
MITOCW | MIT6_172_F10_lec18_300k-mp4

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: All right. We're going to get started now. For those of you who don't know me, I'm

Josh Slocum, one of your TAs. And today's lecture is going to be a primer on ray

tracing to help you get started on the final project.

So first, we're going to start with a little background. Tell you about ray tracing. Ray

tracing is essentially a physics simulation. You simulate the way photons bounce

around and interact with materials. And from that, you generate an image of a

scene.

It's extremely parallel because you can trace a whole bunch of photons bouncing

around at the same time. And it has a huge capacity for photorealism. So like this

sample seen here, you have all sorts of reflections and light working in ways that

you don't see in a normal rendering program.

The final project, as you know if you've read the handout, is going to be groups of

two or three people each. And you'll be given a working ray tracer program. A very

slow one, but one that works. And your objective is to make it run as fast as

possible.

You can do pretty much anything you want with a few restrictions we'll talk about

later. You can make algorithmic improvements, parallelize it, change the way the

rendering works slightly. All sorts of things. Pretty much anything you can think of.

The only deliverables for the final project are the preliminary report due next week,

in which you'll have to show us that you've profiled the project, tell us what hot spots

you've identified, and ideas you have for speeding up the ray tracer, as well as any

actual work you've already done.

1



The final project comes with two built-in scenes that can be ray traced. Scene one,

this one here, is rendered much faster than scene two. And you're going to want to

work on that one first. And then, there's scene two, which is slightly different. It has

water and one less sphere.

These are the restrictions on what you can do for the final project. The purpose of

these restrictions is basically just to make sure that everyone's ray tracer is doing

the same thing. So you're all working on the same problem, and you're not

achieving speed ups by simplifying out some functionality of the program.

Does anyone have any questions about the final project before I move on? All right.

Go ahead.

AUDIENCE: [INAUDIBLE] we're going to do a third scene similar to the first two, right?

PROFESSOR: Oh. Yeah. In order to make sure that you're following these rules, we're going to

test your ray tracer on one or more other scenes and make sure that they render

properly. But these are the two scenes that you will be benchmarked on for your

performance grade.

All right. Next, we're going to go over how ray tracing works and the big concepts

used in the ray tracer you'll be working on. So the basic idea behind the rendering is

you're going to construct a geometric model of the scene you want to render, and

so it will be made of polygons, or spheres, or planes.

And then within that model, you insert a grid of pixels. They'll form the image you're

going to render. And then, you just project the scene onto the grid of pixels, and you

have some image. The way you do this with ray tracing is you use a method called

ray casting where you take some camera and cast rays through each pixel onto the

scene. And then, whatever color object the ray hits is the color that that pixel gets

shaded in the scene.

This method of tracing rays is called backwards ray tracing, because you're going in

opposite direction that photons go in when you're actually observing something. So

if this was an actual scene, you'd have light bouncing here and into you're eye.

2



Whereas what you're doing is you're tracing backwards from the eye to the object.

Ray casting-- this image here is a ray image-- is very primitive. It doesn't really get

you much. So what you can do is you can improve your physics simulation by

adding a whole bunch more things on top of it, like shadows, and reflections, and

global illumination. All sorts of fun stuff.

So if you want to start simulating shadows, and reflections, and defraction, you need

to start recursively casting rays, which is called ray tracing. So when your ray

bounces off of an object, you can cast a reflection ray at the same angle mirrored

from the perpendicular of the object and see what color object that ray hits, and

then, shade this object with that color.

You can also cast a refracted ray, and use Snell's a lot to tell which direction it goes

in and do the same thing. And then, you can cast a shadow ray at all the light

sources in the scene. And if the shadow ray hits an object before hitting the light

source, then you know that this object is in the shade and make it darker.

And obviously, you have to limit the recursion depth for your recursive tracing,

because otherwise, you'll never finish rendering. So, first way of improving lighting is

to start using direct illumination, which is you have a light source at the top of the

scene. And when you hit something like a wall here, you then bounce a ray at the

light source.

And depending on how far this intersection A is from the light source, you shade

either brighter or darker. So it might be hard to see in this light, but the wall gets

darker the further away it is from the light. And then, you do shadows the same way,

except at point B here, the rate it bounces from the ground hits this ball. And so,

point B is in the shade.

Now, you can improve on shadows by making what's called soft shadows. Soft

shadows are shadows that form a gradient from darker to lighter. They happen

when you have a light source that's not a point light. So if you look at the shadows

around you in the room, you'll see there are gradients, not just a solid block of

3



darkness.

And the way you achieve that is when you get an intersection, when your ray

intersects a point, you cast multiple shadow rays at different points along the light

source. And depending on how many of these rays hit something before hitting the

light source, you shade some proportion of the light being casted, or the light

coming from this light source.

So you can see point D here, none of the rays hit the light source, and so, it's in a

very dark area. Whereas point C, one of the rays hits the light source, and so it's in

a slightly brighter area.

And then reflection and refraction work very similarly to shadows, except instead of

bouncing from here to the light source, you bounce off this metal ball at the angle of

reflection. And you bounce through this glass ball using the angle of refraction. You

can calculate using Snell's law.

Any questions before we move on? All right. So as you can see pretty clearly in this

image, there's still some problems. The ceiling is completely black. Shadows are

mostly black. And there's no light being transmitted through this glass ball either into

the shadow here. So there's definitely some improvements we can make on our

physics simulation.

The first thing we're going to look at is called global illumination, which is pretty

much any sort of illumination that doesn't come directly from light sources. Now the

reason this sort of illumination is important is that there's actually a lot of light that

gets bounced around the room that doesn't come directly from the light source.

Like that white wall, if I shine this laser pointer at it, as you can see, there's still a lot

of light bouncing off of it. It's not all being absorbed. So what you can do is you can

take your ray intersection, and you can use what's called the Monte Carlo method,

which is you take a whole bunch of random samples and interpolate those samples

to get some value that approximates what the illuminant should be here.

The problem with that, though, is that when you trace backwards, you get this

4



exponential explosion of recursively cast rays. And you have no guarantee that any

of these paths will ever get to this light source. So what you have to do is trace

forwards, so you start at the light source, and you cast photons in random directions

and let them bounce all around the scene until they get absorbed.

Now, when a photon bounces, a bunch of light gets absorbed. But not all the light.

And so, the rest of the light keeps reflecting. And depending on the kind of material,

different amounts and colors of light will be reflected.

So as you can see, this ray here bounces off the orange wall. And so, orange light

gets reflected. This ray bounces off the blue wall. And so, blue light gets reflected.

And this ray bounces off this metal ball, and so it gets completely reflected up

towards the ceiling.

So if you remember each bounce in something called a photon map, then later, you

can come back and say, oh, there's so many photons in this area. And that's what

these yellow circles are. So the illuminance is going to be approximately this.

The problem with that is unless you're simulating an extremely large number of

photons, you'll have an uneven distribution. So what you can do is you can hybridize

forwards ray tracing and the Monte Carlo method.

So you construct your photon map, which is represented in this image by all the red

dots scattered everywhere. And then you do backwards ray tracing. Then when you

reach a point, you randomly sample different reflection rays and average their

illuminance to get the illuminance at this point.

So you have blue illuminance from the wall here. And then light gray from here and

darker gray from here. And the result is this sort of pale blue, which you can't really

see in the image because the light's bad. Yeah, so backwards trace, randomly

sample, illumination. And any questions before we go on?

So it turns out even with building a photon map and then randomly sampling the

photon map, calculating the irradiance can still be very expensive. So what we've

implemented to speed that up is what's called an irradiance cache. And the way the
5



irradiance cache works is there are certain areas on objects that will have pretty

much the same irradiance. It's pretty much the same irradiance levels. So you can

interpolate from nearby points.

So what we do with the irradiance cache is as the scene is rendering, if there is a

cache miss, then we calculate the irradiance for some pixel which corresponds to a

point in the scene. And then, if we then trace a ray very near to that same pixel, you

can then interpolate from nearby cached irradiances and get something that looks

right.

So if you take a look at this image, where the green dots represent cache misses on

these big planer objects here. There's very few cache misses. And it's almost

entirely cache hits. Whereas at the interface between different objects, the cache

misses become much more common. But overall, the number of irradiance

calculations is greatly reduced.

And then, the third kind of illumination that we implement is called caustics. Caustics

are just light being lensed into patterns of brighter and darker spaces, such as you

get from a light pointing towards a glass ball. Or if you ever see the sort of wavy

pattern on the bottom of a pool, that's also from caustics.

Caustics are also implemented with the photon map, except it's created slightly

differently. Instead of bouncing photons everywhere, photons are absorbed as soon

as they hit a diffuse object. So a photon might bounce off of this metal sphere and

then hit the wall, and it will be immediately absorbed.

Whereas if it hits this sphere, it'll bounce, and bounce, and then be absorbed. So

the objective of caustics is to trace how photons are grouped based on the optical

properties of materials in the scene.

And then, caustics are rendered pretty simply. Because there's much fewer photons

than in the photon map for global illumination, you don't need to use an irradiance

cache. So you simply trace a ray to a point and then sample the number of photons

nearby. And you end up with something like this if you just do caustics shading.

6



So then at the end, you take your direct illumination, and then add it to caustics, and

then add it to global illumination. And you get something that looks like this. Any

questions before we go to the code overview? Go ahead.

AUDIENCE: Do we weight them equally?

PROFESSOR: So the question was, do we weight them equally? And the answer is yes. And you

just sum them together. Ideally, you were clever and constructed your ray tracer so

that they should be weighted equally, because there's weighting done internally,

basically.

So next, we're going to do a quick overview of the code that will be in your

repositories just get you started and help you understand how it works. First, we're

going to start by explaining some of the classes you'll find. First is SceneObject,

which is the parent class for all of the objects that will be used to construct the

scenes you'll be rendering.

Every scene object has a ray intersection method that's called whenever you trace a

ray. And it'll return where the ray intersection is and the object. And SceneObject is

inherited by these objects here, which all of the objects will inherit from.

Then we've got the Raytracer class, which contains the main method. So it starts

the program. And it also contains methods for constructing the scene and then

rendering the scene once you've constructed the scene first.

We have the LightSource class, which is a base class for any light sources. In our

ray tracer, the only subclass is square photon light, which is this light at the top of

the scene here. And what that does, or what the light class does, is it contains

methods for constructing the photon maps and getting illumination from either

global, or caustic, or direct sources.

And then there's also the iCache class, which essentially just implements the iCache

for you. Any questions? So basic execution overview.

You have the main method for Raytracer. Parses the command line. Constructs the
7



scene. And the scene is just a command line switch. So if you say S1, it'll construct

scene one. If you say S2, it'll construct scene two. Then for each light source, it tells

the light source to make photon maps for the global and caustic illumination.

GUEST SPEAKER: I should mention that we actually moved the main functionality into [INAUDIBLE] so

you can replace the data. You don't have to touch that. It just constructs the scene,

so that we can then add a scene [INAUDIBLE] from that. So you shouldn't need to

do that.

PROFESSOR: OK. So that's changed then. Then, main calls the render function of Raytracer.

What the render function does-- excuse me, method does-- is it casts a ray for each

pixel in the scene you're going to render, finds the nearest intersection, and then

computes the shading at that intersection by recursively bouncing rays and [?

painting ?] the illuminance cache for illumination.

And that's basically what the Raytracer does. It's pretty simple. So we're also going

to quickly go over how the light source traces photons for direct and global

illumination. The difference is kind of settled, but pretty important.

With global illumination, you want some total number of photons to be put in the

map. And you put a photon in the map whenever it hits some diffuse surface. And

then, that photon then continues bouncing around until it's absorbed.

For caustic illumination, it's pretty similar. You have some set number of photons

you want to get into the map. You cast a ray in some random direction. And then,

the ray intersects with a diffuse material. You store the intersection in the photon

map. And then you break. You don't keep bouncing the photons around.

So that's basically it for the code overview. This slide has some resources that you

can use if you want to learn more about ray tracing. Some of these will explain

concepts that we haven't implemented. They're an interesting read, but not needed

if you don't want to read them.

And also, there's no standard way of doing global illumination or direct illumination.

8



So you may come across resources that do things slightly different than our

reference implementation. That doesn't mean either one is wrong. But you should

be aware that there will almost certainly be differences. Does anyone have any

questions? Go ahead.

AUDIENCE: So we can use one of those alternatives?

PROFESSOR: Can you say that louder please?

AUDIENCE: So we can use one of those alternatives?

PROFESSOR: These aren't implementations. They're descriptions of how ray tracing works. You

should not change your code to work in this way. These are just to help with

clarification if you want to learn more about what's being done in the code. Go

ahead.

AUDIENCE: [INAUDIBLE PHRASE] what specifically are we allowed to change for the

[INAUDIBLE]?

PROFESSOR: So what specifically are you allowed to change?

AUDIENCE: Yeah. Which ever one's smaller [INAUDIBLE PHRASE].

PROFESSOR: Anything not prohibited by these rules, which are paraphrased from the project

handout, you can do. So basically, as long as you're still performing the same

essential calculations, you're fine. Hmm?

GUEST SPEAKER: I would say the criteria for correctness is to look at the images, and say that they

look more or less the same. They don't give you a pixel by pixel accurate. This isn't

a graphics class that actually does that. This should be almost like a [INAUDIBLE].

PROFESSOR: They should visually look the same. If you find some approximation that looks

almost the same and runs 100 times faster, go for it. You can't say, for example,

simplify your ray tracer though by saying, OK, we're only going to be able to render

these two scenes, but we'll be able to do it really fast.

9


