, and the compiler is
more efficient with fixed-size frames.

Free x bytes

sp += x;

return A[sp - x];

sp -= x;

© 2010 Charles E. Leiserson 7

Heap Allocation

∙ C provides malloc() and free().

∙ C++ provides new and delete.

Unlike Java and Python, C and C++ provide no
garbage collector. Heap storage allocated by
the programmer must be freed explicitly.
Failure to do so creates a memory leak. Also,
watch for dangling pointers and double freeing.

Memory checkers can assist in finding these
pernicious bugs:

% valgrind --leakcheck=yes ./myprog arguments

Valgrind is installed on cloud machines. See
http://valgrind.org for details.

© 2010 Charles E. Leiserson 8

Fixed-Size Allocation

A usedused used

Free list

free

© 2010 Charles E. Leiserson 9

Fixed-Size Allocation

A usedused used

free

Allocate 1 object

Free list

x = free;

free = free->next;

return x;

© 2010 Charles E. Leiserson 10

Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

Free list

x

© 2010 Charles E. Leiserson 11

Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

x

Free list

Should check

free != NULL.

© 2010 Charles E. Leiserson 12

Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

x garbage
pointer

Free list

© 2010 Charles E. Leiserson 13

Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

Free list

© 2010 Charles E. Leiserson 14

Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

free object x

x->next = free;

free = x;

x

Free list

© 2010 Charles E. Leiserson 15

Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

free object x

x->next = free;

free = x;

x

Free list

© 2010 Charles E. Leiserson 16

Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

free object x

x->next = free;

free = x;

x

Free list

© 2010 Charles E. Leiserson 17

Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

free object x

x->next = free;

free = x;

Free list

© 2010 Charles E. Leiserson 18

Free Lists

A usedused used

free

Free list

∙ Allocating and freeing take Θ(1) time.
∙ Good temporal locality.
∙ Poor spatial locality due to external fragmentation

— blocks distributed across virtual memory —
which can increase the size of the page table and
cause disk thrashing.

∙ The translation lookaside buffer (TLB) can also be a
problem.

© 2010 Charles E. Leiserson 19

Mitigating External Fragmentation

∙ Keep a free list per disk page.

∙ Allocate from the free list for the fullest page.

∙ Free a block of storage to the free list for the page
on which the block resides.

∙ If a page becomes empty (only free-list items), the
virtual-memory system can page it out without
affecting program performance.

∙ 90-10 is better than 50-50:

>

Probability that 2 random accesses hit the same page
= .9×.9 + .1×.1 = .82 versus .5×.5 + .5×.5 = .5

© 2010 Charles E. Leiserson 20

Variable-Sized Allocation

Binned free lists

∙ Leverage the efficiency of free lists.

∙ Accept some internal fragmentation.

0

1

2

⋮

r

Bin k holds memory
blocks of size 2k.

© 2010 Charles E. Leiserson 21

Allocation for Binned Free Lists

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate ∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
x bytes ∙ Otherwise, find a block in the next larger

nonempty bin k′ > k, split it up into blocks
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute
the pieces.

© 2010 Charles E. Leiserson 22

Allocation for Binned Free Lists

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate ∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
x bytes ∙ Otherwise, find a block in the next larger

nonempty bin k′ > k, split it up into blocks
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute
the pieces.

© 2010 Charles E. Leiserson 23

Allocation for Binned Free Lists

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.

∙ Otherwise, find a block in the next larger
nonempty bin k′ > k, split it up into blocks
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute
the pieces.

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate
x bytes

return

© 2010 Charles E. Leiserson 24

Allocation for Binned Free Lists

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.

∙ Otherwise, find a block in the next larger
nonempty bin k′ > k, split it up into blocks
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute
the pieces.*

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate
x bytes

*If no larger blocks exist, ask the
OS to allocate x more bytes of VM. return

© 2010 Charles E. Leiserson 25

Storage Layout of a Program

stack

bss

data

text

high address

heap

low address

virtual
memory

dynamically
allocated

initialized to 0 at
program start

read from disk

code

© 2010 Charles E. Leiserson 26

How Virtual is Virtual Memory?

Q. Since a 64-bit address space takes over a
century to write at a rate of 4 billion bytes per
second, we effectively never run out of virtual
memory. Why not just allocate out of virtual
memory and never free?

A. External fragmentation would be horrendous!
The performance of the page table would
degrade tremendously leading to disk
thrashing, since all nonzero memory must be
backed up on disk in page-sized blocks.

Goal of storage allocators
Use as little virtual memory as possible, and try
to keep the used portions relatively compact.

© 2010 Charles E. Leiserson 27

Analysis of Binned Free Lists

Theorem. Suppose that the maximum amount of
heap memory in use at any time by a program is
M. If the heap is managed by a BFL allocator, the
amount of virtual memory consumed by heap
storage is O(M lg M).

Proof. An allocation request for a block of size x
consumes 2⌈lg x⌉ ≤ 2x storage. Thus, the amount
of virtual memory devoted to blocks of size 2k is at
most 2M. Since there are at most lg M free lists,
the theorem holds. ■

⇒ In fact, BFL is Θ(1)-competitive with the optimal
allocator (assuming no coalescing).

© 2010 Charles E. Leiserson 28

Coalescing

Binned free lists can sometimes be heuristically
improved by splicing together adjacent small
blocks into a larger block.
∙ Clever schemes exist for finding adjacent blocks

efficiently, e.g., the “buddy” system, but the
overhead is still greater than simple BFL.

∙ No good theoretical bounds exist that prove the
effectiveness of coalescing.

∙ Coalescing seems to work in practice, because
storage tends to be deallocated as a stack (LIFO)
or in batches.

© 2010 Charles E. Leiserson 29

Garbage Collectors

Idea
∙ Free the programmer from freeing objects.
∙ A garbage collector identifies and recycles the

objects that the program can no longer access.
∙ GC can be built-in (Java, Python) or do-it-yourself.

© 2010 Charles E. Leiserson 30

Garbage Collection

Terminology
Roots are objects directly accessible by the
program (globals, stack, etc.).
Live objects are reachable from the roots by
following pointers.
Dead objects are inaccessible and can be recycled.

How can the GC identify pointers in objects?
∙ Strong typing.
∙ Prohibit pointer arithmetic (which may slow down

some programs).

© 2010 Charles E. Leiserson 31

Reference Counting

2
1

1

2

1

3

Keep a count of the number of pointers
referencing each object. If the count drops to
0, free the dead object.

root

root

root

© 2010 Charles E. Leiserson 32

Reference Counting

2
1

1

2

1

3

root

root

root

Keep a count of the number of pointers
referencing each object. If the count drops to
0, free the dead object.

© 2010 Charles E. Leiserson 33

Reference Counting

2
1

1

2

1

3

root

root

root

0

Keep a count of the number of pointers
referencing each object. If the count drops to
0, free the dead object.

3

© 2010 Charles E. Leiserson 34

Reference Counting

2
1

1

2

1

3

root

root

root

0

Keep a count of the number of pointers
referencing each object. If the count drops to
0, free the dead object.

© 2010 Charles E. Leiserson 35

Reference Counting

2
1

1

2

1

3

root

root

root

0

0

Keep a count of the number of pointers
referencing each object. If the count drops to
0, free the dead object.

2

© 2010 Charles E. Leiserson 36

Reference Counting

Keep a count of the number of pointers
referencing each object. If the count drops to
0, free the dead object.

2
1

1

2

1

3

root

root

root

0

0

2

© 2010 Charles E. Leiserson 37

2
1

1

3

1

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root

© 2010 Charles E. Leiserson 38

1
1

1

2

3

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root

© 2010 Charles E. Leiserson 39

2
1

1

3

1

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root

© 2010 Charles E. Leiserson 40

2
1

1

3

1

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root
Uncollected
garbage
stinks!

Nevertheless, reference counting
works well for acyclic structures.

© 2010 Charles E. Leiserson 41

Graph Abstraction

Idea
Objects and pointers
form a directed graph
G = (V, E). Live
objects are reachable
from the roots. Use
breadth-first search to
find the live objects.

for (∀ v∈V) {

if (root(v)) {

v.mark = 1;

enqueue(Q, v);

} else v.mark = 0;

while (Q != ∅) {

u = dequeue(Q);

for (∀ v∈V such that (u,v)∈ E) {

if (v.mark == 0) {

v.mark = 1;

enqueue(Q, v);

} } }

head tail

FIFO queue Q

© 2010 Charles E. Leiserson 42

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

Q

head tail

© 2010 Charles E. Leiserson 43

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

rQ

head tail

© 2010 Charles E. Leiserson 44

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

rQ

head tail

© 2010 Charles E. Leiserson 45

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r bQ

head tail

© 2010 Charles E. Leiserson 46

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b cQ

head tail

© 2010 Charles E. Leiserson 47

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b cQ

head tail

© 2010 Charles E. Leiserson 48

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b cQ

head tail

© 2010 Charles E. Leiserson 49

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c dQ

head tail

© 2010 Charles E. Leiserson 50

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d eQ

head tail

© 2010 Charles E. Leiserson 51

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d eQ

head tail

© 2010 Charles E. Leiserson 52

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d eQ

head tail

© 2010 Charles E. Leiserson 53

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e fQ

head tail

© 2010 Charles E. Leiserson 54

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e fQ

head tail

© 2010 Charles E. Leiserson 55

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail

© 2010 Charles E. Leiserson 56

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail

© 2010 Charles E. Leiserson 57

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail

Done!

© 2010 Charles E. Leiserson 58

Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

Observation

All live vertices are placed in contiguous storage in Q.

© 2010 Charles E. Leiserson 59

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

© 2010 Charles E. Leiserson 60

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

© 2010 Charles E. Leiserson 61

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

© 2010 Charles E. Leiserson 62

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

© 2010 Charles E. Leiserson 63

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

© 2010 Charles E. Leiserson 64

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

© 2010 Charles E. Leiserson 65

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

When the FROM space is full, copy live storage
using BFS with the TO space as the FIFO queue.

© 2010 Charles E. Leiserson 66

Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

When the FROM space is full, copy live storage
using BFS with the TO space as the FIFO queue.

TO space

next
allocation

© 2010 Charles E. Leiserson 67

Updating Pointers

Since the FROM address of an object is not generally
equal to the TO address of the object, pointers must
be updated.
∙ When an object is copied to the TO space, store a

forwarding pointer in the FROM object, which
implicitly marks it as moved.

∙ When an object is removed from the FIFO queue in
the TO space, update all its pointers.

© 2010 Charles E. Leiserson 68

Example

head tail

FROM

TO

Remove an item from the queue.

© 2010 Charles E. Leiserson 69

Example

head tail

FROM

TO

Remove an item from the queue.

© 2010 Charles E. Leiserson 70

Example

FROM

TO

head tail

Enqueue adjacent vertices.

© 2010 Charles E. Leiserson 71

Example

FROM

TO

head tail

Enqueue adjacent vertices.
Place forwarding pointers in FROM vertices.

© 2010 Charles E. Leiserson 72

Example

FROM

TO

head tail

Update the pointers in the removed item to refer
to its adjacent items in the TO space.

© 2010 Charles E. Leiserson 73

Example

head tail

FROM

TO

Update the pointers in the removed item to refer
to its adjacent items in the TO space.

© 2010 Charles E. Leiserson 74

Example

head tail

FROM

TO

Linear time to copy and update all vertices.

© 2010 Charles E. Leiserson 75

Managing Virtual Memory

After copying, the old TO becomes the new FROM.
Allocate new heap space equal to the used space in
the new FROM.

When space runs out, the new TO is allocated with
the same size as FROM. Allocate TO at start if it
fits. Otherwise, allocate TO after FROM.

FROM TO
used

FROM TO
used

FROM
used heap

Theorem. VM space used is Θ(1) times optimal. ■

© 2010 Charles E. Leiserson 76

Dynamic Storage Allocation

Lots more is known and unknown about
dynamic storage allocation. Strategies include

∙ buddy system,

∙ mark-and-sweep garbage collection,

∙ generational garbage collection,

∙ real-time garbage collection,

∙ multithreaded storage allocation,

∙ parallel garbage collection,

∙ etc.

MIT OpenCourseWare
http://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

