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Stack Allocation

Array and pointer

used unusedA

sp

Allocate x bytes

sp += x;

return A[sp - x];
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Stack Allocation

Array and pointer

used unusedA

sp

Allocate x bytes

sp += x;

return A[sp - x];

Should check for 
stack overflow.
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Stack Deallocation

Array and pointer

usedA unused

Free x bytes

sp -= x;

sp

Allocate x bytes

sp += x;

return A[sp - x];
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Stack Deallocation

Array and pointer

used unusedA

sp

Allocate x bytes Free x bytes

sp += x;

return A[sp - x];

sp -= x;

Should check for 
stack underflow.
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Stack Storage

Array and pointer

used unusedA

sp

Allocate x bytes

∙ Allocating and freeing take Θ(1) time.
∙ Must free consistent with stack discipline.
∙ Limited applicability, but great when it works!

∙ One can allocate on the call stack using alloca(), 
but this function is deprecated, and the compiler is 
more efficient with fixed-size frames.

Free x bytes

sp += x;

return A[sp - x];

sp -= x;
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Heap Allocation

∙ C provides malloc() and free().

∙ C++ provides new and delete.

Unlike Java and Python, C and C++ provide no 
garbage collector.  Heap storage allocated by 
the programmer must be freed explicitly.  
Failure to do so creates a memory leak.  Also, 
watch for dangling pointers and double freeing.

Memory checkers can assist in finding these 
pernicious bugs:

% valgrind --leakcheck=yes ./myprog arguments

Valgrind is installed on cloud machines.  See 
http://valgrind.org for details.



© 2010 Charles E. Leiserson 8

Fixed-Size Allocation

A usedused used

Free list

free
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Fixed-Size Allocation

A usedused used

free

Allocate 1 object

Free list

x = free;

free = free->next;

return x; 
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Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x; 

Free list

x
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Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x; 

x

Free list

Should check 

free != NULL. 
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Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x;

x garbage 
pointer

Free list
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Fixed-Size Allocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x; 

Free list
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Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x; 

free object x

x->next = free;

free = x; 

x

Free list
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Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x; 

free object x

x->next = free;

free = x; 

x

Free list
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Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x; 

free object x

x->next = free;

free = x;

x

Free list
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Fixed-Size Deallocation

A usedused used

free

Allocate 1 object

x = free;

free = free->next;

return x; 

free object x

x->next = free;

free = x; 

Free list
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Free Lists

A usedused used

free

Free list

∙ Allocating and freeing take Θ(1) time.
∙ Good temporal locality.
∙ Poor spatial locality due to external fragmentation

— blocks distributed across virtual memory —
which can increase the size of the page table and 
cause disk thrashing.  

∙ The translation lookaside buffer (TLB) can also be a 
problem.
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Mitigating External Fragmentation

∙ Keep a free list per disk page.

∙ Allocate from the free list for the fullest page.

∙ Free a block of storage to the free list for the page 
on which the block resides.

∙ If a page becomes empty (only free-list items), the 
virtual-memory system can page it out without 
affecting program performance.

∙ 90-10 is better than 50-50:

>

Probability that 2 random accesses hit the same page 
= .9×.9 + .1×.1 = .82 versus .5×.5 + .5×.5 = .5
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Variable-Sized Allocation

Binned free lists

∙ Leverage the efficiency of free lists.

∙ Accept some internal fragmentation.

0

1

2

⋮

r

Bin k holds memory 
blocks of size 2k.
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Allocation for Binned Free Lists

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate ∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
x bytes ∙ Otherwise, find a block in the next larger 

nonempty bin k′ > k, split it up into blocks 
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute 
the pieces.
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Allocation for Binned Free Lists

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate ∙ If bin k = ⌈lg x⌉ is nonempty, return a block.
x bytes ∙ Otherwise, find a block in the next larger 

nonempty bin k′ > k, split it up into blocks 
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute 
the pieces.
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Allocation for Binned Free Lists

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.

∙ Otherwise, find a block in the next larger 
nonempty bin k′ > k, split it up into blocks 
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute 
the pieces.

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate 
x bytes

return
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Allocation for Binned Free Lists

∙ If bin k = ⌈lg x⌉ is nonempty, return a block.

∙ Otherwise, find a block in the next larger 
nonempty bin k′ > k, split it up into blocks 
of sizes 2k′-1, 2k′ -2, … 2k, 2k, and distribute 
the pieces.*

0

1

2

3

4

Example
x = 3 ⇒ ⌈lg x⌉ = 2.
Bin 2 is empty.

⋮

Allocate 
x bytes

*If no larger blocks exist, ask the 
OS to allocate x more bytes of VM.  return
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Storage Layout of a Program

stack

bss

data

text

high address

heap

low address

virtual 
memory

dynamically 
allocated

initialized to 0 at 
program start

read from disk

code
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How Virtual is Virtual Memory?

Q. Since a 64-bit address space takes over a 
century to write at a rate of 4 billion bytes per 
second, we effectively never run out of virtual 
memory.  Why not just allocate out of virtual 
memory and never free?

A. External fragmentation would be horrendous!  
The performance of the page table would 
degrade tremendously leading to disk 
thrashing, since all nonzero memory must be 
backed up on disk in page-sized blocks.

Goal of storage allocators
Use as little virtual memory as possible, and try 
to keep the used portions relatively compact.
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Analysis of Binned Free Lists

Theorem. Suppose that the maximum amount of 
heap memory in use at any time by a program is 
M.  If the heap is managed by a BFL allocator, the 
amount of virtual memory consumed by heap 
storage is O(M lg M).

Proof. An allocation request for a block of size x
consumes 2⌈lg x⌉ ≤ 2x storage.  Thus, the amount 
of virtual memory devoted to blocks of size 2k is at 
most 2M.  Since there are at most lg M free lists, 
the theorem holds.  ■

⇒ In fact, BFL is Θ(1)-competitive with the optimal 
allocator (assuming no coalescing).
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Coalescing

Binned free lists can sometimes be heuristically 
improved by splicing together adjacent small 
blocks into a larger block.
∙ Clever schemes exist for finding adjacent blocks 

efficiently, e.g., the “buddy” system, but the 
overhead is still greater than simple BFL.

∙ No good theoretical bounds exist that prove the 
effectiveness of coalescing.

∙ Coalescing seems to work in practice, because 
storage tends to be deallocated as a stack (LIFO) 
or in batches.
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Garbage Collectors

Idea
∙ Free the programmer from freeing objects.
∙ A garbage collector identifies and recycles the 

objects that the program can no longer access.
∙ GC can be built-in (Java, Python) or do-it-yourself.
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Garbage Collection

Terminology
Roots are objects directly accessible by the 
program (globals, stack, etc.).
Live objects are reachable from the roots by 
following pointers.
Dead objects are inaccessible and can be recycled.

How can the GC identify pointers in objects?
∙ Strong typing.
∙ Prohibit pointer arithmetic (which may slow down 

some programs).
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Reference Counting

2
1

1

2

1

3

Keep a count of the number of pointers 
referencing each object.  If the count drops to 
0, free the dead object.

root

root

root
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Reference Counting

2
1

1

2

1

3

root

root

root

Keep a count of the number of pointers 
referencing each object.  If the count drops to 
0, free the dead object.
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Reference Counting

2
1

1

2

1

3

root

root

root

0

Keep a count of the number of pointers 
referencing each object.  If the count drops to 
0, free the dead object.

3
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Reference Counting

2
1

1

2

1

3

root

root

root

0

Keep a count of the number of pointers 
referencing each object.  If the count drops to 
0, free the dead object.
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Reference Counting

2
1

1

2

1

3

root

root

root

0

0

Keep a count of the number of pointers 
referencing each object.  If the count drops to 
0, free the dead object.

2
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Reference Counting

Keep a count of the number of pointers 
referencing each object.  If the count drops to 
0, free the dead object.

2
1

1

2

1

3

root

root

root

0

0

2
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2
1

1

3

1

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root
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1
1

1

2

3

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root
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2
1

1

3

1

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root
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2
1

1

3

1

1

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

root

root
Uncollected 
garbage 
stinks!

Nevertheless, reference counting 
works well for acyclic structures.
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Graph Abstraction

Idea
Objects and pointers 
form a directed graph 
G = (V, E).  Live 
objects are reachable 
from the roots.  Use 
breadth-first search to 
find the live objects.

for (∀ v∈V) {

if (root(v)) {

v.mark = 1;

enqueue(Q, v);

} else v.mark = 0;

while (Q != ∅) {

u = dequeue(Q);

for (∀ v∈V such that (u,v)∈ E) {

if (v.mark == 0) {

v.mark = 1;

enqueue(Q, v);

} } }

head tail

FIFO queue Q
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

Q

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

rQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

rQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r bQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b cQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b cQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b cQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c dQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d eQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d eQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d eQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e fQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e fQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

head tail

Done!
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Breadth-First Search

r

a

b

c

f

e

d

g

h

i

j

r b c d e f gQ

Observation

All live vertices are placed in contiguous storage in Q.
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

When the FROM space is full, copy live storage 
using BFS with the TO space as the FIFO queue.  
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Copying Garbage Collector

FROM space

next
allocation

live

dead

unused

When the FROM space is full, copy live storage 
using BFS with the TO space as the FIFO queue.  

TO space

next
allocation
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Updating Pointers

Since the FROM address of an object is not generally 
equal to the TO address of the object, pointers must 
be updated. 
∙ When an object is copied to the TO space, store a 

forwarding pointer in the FROM object, which 
implicitly marks it as moved.

∙ When an object is removed from the FIFO queue in 
the TO space, update all its pointers.
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Example

head tail

FROM

TO

Remove an item from the queue.
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Example

head tail

FROM

TO

Remove an item from the queue.
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Example

FROM

TO

head tail

Enqueue adjacent vertices. 
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Example

FROM

TO

head tail

Enqueue adjacent vertices.
Place forwarding pointers in FROM vertices. 
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Example

FROM

TO

head tail

Update the pointers in the removed item to refer 
to its adjacent items in the TO space.  
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Example

head tail

FROM

TO

Update the pointers in the removed item to refer 
to its adjacent items in the TO space.  
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Example

head tail

FROM

TO

Linear time to copy and update all vertices.  
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Managing Virtual Memory

After copying, the old TO becomes the new FROM.  
Allocate new heap space equal to the used space in 
the new FROM.

When space runs out, the new TO is allocated with 
the same size as FROM.  Allocate TO at start if it 
fits.  Otherwise, allocate TO after FROM.  

FROM TO
used

FROM TO
used

FROM
used heap

Theorem. VM space used is Θ(1) times optimal.  ■
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Dynamic Storage Allocation

Lots more is known and unknown about 
dynamic storage allocation.  Strategies include

∙ buddy system,

∙ mark-and-sweep garbage collection,

∙ generational garbage collection,

∙ real-time garbage collection,

∙ multithreaded storage allocation,

∙ parallel garbage collection,

∙ etc.



MIT OpenCourseWare
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems
Fall 2010 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu

