SPEED LIMIT
PER ORDER OF 6.172

6.172 Performance Engineering of Software Systems

LECTURE 13 Parallelism and Performance

Charles E. Leiserson

October 26, 2010

Amdahl's "Law"

If 50% of your application is parallel and 50% is serial, you can't get more than a factor of 2 speedup, no matter how many processors it runs on.*

Photograph of Gene Amdahl removed due to copyright restrictions.

*In general, if a fraction α of an application can be run in parallel and the rest must run serially, the speedup is at most $1/(1-\alpha)$.

But whose application can be decomposed into just a serial part and a parallel part? For *my* application, what speedup should I expect?

OUTLINE

- •What Is Parallelism?
- Scheduling Theory
- •Cilk++ Runtime System
- A Chess Lesson

OUTLINE

- •What Is Parallelism?
- Scheduling Theory
- •Cilk++ Runtime System
- A Chess Lesson

Recall: Basics of Cilk++

Cilk++ keywords *grant permission* for parallel execution. They do not *command* parallel execution.

Execution Model

Computation Dag

- A parallel instruction stream is a dag G = (V, E).
- Each vertex $v \in V$ is a *strand*: a sequence of instructions not containing a call, spawn, sync, or return (or thrown exception).
- An edge $e \in E$ is a *spawn*, *call*, *return*, or *continue* edge.
- Loop parallelism (cilk_for) is converted to spawns and syncs using recursive divide-and-conquer.

Series Composition

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$ Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$

Parallel Composition

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$ Span: $T_{\infty}(A \cup B) = \max\{T_{\infty}(A), T_{\infty}(B)\}$

Speedup

Def. $T_1/T_P = speedup$ on P processors.

If $T_1/T_P = P$, we have *(perfect) linear speedup*. If $T_1/T_P > P$, we have *superlinear speedup*, which is not possible in this performance model, because of the Work Law $T_P \ge T_1/P$.

Parallelism

Because the Span Law dictates that $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

- $T_1/T_{\infty} = parallelism$
 - = the average amount of work per step along the span.

$$= 18/9$$

= 2

Example: fib(4)

Assume for simplicity that each strand in fib(4) takes unit time to execute.

Work: $T_1 = 17$ *Span:* $T_{\infty} = 8$ *Parallelism:* $T_1/T_{\infty} = 2.125$

Using many more than 2 processors can yield only marginal performance gains.

Analysis of Parallelism

- The Cilk++ tool suite provides a *scalability analyzer* called *Cilkview*.
- Like the Cilkscreen race detector, Cilkview uses *dynamic instrumentation*.
- Cilkview computes *work* and *span* to derive upper bounds on parallel performance.
- Cilkview also estimates scheduling overhead to compute a *burdened span* for lower bounds.

Quicksort Analysis

Example: Parallel quicksort

```
template <typename T>
void qsort(T begin, T end) {
 if (begin != end) {
    T middle = partition(
                   begin,
                   end,
                   bind2nd( less<typename iterator_traits<T>::value_type>(),
                             *begin )
                );
     cilk_spawn qsort(begin, middle);
     qsort(max(begin + 1, middle), end);
     cilk_sync;
  2
```

Analyze the sorting of 100,000,000 numbers. *** *Guess the parallelism!* ***

Theoretical Analysis

Example: Parallel quicksort

```
template <typename T>
void qsort(T begin, T end) {
 if (begin != end) {
    T middle = partition(
                   begin,
                   end,
                   bind2nd( less<typename iterator_traits<T>::value_type>(),
                            *begin )
                );
     cilk_spawn qsort(begin, middle);
     qsort(max(begin + 1, middle), end);
     cilk_sync;
  2
```

Expected work = $O(n \lg n)$ Parallelism = $O(\lg n)$ Expected span = $\Omega(n)$

Interesting Practical* Algorithms

Algorithm	Work	Span	Parallelism
Merge sort	Θ(n lg n)	Θ(lg³n)	Θ(n/lg²n)
Matrix multiplication	Θ(n ³)	Θ(lgn)	$\Theta(n^3/\lg n)$
Strassen	Θ(n ^{lg7})	Θ(lg²n)	$\Theta(n^{lg7}/lg^2n)$
LU-decomposition	Θ(n ³)	Θ(n lg n)	$\Theta(n^2/\lg n)$
Tableau construction	Θ(n ²)	Θ(n ^{lg3})	$\Theta(n^{2-lg_3})$
FFT	Θ(n lg n)	Θ(lg²n)	Θ(n/lg n)
Breadth-first search	Θ(Ε)	$\Theta(\Delta \log V)$	$\Theta(E/\Delta Ig V)$

*Cilk++ on 1 processor competitive with the best C++.

OUTLINE

What Is Parallelism?
Scheduling Theory
Cilk++ Runtime System
A Chess Lesson

Scheduling

- Cilk++ allows the programmer to express *potential* parallelism in an application.
- The Cilk++ *scheduler* maps strands onto processors dynamically at runtime.
- Since the theory of *distributed* schedulers is complicated, we'll explore the ideas with a *centralized* scheduler.

Greedy Scheduling

IDEA: Do as much as possible on every step. *Definition:* A strand is *ready* if all its predecessors have executed.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is *ready* if all its predecessors have executed.

Complete step

- \geq P strands ready.
- Run any P.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is *ready* if all its predecessors have executed.

Complete step

- \geq P strands ready.
- Run any P.

Incomplete step

- < P strands ready.
- Run all of them.

P = 3

Analysis of Greedy

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge max\{T_1/P, T_\infty\}$ by the Work and Span Laws, we have

$$\begin{array}{l} \mathsf{F}_{\mathsf{P}} &\leq \mathsf{T}_{1}/\mathsf{P} + \mathsf{T}_{\infty} \\ &\leq 2 \cdot \max\{\mathsf{T}_{1}/\mathsf{P}, \mathsf{T}_{\infty}\} \\ &\leq 2\mathsf{T}_{\mathsf{P}}^{*} \quad \blacksquare \end{array}$$

Linear Speedup

Corollary. Any greedy scheduler achieves near-perfect linear speedup whenever $T_1/T_{\infty} \gg P$.

Proof. Since $T_1/T_{\infty} \gg P$ is equivalent to $T_{\infty} \ll T_1/P$, the Greedy Scheduling Theorem gives us

 $\begin{array}{l} T_P \leq T_1/P + T_\infty \\ \approx T_1/P \ . \end{array} \\ Thus, the speedup is T_1/T_P \approx P. \quad \blacksquare \end{array}$

Definition. The quantity T_1/PT_{∞} is called the *parallel slackness*.

Cilk++ Performance

Cilk++'s work-stealing scheduler achieves
 ■ T_P = T₁/P + O(T_∞) expected time (provably);

T_P \approx T₁/P + T_{∞} time (empirically).

- Near-perfect linear speedup as long as $P \ll T_1/T_\infty$.
- Instrumentation in Cilkview allows the programmer to measure T_1 and T_∞ .

OUTLINE

- What Is Parallelism?
 Scheduling Theory
- •Cilk++ Runtime System
- A Chess Lesson

Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it *steals* from the top of a *random* victim's deque.

Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it *steals* from the top of a *random* victim's deque.

Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it *steals* from the top of a *random* victim's deque.

Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it *steals* from the top of a *random* victim's deque.

Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it *steals* from the top of a *random* victim's deque.

Each worker (processor) maintains a *work deque* of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

Theorem [BL94]: With sufficient parallelism, workers steal infrequently \Rightarrow *linear speed-up*.

Work-Stealing Bounds

Theorem. The Cilk++ work-stealing scheduler achieves expected running time $T_P \leq T_1/P + O(T_{\infty})$ on P processors.

Pseudoproof. A processor is either *working* or *stealing*. The total time all processors spend working is T_1 . Each steal has a 1/P chance of reducing the span by 1. Thus, the expected cost of all steals is $O(PT_{\infty})$. Since there are P processors, the expected time is

 $(T_1 + O(PT_{\infty}))/P = T_1/P + O(T_{\infty})$.

Cactus Stack

Cilk++ supports C++'s rule for pointers: A pointer to stack space can be passed from parent to child, but not from child to parent.

Space Bounds

Theorem. Let S_1 be the stack space required by a serial execution of a Cilk++ program. Then the stack space required by a P-processor execution is at most $S_P \leq PS_1$.

Proof (by induction). The work-stealing algorithm maintains the *busy-leaves* property: Every extant leaf activation frame has a worker executing it.

Linguistic Implications

Code like the following executes properly without any risk of blowing out memory:

MORAL: Better to steal parents from their children than children from their parents!

OUTLINE

- •What Is Parallelism?
- •Scheduling Theory
- •Cilk++ Runtime System
- A Chess Lesson

Cilk Chess Programs

- ★Socrates placed 3rd in the 1994 International Computer Chess Championship running on NCSA's 512-node Connection Machine CM5.
- Socrates 2.0 took 2nd place in the 1995 World Computer Chess Championship running on Sandia National Labs' 1824-node Intel Paragon.
- Cilkchess placed 1st in the 1996 Dutch Open running on a 12-processor Sun Enterprise 5000. It placed 2nd in 1997 and 1998 running on Boston University's 64-processor SGI Origin 2000.
- Cilkchess tied for 3rd in the 1999 WCCC running on NASA's 256-node SGI Origin 2000.

★Socrates Speedup

Developing ★Socrates

- For the competition, *Socrates was to run on a 512-processor Connection Machine Model CM5 supercomputer at the University of Illinois.
- The developers had easy access to a similar 32-processor CM5 at MIT.
- One of the developers proposed a change to the program that produced a speedup of over 20% on the MIT machine.
- After a back-of-the-envelope calculation, the proposed "improvement" was rejected!

★Socrates Paradox

Proposed program Original program $T_{32} = 65$ seconds $T'_{32} = 40$ seconds $T_{P} \approx T_{1}/P + T_{\infty}$ $T_1 = 2048$ seconds $T_{\infty} = 1$ second $T_{32} = 2048/32 + 1$ = 65 seconds $T_{512} = 2048/512 + 1$

 $T'_1 = 1024$ seconds $T'_{\infty} = 8$ seconds

 $T'_{32} = 1024/32 + 8$ = 40 seconds

 $T'_{512} = 1024/512 + 8$ = 10 seconds

= 5 seconds

Moral of the Story

6.172 Performance Engineering of Software Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.