
MITOCW | MIT6_172_F10_lec12_300k-mp4
The following content is provided under a Creative Commons license. Your support will help MIT
OpenCourseWare continue to offer high quality educational resources for free. To make a donation or
view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: So John is going to present project three, beta.

JOHN: All right. So here's the performance grades. In general, the submission went a lot

better than last time in that things were on time and nobody failed to build, or forgot

to add files to their project, or so on. We did change the scoring mechanism a little

bit. In the [? mdriver ?] that we gave you, if your validator failed you on any of your

traces, your score is a zero.

In this one, we decided to be nicer. We replaced your validator with our correct

validator. And for traces that you failed, you get a zero for the points that those

traces contribute. But you did get an overall partial score, even if you failed a couple

traces. So on that note, the reference implementation does get a 56 on this score.

And there were people who had slower than reference implementations that landed

below 56. So that might be something to think about for your final submission.

The high score was a 96. And there were actually quite a few groups in the 90s. So

overall, people did really well on this. With that said, your validators didn't really-- I

guess they were OK.

But there's some people whose validators failed projects that were correct, and

other people whose validators failed to detect certain situations. So that's also

something to work on for the final. We won't be releasing the stock validators. So it'll

be up to you guys to find out what's wrong with your validators and fix them.

And along the same lines of correctness, once again, for the final submission, we'll

be running-- actually even for the beta, I believe, we're going to Valgrind your

projects and look for memory errors. So do that to your own projects and investigate

any messages you get.

AUDIENCE: [INAUDIBLE]

JOHN: OK. So the highlighted column number 31 refers to the reference implementation of

1



the validator. So that's the authority. If that's green, then your implementation is

correct. And so hopefully, a correct validator would agree with column 31.

AUDIENCE: [INAUDIBLE]

JOHN: Yes.

AUDIENCE: [INAUDIBLE] question. How can it be that most of-- so an implementation is vertical,

so tests are [UNINTELLIGIBLE]?

JOHN: No. The implementations are horizontal, and the tests are vertical.

AUDIENCE: So we want our column to look like column 31? Or we want--

JOHN: You want-- your validators correctness score will be determined by whether or not

your column number corresponds with column 31. And then, your implementations

correctness will purely be determined by whether 31 marks your row red or green.

Does that make sense?

AUDIENCE: [INAUDIBLE PHRASE] columns that are all green, our validators are not

[UNINTELLIGIBLE]? Is that what you're saying?

PROFESSOR: That's right.

JOHN: That's correct.

PROFESSOR: Whereas the rows that are green, that's what we like to see. We like green rows.

And then, we like columns that match column 31.

AUDIENCE: [INAUDIBLE PHRASE]. The first row should be all red. And right now, [INAUDIBLE].

JOHN: Right.

PROFESSOR: That's correct.

JOHN: Whatever error this person had, very few validators seems to have caught them.

Which is very surprising, because what we did for your validator.c is that we

removed the line of code that it contained, and we added the comment that
2



explained in English exactly what that line of code did. So it was kind of interesting

to see that not everybody came up with the validator that's identical to reference

one.

PROFESSOR: OK--

JOHN: Yeah. So please run Valgrind on your code before the final submission. And we'll be

posting your personalized results to your repose sometime probably by the end of

the day, either today or tomorrow.

PROFESSOR: Great. All right, you can take this [UNINTELLIGIBLE]. Or you can

[UNINTELLIGIBLE]. Here you go. You guys can have it here, in case you need to

chip in. OK. So today, we're going to talk about programming in parallel. Parallel

programming and so forth. So this is I'm sure what you've all been waiting for.

Oops. Oh, we have no power here. There we go. There we go. Now I've got power.

OK. Let's see here. How's that? Good. OK. So we talk about multicore

programming. And let me start with a little bit of history.

So since the mid to late 1960s-- so how many years is that? 50 years. Wow.

Semiconductor density has been increasing at the rate of about-- it's been doubling

about every 18 to 24 months.

OK. So every year, every one to two years, every year and a half to two years, we

get a doubling of density on the chips. And that's a trend that still is continuing. OK.

So that's called Moore's law, the doubling of density of integrated circuits.

And so, this is basically a curve showing how transistor count is rising. OK. So all

these green things are Intel CPUs and what the transistor count is on them. Yeah,

question?

AUDIENCE: [INAUDIBLE PHRASE] the lines in [INAUDIBLE]?

PROFESSOR: So there have been some technology changes along the way. So in particular, the

[UNINTELLIGIBLE] transition is back down here I think. I don't remember which one

3



that is. Well, this is actually a different one. What we're looking at right now is the

transistors, which have been very smooth. OK. So I'll explain this curve in a minute.

So there's two things plotted on here. One is the Intel CPU density, and the other is

what the clock speed of those processes is. And so these are the clock speed

numbers. And so, the integrated circuit technology has been-- the density has been

doubling. And it's really an unbelievable sort of social and economic process, that

this has basically been called a law.

Because what happens is if a-- there's so many people that contribute to making

integrated circuits be dense. There's so many pieces of technology that go into that.

And what happens is if you decide that you're going to try to jump and try to make

something that goes faster than Moore's law, what happens is it's more expensive

for you to do it. And none of the other participants in that economy can keep up.

And you're just going to be more expensive. So people will op for the cheapest thing

that gets the factor of two every 18 to 24 months.

Whereas if you're behind, then nobody uses your stuff. So everybody's got this sort

of self-fulfilling prophecy that the rate at which the density is increasing has just

been extremely stable for over 50 years. It's remarkable. Yeah, question?

AUDIENCE: [INAUDIBLE PHRASE] every six months. And somehow, [INAUDIBLE] you would

have self-replicated?

PROFESSOR: No, I'm not saying that. What I'm saying is that there is some amount of everybody

expecting that this is the point that everybody's going to be at. And so if you try to

go more aggressively than that, you can get burned because you'll be more

expensive.

If you don't go that fast, you're going to get burned because nobody's going to

adopt your particular piece of the technology. And so, what happens is everybody

sort of settles for this regular repeating. It's a remarkable social and economic

phenomenon.

It's got very little to do at some level of technology. It's just that we know that we can

4



improve things. But what's amazing is this growth has gone through many

transitions. At one point, they said we aren't going to be able to build integrated

circuits any more densely because all of the masks that were made-- it's basically,

you make computers with a photographic process of exposing and using masks that

you shine light through. It's the way they used to do it.

And what happened was the wave lengths of light were such that you were just

simply not going to be able to get the resolutions. So what did they do? They

switched to eBeams. OK. Electrons rather than photons to expose the silicon wafers

and so forth.

And so, they've gone through a whole bunch of transitions and different

technologies. And yet, throughout all of that, it's been just a very steady progress at

about the rate of 18 to 24 months per doubling of density. And that is still going on,

and is projected to go on maybe for 10 years more.

It's going to run out, I hope in my lifetime. And certainly within your lifetimes. So that

has been going. Then, there's second phenomenon that has been going on since

about mid-1980s. And that is that the clock speed has actually been growing on a

similar curve, where basically, we've been getting 30% faster processors, clock

speed, since the mid-1980s.

But something happened there, which was in around 2003, it flattened out. And the

reason is, as a practical matter, clock speed for air cooled systems is bounded at

somewhere around 5 gigahertz. If you want to liquid cool it or nitrogen cool it or

something, you could make it go faster.

But basically, the problem is that things get too hot. And they cannot convey the

heat out. So for a while, if you have greater density, the transistors get smaller.

They switch faster. And you can make the clock speed go faster. But at some point,

they hit the wall.

And so there the vendors were. People like Intel, AMD, Motorola. A variety of the

semiconductor manufacturers. And what's happened is they can still make

5



integrated circuits more and more dense. But they can't clock them any faster. OK.

So here's what's going on in the circuits. So here's essentially how much power was

being dissipated by a variety of Intel processors along the way, and what they

[INAUDIBLE] 2000. They started getting hot and hotter, until if they just continued

this trend, they were going to be trying to have junction temperatures that are as hot

as the surface of the sun.

Well, they clearly couldn't do that. OK. So you might say, well, let's put it off a few

years. Yeah, but how many years are you going to put this off? And so, what

happened was they got stuck. They simply could not make chips get clocked in

faster.

So what did they decide to do? They got all the silicon area, but they can't make the

processors faster with it. So their solution was to scale performance to put many

processing cores on the microprocessor chip.

So this is an example of a Core i7. It's a four core. One, two, three, four cores

processor. We actually have six core machines now. But I didn't update the figure.

And what's going to happen now is Moore's law is going to continue for a few more

years. And so it looks like each new generation of Moore's law is going to potentially

double the number of cores per chip. So you folks are using 12 core machines. Two

six core chips. Well, that's going to basically keep increasing.

And so, we're going to get more and more cores per chip. OK. That's all well and

good. But it turns out that there's a major issue. And that's software. Everybody has

written their software. And there's billions and billions and billions of dollars invested

in existing legacy software that's written for how many cores?

One. And moving it to multicore is a nightmare for these companies. OK. And it's

potentially a nightmare for these vendors. Because if people say, gee, you can't

make the processors go any faster, why should I buy a new processor? My old

processor is as good as my new one.

6



OK. And so, anyway, so that's sometimes been called the multicore challenge. The

multicore menace. The multicore revolution. Whatever. But that's what it's all about.

It's all about the issue of the frequency scaling of the clocks, verses, Moore's law.

Which talks about what the density is.

OK. So their solution is to do-- and so what we're going to talk about for a bunch of

the rest of the term is going to be, how do you actually program multicore

processors? We're going to look at some fairly new software technology for doing

that.

So here's an abstract multicore architecture. It's not precise. This is only showing

one level of cache. So we have processors connected to a cache. In fact, of course,

you know that there are multiple levels of cache. Yeah, this is the international

symbol for cache if you live in the US.

So the processors have their cache. Of course, you know that what actually

happens is you have multiple levels of cache. And it's shared cache at some levels.

OK. So it's more complex than this. But this is sort of an abstract way of

understanding a bunch of the issues. And then, of course, they only get more

complicated as we look at reality, as with all these hardware related things.

And so, this is a chip multiprocessor. Now there are other ways of using the silicon.

So another way of using the silicon is building things like graphics processors and

using silicon for a very special purpose thing. So that instead of saying, let's build

multiple processors, you can say, let's dedicate some fraction of the silicon real

estate. Instead of to general purpose computing, let's dedicate it to some specific

purpose, like graphics, or some kind of stream processing, or what have you.

Sensor processing. A variety of other things you can do.

But one main trend is doing chip multiprocessors. So we're going to talk a little bit

about shared memory hardware. Just enough to get you folks off the ground to

understand what's going on underneath the system. And then, we're going to talk

about four concurrency platforms, which are not the only platforms one can

program in. But they're ones that you should be familiar with.

7



The last one, Cilk++, is the one we're going to do our programming assignments in.

And then, race conditions, we're going to talk about, because that's the biggest

thing that comes up when you do parallel programming compared to ordinary serial

programming. It's the most pernicious type of bugs. And you need to understand

race conditions and need a way of handling it.

So here's basically-- so we'll start with shared memory hardware. So the main thing

that shared memory hardware provides is a thing called cache coherence. OK. And

the basic idea is that you want every processor to be able to fetch stuff out of local

caches because that's fast.

But at the same time, you want them to have a common view of what is stored in a

given location. So let's run through this example and see what the problem is. And

then, I'll show you how they solve it in sketchy detail.

So here's a processor. Says he wants to load the value of x. And in main memory

here, x has got the value of 3, up here in DRAM. OK. So x moves through to the

processor, where it gets consumed. And it leaves behind the fact that x equals 3 in

its local cache.

Well, now along comes the second processor. It says, I want x too. And perhaps the

same thing happens. Very good. So far, no problem. So two caches may have the

same value of x. They may both want to use x, and it's both in their local caches.

Now comes along the third processor. Says load x as well. Well, it turns out that it's

actually-- what I showed you on the second case is not the common case. If these

two processors, these two processing cores, are on the same chip, it's generally

cheaper for this guy to fetch it out of one of these guys caches than it is to fetch it

out of DRAM. DRAM is slow. Getting it locally is much cheaper.

So basically, in this case, he gets it from this processor. The first processor. All is

well and good. They're all sharing merrily around. OK. And then this fella decides if

he wants to load it, no problem. He can just load it. He loads it locally. No problem.

OK.

8



This guy decides, oh, he's going to store some value to x. In this case, he's going to

store the value 5. So he sets x equal to 5. OK. fine. OK, now what? Now this guy

says, let me load x. He gets the value x equals 3.

Uh-oh. If your parallel program expected that this guy had gone first and it set x

value x equal to 5, these guys are now incorrect. And so, the idea of cache

coherence is not letting this happen, making it so that whenever a value is changed

by a processor, the other processors see that change and yet, they're still able most

of the time to execute effectively out of their own local caches.

OK. So that's the problem. So do people understand basically what the cache

coherence problem is? Yes, question?

AUDIENCE: If the last processor was to store x and set x equals 5, as soon as that happens,

wouldn't that write DRAM x equals 5?

PROFESSOR: Good. So there's actually two types of strategies that are used in caches. One is

called write through. And one is called write back. What you're describing is write

through. What right through caches do is if you write a value, it pushes it all the way

out to DRAM. These days, nobody uses write through. You're always going to

DRAM. You're always exercising the slow DRAM versus being able to just write it

locally.

But you do have to do something about these guys that are going to have the

shared values. So here's the mechanism that they use. So what most people do

these days is write back caches. Which basically means you only write it back when

you really need to evict or what have you. You don't always write it all the way

through.

And so here's how these schemes work. So, right. So that's a bogus value for that

kind to be getting. So let's take a look. So what they use is what's called-- the

simplest is called an MSI protocol. There are somewhat more complicated ones

called MESI protocols, and ones that are MOESI. "Mo-esi" and "messy".

9



Anyway, the MESI one is probably the one you'll hear most often. It's just a little bit

more complicated than this one. But it saves you one extra access when we do a

write. I'll explain it in just a minute. But let's first understand the simplest of these

mechanisms.

So what you do is in each cache, you're going to label each cache line with a state.

And basically, it's because of these states that you associate with a cache line that

cache lines end up having to be long.

OK? Because if you think about, you'd like cache lines to be at some level very

short, in that then you have more opportunity to have just the stuff in cache that you

want, from a temporal locality point of view. It's one thing if you want to bring in

extra lines, extra data, for spatial locality. But to insist that it all be there whether you

access it or not, that's not clear how helpful that it is.

However, what instead is we have things like, on the Intel architecture, 64 bytes of

cache line. And the reason is because they're keeping extra data with each cache

line. And they want the data to be the larger fraction of what they're keeping

compared to the control information about the data.

So in this case, they're keeping three values. Three bits. The M bit says this cache

block has been modified. Somebody's written to it. And what they do is they, in this

protocol, they guarantee in the protocol that if somebody has it in the M state, no

other caches contain this block in either the M state or S state.

So what are those states? So the S state is when other caches may be sharing this

block. And the I state is that this cache block is invalid. It's the same as if it's not

there. It's empty entry. So it just marks this entry. There's no data there. The cache

line that's there is not really there, is basically what it says.

So here, you see for example that this fella has x equals 13 in the modified state.

And so, if you look across here, oh, nobody else has that in either the M or the S

state. They only have it in the I state or not at all.

If you have it in the shared state, as these guys have, well, they all have it in the

10



shared state and notice the values are all the same. And then, if it's in the invalid

state, here this guy once again has it in the modified state, which means these guys

don't have it in either the S or M state. So that's the invariant.

So what's the basic idea behind the cache? The MSI protocol? The idea is that

before you can write on a location, you must first invalidate all the other copies. So

whenever you try to write on something that's shared across a bunch of things or

that somebody else has modified, what happens is over the network goes out a

protocol to invalidate all the other copies.

So if they're just being shared, that's no problem. Because all you do is just have

them drop it from the cache. If it's modified, then it may have to be written back or

the value brought back to you, so that you're in a position of changing it. If

somebody has it modified, then you don't have it. So therefore, you need to bring it

in and make the change to it. Question?

AUDIENCE: [INAUDIBLE] three states?

PROFESSOR: Three states. Not three bits. Two bits. Right. OK. So the idea is you first invalidate

the other copies. Therefore, when a processor core is changing the value of some

variable, it has the only copy. And by making sure that it only has the only copy, you

make sure that you never have copies out there that are anything except copies of

what everybody else has. That they're all the same.

OK. Does everybody follow that? So there's hardware under there doing that. It's

actually pretty clever hardware. In fact, the verification of cache protocols is a huge

problem for which there's a lot of technology built to try to verify to make sure these

cache protocols work the way they're supposed to work.

Because what happens in practice is there are all these intermediate states. What

happens if this guy starts doing this while this guy is doing that, and these protocols

start getting mixed, and so forth? And you've got to make sure that works out. And

that's what's going on in the hardware.

The MESI protocol does a simple optimization. It says, look, before I store
11



something, I probably want to read it. It's likely I'm going to read it. So I can read it

in two ways. I can read it in a way that says that it is-- where it's just going to be

shared. But if I expect that I'm going to write it, let me when I read it instead of

getting a shared copy, let me get an exclusive copy. And that's where the E comes

from. Let me get an exclusive copy. In other words, go through the invalidation

protocols on the read, so that with the expectation that when you write, you don't

have to then wait for the invalidation to occur at that point. So it's a way of reducing

the latency of the protocol by getting it exclusively by the read that you do before

you do the write.

So rather than doing a read, which would go out and get the value-- but everybody

[? has them ?] shared-- then doing the write, and then doing a whole invalidation

protocol, if I basically get it in exclusive mode on the read, then I go out, I get the

value, and I invalidate everybody else. Now I've just saved myself half the work and

half the latency. Or basically saved myself some latency. Not half the latency. OK?

So basically, what you should know is there is invalidation stuff going on behind

when you start using shared memory, behind the scenes which can slow down your

processor from executing. Because it can't do the things that it needs to do until it

goes through the protocol. Any questions about that? That's basically the level we're

going to cover the hardware at.

And so, you'll discover that in doing some your problems, that if you're not careful,

you're going to create what are called invalidation storms, where you have a whole

bunch of things that are red, and they're distributed across the processor. And then

you go in, and you set one value. And suddenly, vrrrrrruuuum. Gee, how come that

wasn't a fast store? The answer is it's going through and invalidating all those other

copies. Good.

So let's turn to the real hard problem. So it turns out that building these things is not

particularly well understood. But it's understood a lot better than programming these

beasts. OK. And so, we're going to focus on some of the strategies for

programming.

12



So it turns out that trying to program their processor cores directly is painful. And

you're liable to make a lot of errors, as we'll see. Because we're going to talk about

races soon.

And so the idea of a current currency platform is to do some level of abstraction of

the processor cores to handle synchronization communication protocols, and often

to do things like load balancing, so that the work that you're doing can be moved

across from processor to processor.

And so, here are some examples of concurrency platforms. Pthreads and WinAPI

threads, we're going to talk more in detail about. Pthreads is basically for Unix type

systems, like Linux and such. WinAPI threads is for Windows.

There's threading building blocks, TBB, OpenMP, which is a standard, and Cilk++.

Those are all examples of concurrency platforms that make it easier to program

these parallel machines.

So I'm going to do, as an example, I'm going to use the Fibonacci numbers, which

you have seen before I'm sure, because we've actually even used it in this class.

This is Leonardo da Pisa, who was also known as Fibonacci. And he introduced--

he was the most brilliant mathematician of his day. He came basically out of the

blue, doing all kinds of beautiful mathematics very early in the Renaissance. You'll

recognize 1202 is very early Renaissance.

But it turns out, for those of you of Indian descent, the Indian mathematicians had

already discovered all this stuff. But it didn't make it into Western culture except for

Leonardo da Pisa. So here's a program as you might write it in C. So Fib int n says,

well, if n is less than 2, return n. So if it's 0 or 1, we return, Fib of 0 is 0. Fib of 1 is 1.

And otherwise, we compute Fib of n minus 1, compute Fib of n minus 2, and return

the sum. Simple recursive program. Here's the main routine. We get the argument

from the command line, compute the result, and then print out Fibonacci of

whatever is whatever. Pretty simple piece of code.

13



So what we're going to do is take a look at what happens in each of these four

concurrency platforms to see how it is that they make this easy to run this in

parallel. Now just a disclaimer here. This is a really bad way-- I hope you all

recognize-- of computing Fibonacci numbers.

So this is exponential time algorithm. And you all know the linear time algorithm,

which is basically computed up from the bottom. And some of you probably know

there's a logarithmic time algorithm based on squaring matrices. Two by two

matrices.

So in any case, we're all about performance here. But obviously, this is a really poor

choice to do performance on. But it is a good didactic example, because it's so the

structure and the issues that you get into in doing this with a very simple program

that I can fit on a slide.

OK. So when you execute Fibonacci, when you call Fib of 4, it calls Fib of 3 and Fib

of 2. And Fib of 3 calls Fib of 2 and Fib of 1. And Fib of 1 just returns Fib of 2, calls

[UNINTELLIGIBLE] 1, 0, et cetera.

And so basically, you get an execution trace that basically corresponds to walk of

this tree. So if you were doing this in C, you'd basically call this, call this, call this.

Get a value return. Call this. Add the two values together. Return here. Call this.

Add the two values together. Call the return there. And so forth. You walk that using

a stack, a call stack, in the execution.

The key idea for parallelization is, well, gee. Fib of n minus 1 and fib of n minus 2

are really, in this calculation, completely independently calculated. So let's just do

them at the same time. And they can be executed at the same time without

interference, because all they're doing is basing it on n. They're not using any

shared memory or anything even for this particular program.

So let's take a look, to begin with, how Pthreads might do this. So Pthreads is a

standard that ANSI and the IEEE have established for-- and I actually believe this is

a little bit out of date. I believe there's now a 2010 version. I'm not sure. But I recall

14



that they were working on a new version.

But anyway, this is a recent enough standard. It's a standard that has been revised

over the years, the so-called POSIX standard. So you'll hear, Pthreads is basically

POSIX threads. It's basically what you might characterize as a do it yourself

concurrency platform. It's kind of like assembly language for parallelism.

It allows you to do the things you need to do, but you're sort of doing it all by hand,

one step at a time. It's built as a library of functions with special non-C or C++

semantics. And we'll look at what some of those semantics are.

Each thread implements an abstraction of a processor, which are multiplexed onto

the machine resources by the Pthread runtime implementation. Threads

communicate through shared memory. And library functions mask the protocols

involved in interthread coordination. So you can start up threads, et cetera, and

their library function for doing that. So let's just see how that works.

So here are, basically, the two important Pthread functions. There are actually a

whole bunch of them, because they also provide a bunch of other facilities. One is

pthread_create, which creates Pthread. And one is pthread_join.

So pthread_create basically is return an identifier. So when you say create a

Pthread, the Pthread system says, here's a handle by which you can name this

thread in the future. OK. So it's a very common thing that the implementer says,

here's the name that you get. It's called a handle.

So it returns a handle. It then has an object to set various thread attributes. And for

most of what we're going to need, we're just going to need NULL for default. We

don't need any special things like changing the priority or what have you.

Then what you pass is a void* pointer to a function, which is going to be the routine

executed after creation. So you can name the function that you want to have it

operate on. And then you have a single pointer to an argument that you're going to

pass to the function.

15



So when you call something with Pthreads to create them, you can't say, and here's

my list of arguments. If you have more than one argument, you have to pack it

together into a struct and pass the pointer to the struct. And this function has to be

smart enough to understand how to unpack it. We'll see an example in a minute.

And then, it returns an error status. So the most common thing people do is they

don't bother to check the error status. OK. And yet sometimes, you try to create a

Pthread, there's a reason it can't create one. And now you keep going thinking you

have one, and then your program crashes and you wonder why.

So when you create things, you should check. I'm not sure in my code here whether

I checked everywhere. But you should check. Do as I say, not as I do. OK. So the

other key function is join. And basically, what you do is you say, you name the

thread that you want to wait for. This is the name that would be returned by the

create function.

And you also give a place where it can store the status of the thread when it

terminated. It's allowed to say, I terminated normally. I terminated with a given error

condition or whatever. But if you don't care what it is, you just put in NULL there.

And then it returns to the error status of the join function. So those are the two

functions that you program with. Question?

AUDIENCE: [INAUDIBLE PHRASE]?

PROFESSOR: It's different. It's different. So it's basically, if the error status, if it returns NULL, it just

means everything went OK. The handle is you pass a name, and basically this is

*thread. It stuffs the name into whatever you give it.

OK so you're not saying, here's the name. This is returned as an output parameter.

So you're giving it an address of some place to put the name. OK. Let's see an

example. So here's Fibonacci with Pthreads. So let's just go through that. So the

first part is pretty good. This is your original code that does Fibonacci. And now

what we do is we have a structure for the thread arguments.

And so we're going to have an input argument and an output argument in this

16



example. Because Fib takes an input argument in and returns Fib of n. So we're

going to call those input and output. And we'll call them thread_args. And now, here

is my void* function, thread_func, which takes a pointer. And what it does is when it

executes-- so what you're going to be able to do is, as we'll see in a minute--. Let

me just go through this. This is going to be the function called when the thread is

created.

So when the thread is created, you're just going to call this function. And what it's

going to get is the argument that was passed, which is this *star thing. And what it

does in this case is it's basically going to cast the pointer to a thread_arg struct and

dereference the input, and stick that into I. Then going to compute Fib of I. And then

it's going to take, once again, deference the pointer as if it's a thread_arg, and store

into the output field the result of the Fib. And then it returns NULL.

So that's basically the function that's going to be called when the thread is created.

So in your main routine now, what happens is we initialize a bunch of things. And

now, if argc is less than 2, we'll return 1. That's fine.

Then we're going to get the reading that we fail. That's actually the reading of the

input. So then, what we do here is we get n from the command line. And then if n is

less than 30, we're just going to compute Fib of n. This is what I evaluated on my

laptop was a good number.

So the idea is there's no point in creating the extra thread to do the work if it's going

to be more expensive than me just doing the work myself. So I looked at the

overhead of thread creation and discovered that if it was smaller than 30, it's going

to be slower to create another thread to help me out.

It's sort of like you folks when you're doing pair programming, which you're

supposed to be doing, versus handing it off. Sometimes, there are some things that

are too small to ask somebody else to do. You might as well just do it, by time you

explain what it is, and so forth.

Same thing here. What's the point in starting up a thread to do something else,

17



because the startup cost is rather substantial. So if it's less than 30, well, we'll just

be done. Otherwise, what we do is we marshall the argument to the thread. We

basically set args.input to n minus 1. Because args is going to be what I'm going to

pass in. So I say the input number is n minus 1.

And now what I do is I create the thread by saying, give me the name of the thread

that I'm creating. This was the field that I said you could put to be NULL, which

basically lets you set some policy parameters and so forth. I say, execute the

thread_func. This guy here. And here's the argument list that I want to provide it,

which is this args thing.

Once you do the thread_create, and this is where you depart from normal C or C++

semantics. And in fact, we're going to be doing more moving in the direction of C++.

We'll have some tutorials on that.

What happens is we check the status. OK, I actually did check the status to see

whether or not it created it properly. But basically now, what's happening is after I

execute this, it goes off and all the magic in Pthreads starts another thread doing

that computation. And control returns to the statement after the pthread_create.

So when the pthread_create returns, that doesn't mean it's done computing the

thing you told it to do. Then, what would be the point? It returns after it's set up to

operate in parallel the other thread. People follow that?

So now at this point, there are two threads operating. There's the thread we've

called thread. And there's whatever the name of the thread is that we started on. So

then we, in our own processor here, we compute Fib of N minus 2. And now, what

we do is we go on to join this thread with the thread that we had created.

So let's see here. And the thing that the join does is if the other thread isn't done, it

sits there and waits until it is done. And it does that synchronization automatically for

you. And this is the kind of thing a concurrency platform provides. It provides the

coordination under the covers for you to be able to synchronize with it without you

having to synchronize on your own.

18



And then, once it does return, it adds the results together by taking the result which

came from the Fib of n minus 2 and adds to it the value that this thread has

returned in the args.output. And then it prints the result.

So any question about that? Wouldn't this be fun to write a really big system in?

People do. People do. Yeah, question?

AUDIENCE: [INAUDIBLE PHRASE]

PROFESSOR: That's a tuning parameter. That's a voodoo parameter.

AUDIENCE: Right. But in this particular case, it makes no difference at all. It would've made a

difference if it was an actual person [INAUDIBLE]?

PROFESSOR: No, it does make a difference. For how fast it computes this? Absolutely does.

AUDIENCE: That's not recursive?

PROFESSOR: No, that's right. This is not recursive. I'm just doing two things and then quitting.

AUDIENCE: [INAUDIBLE] if it's less than 30, then it's going to be [INAUDIBLE], right?

PROFESSOR: If it's less than 30, it's fast enough that I might as well just return.

AUDIENCE: Then why [INAUDIBLE PHRASE] to do it. It would return [INAUDIBLE] too.

PROFESSOR: No. But it would be slower. It would be wasteful of resources. Maybe somebody--

AUDIENCE: Well, because you're using such a bad algorithm, I guess?

PROFESSOR: Yeah.

AUDIENCE: Oh, I see. Oh, OK.

PROFESSOR: OK. So in any case, that's Pthread's programming. There are a bunch of issues.

One is that the overhead of creating a thread is more than 10,000 cycles. So it

leaves you to only be able to do very coarse grain concurrency.

19



There are some tricks around that. One is to use what's called thread pools. What I

do is I start up, and I create a bunch of threads. And I have their names. I put them

in a link list. And whenever I need to create one, rather than actually creating one, I

take one out of the list, much as I would do memory allocation. Which you folks are

familiar with. OK. Ha, ha, ha, ha, ha. [MANIACAL LAUGHTER]

So basically, you can have a free list of threads. And when you need a thread, you

grab the thread. The second thing is scalability. So this code gets about a 1.5 speed

up for two cores. If I want to use three cores or four cores, what do I have to do?

Rewrite the whole program. This program only works for two cores. It will also work

for one core. but basically, it doesn't really exploit three or four cores.

It's really bad for modulatary. The Fibonacci logic is no longer neatly encapsulated

in the Fib function. So where do we see if we go back to this code? Here's the Fib

function. Oh, but now, I've kind of got-- well, this is sort of just marshaling and

calling.

But over here, oh my goodness, I've got some arguments here. If n is less than 30, I

give a result. Otherwise, I'm adding together-- but wait a minute. I already specified

Fib up here. So I'm specifying my serial implementation, and I'm specifying a

parallel way of doing it. And so that's not modular. If I decided I wanted to change

the Fib, I've got to change things in two places. If Fib were something I did.

Code simplicity. The programmers for this are actually marshalling arguments. This

is what I call shades of 1958. What happened in 1958 that's relevant to computer

science? What was the big innovation in 1958?

Programming language. Fortran. So, Fortran. Before Fortran, people wrote in

assembly language. If you wanted to put three arguments to a function, you did a

push, push, push, or passed them in parameters.

Actually, their machines were so much more primitive than that it was even more

complicated than you could imagine, given how complicated it is today what the

compilers are doing. But you had marshal the arguments yourself. What Fortran did

20



was say, no, you can actually write f of a, b, c. Close paren. And that it will cause a,

b, and c all to be marshalled automatically for you.

Well, Pthreads doesn't have that automatic marshalling. You got to marshall by

hand if you're going to use pthreads. And of course, as you can imagine, that was

error prone. Because there is no type safety. Are you calling things with the right

types and so forth? And so forth.

And also, one of the things here is that we've created two jobs that aren't the same

size. So there's no way that they have of load balancing. So this is why pthreads is

sort of the assembly language level, so that you can do anything you want in

pthreads. But you have to program at this kind of very protocol-laden level.

Next thing I want to talk about is threading building blocks. This is a technology

developed by Intel. It's implemented as a C++ library that runs on top of the native

Pthreads, typically, or WinAPI threads.

So it's basically a layer on top of the Pthread layer. In this case, the program

specifies tasks rather than threads. And tasks are automatically load balanced

across the threads using a strategy called work-stealing, which we'll talk about a

little bit more later. And the focus for this is on performance. They want to write

programs that actually perform well.

So here's Fibonacci in TBB. So as you'll see, it's better. But maybe not ideal for

what you might like to express. So what we do is we declare the computer, the

computation, it's going to organized as a bunch of explicit tasks. So you say that it's

going to be a task. And FibTask is going to have an input parameter, n, and an

output parameters, sum.

And what we're going to do is when the task is started, it automatically executes the

execute method of this tasking object here. And the execute method now starts to

do something that looks very much like Fibonacci. It says if n is less than 2, sum is

equal to n. That's we had before. And otherwise.

And now what we're going to do is recursively create two child tasks, which we

21



basically do with this function, allocate_task, giving it the fib task a name, where this

is basically a method for allocating out of a particular type of the pool, which is an

allocate child pool.

And then similarly for b, we recursively do for n minus 2. And then what it does is it

sets the number of tasks to wait for. In this case, it's basically two children plus 1 for

bookkeeping. So this ends up always being one more than the things that you

created as subtasks.

And then what we do is we say, OK, let's spawn. So this will only set up the task. It

doesn't actually say, do it. So the spawn command says actually do this

computation here that I set up. So it actually does b.

Start task b. And then itself, it executes a and waits for all of the other tasks, namely

both a and b, to finish. And once it's finished, it adds the results together to produce

the final output. So this, notice, has the big advantage over the previous

implementation that this is actually recursive. So in doing Fib, you're not just getting

two tasks. You're recursively getting each of those two more, and two more, and

two more, down to the leaves of the computation.

And then what TBB does is it load balances those across the number of available

processors by creating these tasks. And then, it automatically does all the load

balancing of the tasks and so forth. Questions about that? Any questions?

I don't expect you to be able to program a TBB, unless I gave you a book and said,

program a TBB. But I'm not going to do that. This is mainly to give you a flavor of

what's in there. What the alternatives are.

So TBB provides many C++ templates that simplify common patterns. So rather

than having to write that kind of thing for everything, for example, if you have loop

parallelism. If you have n things that you want to have that operate parallel, you can

do a parallel four and not actually see the tasks. It covers them over and creates the

tasks automatically, so that you can just say, for I gets 1 to n, do this to all I, and do

them at the same time essentially. And it then balances those and so forth.

22



It also has to things like parallel reduce. Sometimes what you want to do across an

array is not just do something for every element of the array. You may want to add

up all the elements into a single value. And so it basically has what's called a

reduction function. It does parallel reduce to aggregate. And it's got various other

things, like pipelining and filtering for doing what's called software pipelining, where

you have one subsystem that basically is going to process the data and pass it to

the next. So you're going to process it and pass it to the next. And it allows you to

set up a software pipeline of things.

It also collides with some container classes, such as hash tables, concurrent hash

tables, that allow you to have multiple tasks beating on a hash table. Inserting and

deleting from the hash table at the same time and a variety of mutual exclusion

library functions, including locks and atomic updates. So it has a bunch of other

facilities that make it much easier to use than just using the raw task interface.

OpenMP. So OpenMP is a specification produced by an industry consortium of

which the principal players-- the original principal player was Silicon Graphics, which

essentially has become less important in the industry, let's say. Put it that way. And

for the most part, recently, it's been players from Intel and Sun, which is now no

longer Sun, except that it is Sun part of Oracle, and of IBM, and variety of other

industry players.

There's several compilers available. Both open source and proprietary, including

gcc, has OpenMP built-in. And also, Visual Studio has OpenMP built-in. These are a

set of linguistic extensions to C and C++ or Fortran in the form of compiler practice

pragmas. So who knows what a pragma is? OK. Good. Can you tell us what a

pragma is?

AUDIENCE: [INAUDIBLE PHRASE]

PROFESSOR: Yeah, it's kind of like a compiler hint. It's a way of saying to the compiler, here's

something I want to tell you about the code that I'm writing. And it basically is a hint.

So technically, it's not supposed to have any semantic impact, but rather suggest

how something might be implemented by the compiler.
23



However, in OpenMP's case, they actually have a compiler-- it does change the

semantics in certain cases. It runs on top of native threads and it supports,

especially, loop parallelism. And then, in the latest version, it supports a kind of task

parallelism like we saw with TBB.

So, in fact, their task parallelism is fairly to specify. So here's the Fib code. So now,

this is not looking too bad. We basically inserted a few lines here. And otherwise, we

actually have the original Fibonacci code. So the sharp pragma says, here's a

compiler directive. And it says, the OMP says it is an OpenMP compiler directive.

The task says, oh, the following things should be interpreted as an independent

task. And now, the sharing of memory in OpenMP is managed explicitly, because

they're trying to allow for programming both of distributed memory clusters, as well

as shared memory machines.

And so, you have to explicitly name the shared variables that you're using. And

here, we're basically saying, wait for the two things that we spawned off here to

complete. So pretty simple code.

It provides many pragma directives to express common patterns, such as a parallel

for parallelization. It also has reduction. It also has directives for scheduling and

data sharing. And it has a whole bunch of synchronization constructs and so forth.

So it's another interesting one to do.

The main downside, I would say, of OpenMP is that the performance is not really

very composable. So if you have a program you've written with OpenMP over here,

another one here, and you want to put them together, they fight with each other.

You have to have your concept of what are going to be the programs.

The task parallelism helps a bit with that. But the basic OpenMP is very much of the

model, I know how many cores I'm running on. I can set that. And then I can have it

automatically parse up the work for those many.

But once you've done that, some other job, some other part of the system that

24



wants to do the same thing, then you get oversubscription and perhaps some

[UNINTELLIGIBLE]. Nevertheless, a very interesting system. And very accessible,

because it's in most of the standard compilers these days.

What we're going to look at is Cilk++. So this is actually a small set of linguistics

extensions to C++ to support fork-join parallelism. And it was developed by Cilk Arts,

which is an MIT spin-off, which was acquired by Intel last year. So this is now an

Intel technology.

And the reason I know about it is because I was the founder of Cilk Arts. It was

based on 15 years of research at MIT out of my research group. And we won a

bunch of awards, actually, for this work.

In fact, the work-stealing scheduler that's in it is provably efficient. In other words,

it's not just a heuristic scheduler. It's actually got a mathematical proof that it's an

effective scheduler. And in fact, was the inspiration for things like the work-stealing

in TBB and the new task mechanisms and so forth in OpenMP, as well as a bunch

of other people who've done work-stealing.

It in addition provides a hyperobject library for parallelizing code with global

variables, which we'll talk about later. And it includes two tools that you'll come to

know and love. One is the Cilkscreen race detector, and the other is the Cilkview

scalability analyzer.

Now, what we're going to be using in this class is going to be the Cilk++ technology

that was developed at Cilk Arts and then massaged a little bit when it got to Intel.

There is a brand new Intel technology with Cilk built into their compiler. And it is due

to come out in like, two weeks.

So our timing for this was it would've been nice to have you folks on the new Intel

Cilk+ technology. But we're going to go with this one for now. It's not going to make

too big a difference to you folks. But you should just be aware that coming down the

pike, there's actually some much more cleanly integrated technology that you can

use that's in the Intel compiler.

25



So here's how we do nested parallelism in Cilk++. So basically, this is Fibonacci.

And now, what I have here is, if you notice, I've got two keywords, cilk_spawn and

cilk_sync. And this is how you write parallel Fibonacci in Cilk. This is it.

I've inserted two key words, and my program is parallel. The cilk_spawn keyword

says that the named child function can execute in parallel with the parent caller. So

when you say x equals cilk_spawn or Fib of n minus 1, it does the same thing that

you normally think. It calls the child. But after it calls the child, rather than waiting for

it to return, it goes on to the next statement.

So then, the statement y equals Fib of n minus 2 is going on at the same time as

the calculation of Fib of n minus 1. And then, the cilk_sync says, don't go past this

point until all the children you've spawned off have returned.

And since this is a recursive program, it generates gobs of parallelism, if it's a big

thing. So one of the key things about Cilk++, is unlike Pthreads-- Pthreads, when

you say, pthread_create, it actually goes and creates a piece of work.

In Cilk++, these keywords only grant permission. They say you may execute these

things in parallel. It doesn't insist that they be executed in parallel. The program

may decide, no, in fact, I'm going to just call this, and then return, and then execute

this.

So it only grants permission, and the Cilk++ runtime system figures out how to load

balance it and schedule it. Cilk++ also supports loop parallelism. So here's an

example of an in-place matrix transpose. So I want to take this matrix and flip it on

its major axis.

And we can do it with for loops. As you know, for loops are not the best way to do

matrix transpose. Right? It's better to do divide and conquer. But here's how you

could do it. And here, I made the indices run from 0, not 1, because that's the way

you do it in programming.

But if I did it up here, then these things get to be n minus 1, n minus 1, and then it

26



gets too crowded on the slide. And I said, OK, I'll just put a comment there rather

than try to sort it out. So here's what I'm saying, is this outer loop is parallel. It's

going from 1 to n minus 1. And saying, do all those things in parallel. And each one

is going through a different number of iterations of j.

So you can see you actually need some load balancing here, because some of

these are going through just one step, and some are going through n minus 1

steps. It's basically the amount of work in every iteration of the outer loop here is

different. I'm sorry?

AUDIENCE: [INAUDIBLE PHRASE].

PROFESSOR: No. i equals 1 is where you want to start. Because you don't have to move the

diagonal. You only have to go across the top here. And for each of those, copy it

into the appropriate column. Flip it into the appropriate column. Flip the two things.

Actually, transpose is one of these functions. I remember writing my first transpose

functions. And when I was done, I somehow had the identity. Because I basically

made the loops go from 1 to n and 1 to n and swapped them. So I swapped them.

So I said, oh, that was a lot of work to compute the identity.

No, you've got to make sure you only go through a triangular iteration space in

order to make sure you swap-- and then swap. This is an in-place swap. So that's

cilk_for. That's basically it. There are some more facilities we'll talk about. But that's

basically it for parallel programming in Cilk++. The other part is, how do you do it so

you get fast code? Which we'll talk about.

Now, Cilk has serial semantics. And what that means is unlike some of the other

ones, it's kind of what OpenMP was aspiring to do. The idea is that if I, for example

here, delete these two keywords, I get a C++ code. And that code is always a legal

way to execute this parallel code.

So the parallel code may have more behaviors of its nondeterministic code. But

always, it's legal to treat it as if it's just straight C++. And the reason for that is that,

really, we're only granting permission for parallel execution. So even though I put in

27



these keywords, I still can execute it serially if I wish. They don't command parallel

execution.

To obtain this serialization, you can do it by hand by just defining a cilk_for to be for,

and the cilk_spawn and cilk_sync to be empty. Or there's a switch to the Cilk++

composite that does that for you automatically. And it's probably the preferred way

of doing it.

But the idea is conceptually, you can sprinkle in these keywords, and if you don't

want it anymore, fine. If you want to compile it with the straight c compilers, it's

better to use the Cilk++ compiler to do it. But if you wanted to ship it off to somebody

else, you could just do these sharp defines, and they could compile it with their

compilers, and it would be the same as a serial C++ code.

So the Cilk++ concurrency platform allows the program to express potential

parallelism in application. So it says, where is the parallelism? It doesn't say how to

schedule it. It says, where is it? And then, it gets mapped onto, at runtime,

dynamically mapped onto the processor cores.

And the way that it does the mapping is mathematically provably a good way of

doing it. And if you take one of my graduate courses, I can teach you how that

works. We'll do a little bit of study of simple scheduling. But the actual schedule it

uses is more involved. But we'll cover it a little bit.

Here's the components of the Cilk++ platform on a single slide. So let me just say

what they are. The first one is the keywords. So you get to put things in there. And if

you elide or create the serialization, then you get the C++ code or C code, for which

then you can run your regression test and demonstrate you have some good single-

threaded program.

Alternatively, you can send it through the Cilk++ compiler, which is based on a

conventional compiler. In our case, it will be GCC. You can link that with the

hyperobject library, which we'll talk about when we start talking about

synchronization. It produces a binary. If you run that binary on the runtime system,

28



you can also run it to the regression test.

And in particular, if you run it on the runtime system, running on one core, it should

behave identically to having run it through this path with just the serial code. And of

course, you get exceptional performance. These, I think, were originally marketing

slides.

However, there's also the fact that you may get what are called races in your code,

which are bugs that will come up that won't occur in your serial code, but will occur

in your parallel code. Cilk has a race detector to detect those, for which you can run

parallel regression tests to produce your reliable multi-threaded code.

And then, the final piece of it is there's this thing called Cilkview, which allows you to

analyze the scalability of your software. So you can run, in fact, on a single core or

on a small number of cores. And then, you can predict how it's going to behave on a

large number of cores.

So let's just, to conclude here, talk about races. Because they're the nasty, nasty,

nasty thing we get into parallel programming. And then next time, we'll get deeper

into the Cilk technology itself.

So the most basic kind of race there is what's called a determinacy race. Because if

you have one of these things, your program becomes nondeterministic. It doesn't

do the same thing every time.

A determinacy race occurs when two logically parallel instructions access the same

memory location, and at least one of the instructions performs a write, performs a

store, to that location. So here's an example.

I have a cilk_for here, both branches of which are incrementing x. This is basically

going. The index is going. i equals 0 and i equals 1. And then, it's asserting that x

equals 2. If I run this serially, the assertion passes. But when I run it in parallel, it

may not produce a 2. It can produce a 1.

And let's see why that is. So the way to understand this code is to think about its

29



execution in terms of a dependency [? dag ?]. So here I have my initialization of x.

Then once that's done, the cilk_for loop allows me to do two things at a time, b and

c, which are both incrementing x.

And then, I assert that x equals 2 when they're both done. Because that's the

semantics of the cilk_for. So let's see where the race occurs. So remember that it

occurs when I have two logically parallel instructions that access the same memory

location. Here, it's going to be the location x. And at least one of them performs a

write execution.

So if we actually looked closer, I want to expand this into this larger thing. Because

as you know, X++ is not done on a memory location. It's not done as a single

instruction. It's done as a load, x into a register. Increment the register, and then

store the value back in.

And meanwhile, there's another register on another processor, presumably, that's

doing the same thing. So this is the one I want to look at. This is just a zooming in, if

you will, on this dependency graph to look a little bit finer grain at what's actually

happening one step at a time.

So the determinacy race, recall, occurs-- this is by something, I'm going to say

again, you should memorize. So you should know what this is. You should be able

to say what a determinacy race is.

It's when you have two instructions that are both accessing the same location, and

one of them performs write. And here, I have that. This guy is in parallel. He's being

stored to here. This is also a race. He's been reading it, and this guy is writing it.

So let's see what can happen and what can go wrong here. So here's my value, x,

in memory. And here's my two registers on, presumably, two different processors.

So one thing is that you can typically-- and this is not quite the case with real

hardware-- but an abstraction of the hardware is that you can treat the parallel

execution from a logical point of view as if you're interleaving instructions from the

different processors.

30



OK. We're going to talk in three or four lectures about where that isn't the right

abstraction. But it is close to the right abstraction. So here, basically, we execute

statement one, which causes x to become 0.

Now let's execute statement two. That causes r1 to become 0. Then, I can

increment that. It becomes a 1. All well and good. But now if the next logical thing

that happens is that r2 is set to the value x, then it becomes 0. Then we increment

it.

And now, he stores back 1 into x. And now, this guy stores 1 back into x. And notice

that now, we [UNINTELLIGIBLE] go to the assertion. And we assert that it's 2, and

it's not the 2. It's a 1. Because we lost one of the updates.

Now the reason race bugs are really pernicious is, notice that if I had executed this

whole branch, and then this whole branch, I get the right answer. Or if I executed

this whole branch, and then this whole branch, I get the right answer. The only time

I don't get the right answer is when those two things happen to interleave just so.

And that's what happens with race conditions generally, is that you can run your

code a million times and not see the bug, and then run it once, and it crashes out in

the field. Or what's happened is there have been race bugs responsible for failure of

space shuttle to launch. You have the North American blackout of 2001? 2003?

It wasn't that long ago. It was like, 10 years ago. We had big black out caused by a

race condition in the code run by the power companies. There been medical

instruments that have fried people, killed them and maimed them, because of race

conditions. These are really serious bugs. Question?

AUDIENCE: [INAUDIBLE] when you said, the only time that that code is actually execute serially?

PROFESSOR: It could execute in parallel if it happened that these guys executed before these

guys. If you think of a larger context, a whole bunch of these things, and I have two

routines where they're both incrementing x in the middle of great big parallel

programs, it could be that they're executing perfectly well in parallel.

31



But if those two small sections of code happen to execute like this or like this, then

you're going to end up with it executing correctly. But if they execute sort of at the

same time, it would not necessarily behave correctly.

So there are two types of races that people talk about, a read race and a write race.

So suppose you have two instructions that access a location, x. And suppose that a

is parallel to b. Both a and b are both reads, you get no race. That's good. Because

there's no way.

But if one is a read and one is a write, then one of them is going to see a different

value, depending upon whether it occurred before and after the write. Or if they

both are writing, one can lose a value. So these are read races. And this is a write

race.

So we say that the two sections of code are independent if they have no

determinacy races between them. So for example, this piece of code is

incrementing y, and this is incrementing x. And y is not equal to x. Those are

independent pieces of code.

So to avoid races, you want to make sure that the iterations of your cilk_for are

independent. So what's going on in one iteration is different from what's going on in

another. That you're not writing something in one that you're using in the next, for

example.

Between a cilk_spawn and the corresponding cilk_sync, the code of the spawn child

should be independent of the code of the parent. OK? Including any code executed

by additional spawned or called children. So it's basically saying, when you spawn

something off, don't then go and do something that's going to modify the same

locations. You really want to modify different locations.

It's fine if they both read the same locations. But it's not fine for one of them to read

and one of them to write. One thing here to understand is that when you spawn a

function, the arguments are actually executed serially before the actual spawn

occurs.

32



So you evaluate the arguments, and you set it all up, then you spawn the function.

So the actual spawn occurs after the evaluation of arguments. So they're evaluated

in the parent.

Machine word size matters. So this is generally the case for races. By the way,

races are not just Cilk stuff. These races occur in all of these concurrency platforms.

I'm illustrating Cilk because that's what we're going to be using in our labs and so

forth.

So it turns out machine word size matters. And you can have races in packed data

structures. So for example, on some machines, if you declare a char a and char b in

a struct, then updating x and x, b in parallel may cause a race, because they're both

actually operating on a word basis.

Now on the Intel architectures, that doesn't happen. Because Intel supports atomic

updates of single bytes. So you don't have to worry about it. But if you were

accessing bits within a word, you could end up with the same thing. You access bit

five and bit three, you think you're acting independently, but in fact, you're reading

the whole word or the whole byte in order to access it.

The technology that you're going to be using fortunately comes with a race detector,

which you will find invaluable for debugging your stuff. And so this is kind of like a

Valgrind for races. What's good about this race detector is it provides a rock hard

guarantee.

If you have a deterministic program that on a given input could possibly behave any

differently from your serial program, from the corresponding serial program, if you

got rid of the parallel keywords, this tool, Cilkscreen, guarantees to report and

localize the offending race. It'll tell you, you got a race between this location and that

location. And it's up to you to find it and fix it, but it can tell you that.

It employs regression test methodology, where the programmer provides test

inputs. So if you don't provide test inputs to elicit the race, you still can have a bug.

But if you have a test input that in any way could behave differently than the serial

33



execution, bingo. It'll tell you.

It identifies a bunch of things involving the race, including a stack trace. It runs off

the binary executable using what's called dynamic instrumentation. So that's kind of

like Valgrind, except it actually does this as it's running. It uses a technology called

PIN, which you can read about. P-I-N, which is a nice platform for doing code

rewriting and analysis on the fly.

It runs about 20 times slower than real time. So you basically use it for debugging.

So the first part of project four is basically coming up to speed with this technology.

And so, there's some good things. And that's going to be available tomorrow. Is that

what we said? Yeah, that will be available tomorrow.

So this is actually-- this is tons of fun. Most people in most places don't get to play

with parallel technology like this.

34


