
© 2009 VMware Inc.

A Tale of 10 Bugs: Performance Engineering at VMware

 Ravi Soundararajan, SB „92 (VMware, Inc.)

 MIT Guest Lecture, 6.172

 12/9/10

2

A Case Study in Performance Engineering

 Email thread from a colleague

 “…

 Interestingly, as the number of <benchmark> threads decreased

hostsPerThread var increases), the percentage of locktime spent in

dbwrites also increases.

 …

 lots of threads (hostsPerThread = 4):

• ~28 % lock time spent under vdbWrite Connection

• ~16 % lock time spent under exec / commit.

 …”

 Translation: Why is % lock time in DB increasing despite lighter load?

3

Step 0: What the ?%##!* is he talking about?

Server
Scripted Client

DB
Agent<->HAL

VM VM VM

VM VM VM

Agent<->HAL

VM VM VM

SAN Net Agent<->HAL 1

2

3

4

1. Client issues command to server

2. Server performs operation

3. Results persisted to DB

4. Client is notified of completion

Problem: With lighter load from client, %time spent in DB Locks increases

4

Step 1: Examine Lock Hold Time for Various Loads

Latency per lock @ 128 hosts/thread < 4 hosts/thread (Expected…lighter load)

Original question: why is %DB increasing with lighter load?

Answer: DB latency dominates when overall latency is lower!

5

Step 2: Examine Contention Time for Various Loads

Contention per lock @ 128 hosts/thread < 4 hosts/thread (OK…lighter load)

With lighter load, less overall contention time and higher % of time @ DB

6

Post mortem on Case Study #1

 1. Understand experimental setup (multi-tier setup)

 2. Understand what is being measured (% time in DB lock)

 3. Examine relevant data (lock latency)

 4. Draw appropriate conclusion

• Yes, % lock time in DB is higher with a lighter load

• BUT, overall lock time is small with lighter load

• Therefore, DB lock time (roughly constant) contributes more to lock latency

7

Outline

 Case Studies in Performance Engineering @ VMware

 Lessons Learned

8

Case Study #2: Garbage In, Garbage Out

Customer wants to draw this chart:

 PowerCLI

• CPU Usage for a VM for last hour:

• $vm = Get-VM –Name “Foo”

• Get-Stat –Entity $vm –Realtime –Maxsample 180 –Stat

cpu.usagemhz.average

• Grab appropriate fields from output, use graphing program, etc.

9

What Happens at Scale? Comparing PowerCLI and Java

Entities
(cpu.usagemhz.average)

PowerCLI
(Time in secs)

Java
(Time in secs)

1 VM 9.2 14

6 VMs 11 14.5

39 VMs 101 16

363 VMs 2580 (43 minutes) 50

A Naïve script that works for small environments may not be suitable

for large environments

Highly-tuned

Java Stats

Collector

Translation: Garbage In, Garbage Out…but why?

10

PowerCLI vs. Java

 PowerCLI

• Toolkit: meant for ease of use…hides details

• Similar to a shell script: facilitates quick prototyping

• Stateless

 Java

• Harder to use

• But…can use more advanced techniques (data structures, thread pools, etc.)

11

What’s going on behind the scenes?

 This is what is going on for each Get-Stat call in PowerCLI

• Retrieve PerformanceManager

• QueryPerfProviderSummary $vm Says what intervals are supported

• QueryAvailablePerfMetric $vm Describes available metrics

• QueryPerfCounter Verbose description of counters

• Create PerfQuerySpec Query specification to get the stats

• QueryPerf Get stats

Bottom line: The PowerCLI toolkit spares you details…Easy to use!

12

Optimizing the Java Code

 Get VM ID

 for each Get-Stat {

 QueryAvailablePerfMetric();

 QueryPerfCounter();

 QueryPerfProviderSummary();

 create PerfQuerySpec();

 QueryPerf();

 }

 Get VM ID

 QueryAvailablePerfMetric();

 QueryPerfCounter();

 QueryPerfProviderSummary();

 create PerfQuerySpec();

 for each Get-Stat {

 QueryPerf();

 }

PowerCLI Java

perfCounter property

Of

PerformanceManager

PowerCLI: 5 RPC calls per VM. Java: 1 RPC call per VM.

Further optimization not shown: Java allows more compact format

13

Why Garbage In, Garbage out?

 PowerCLI

• Wrote a „simple‟ but non-optimized script

• Did not utilize multi-threading (split up VM list, use muliple client queries)

• Did not realize output format is verbose

• Did not realize # of RPC calls is 5*O(#VMs)

 Java

• Utilized multiple threads

• Understood what data was the same across VMs reduce redundant calls

• Utilized more compact output format (CSV vs. raw objects)

• Reduced # of RPC calls

(Think about assembly code vs. compiler-generated code)

14

Case Study #3: A Lesson in API Design

Management server

User wants to view
„console‟ of a VM

1

2

3

1. User talks to management server

2. Management server locates VM

3. User & VM get connected

Clip art © source unknown. All rights
reserved. This content is excluded from our
Creative Commons license. For more

information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

15

The Problem: Remote Console Doesn’t Show Up!

• Problem: could not start VM remote console in large environment

• Sequence of debugging

• Client folks: it‟s a server problem

• Server folks: it‟s a client problem

• Client folks: it‟s a „vmrc‟ problem (vmrc = VMware Remote Console)

• VMRC folks: authentication? MKS tickets?

• Me: this is ridiculous…

• More Information: Start remote console for a single VM

• 50 Hosts, no problem

• 500 Hosts, no problem

• 1001 Hosts, PROBLEM!

16

No Console: Examining the Cases the Actually Work

•Debugging observations

• With < 1000 hosts…

• Management server CPU and memory goes very high when client
invoked

• Console is dark until CPU and memory go down, then appears

• Look at server log file

• Data retrieval call occurs before console appears (WHY???)

• In failure cases, exception in serializer code

• Attach debugger

• Exception is an out-of-memory exception

• Exception is silently ignored (never returns to client)

17

No Console: Isolating the Problem

•Problem

• VMRC creates a request to monitor host information (e.g., is CD-ROM
attached)

• Request gets info on ALL hosts

• At 1001 hosts, we exceed 200MB buffer on server

• 200MB restriction only for old-style API clients

•Solution

• VMRC folks: do NOT create big request

• Server folks: fail correctly and emit better errors

Lessons

1. Create APIs that are difficult to abuse, rather than easy to abuse

2. Teach clients how to use APIs

3. Make sure (internal) users have input about API design

18

Case Study #4: 32-bit vs. 64-bit (Thanks, R. M.!)

 Benchmark run

• Build A: 100 ops/min.

• Build B: 50 ops/min.

 What was the difference?

• Build A: 32-bit executable on 64-bit hardware

• Build B: 64-bit executable on 64-bit hardware

 Huh?

19

4 (b) xPerf

 Runs on Windows 2008

 Sampling profiler (with other cool attributes)

 Records stack traces

 Give caller/callee information

1

9

20

4 (c) CPU Saturation in 64-bit case

CPU is mostly saturated (in 32-bit case, CPU is not saturated)

21

4(d) Look at Sampling Profile

Shows stacks originating from root

Shows 87% CPU used from 1 process

But this is just the thread start routine, where threads originate

22

4(e) The Perils of Sampling Profilers

From Root, most of the samples are from this call stack

Most popular stack, but is this the problem?

23

4(f) Perils of Sampling Profilers, Part 2

 Most-common trace: not necessarily where time is spent

2

3

Root

A1

Tiny Function

A2

C1

C2

B1

B2

Path A Path B
Path C

Many paths to “Tiny Function‟

Maybe time spent here?

24

4(g) The Caller View

 Look at Callers for various routines in stacks

Not called a lot from root, however…

Called from few places and takes 77% CPU!

RTtypeid?

25

4(h) RTtypeid?

Hmm. RTtypeid is used in figuring out C++ type

39% of overall CPU?

IncRef and DecRef are main callers

26

4(i) The Offending Code

 void

ObjectImpl::IncRef()

{

 if (_refCount.ReadInc() == 0) {

 const type_info& tinfo = typeid(*this);

 FirstIncRef(tinfo);

 }

 …

}

 Dynamic cast…needs run-time type info (RTTI)

 RTTI has pointers in it

27

4(j) But Why is 64-bit slower than 32-bit?

 Runtime type info (RTTI) has a bunch of pointers

• 32-bit: pointers are raw 32-bit pointers

• 64-bit

 Pointers are 32-bit offsets

Offsets must be added to base addr of DLL/EXE in which RTTI
resides

 Result is a true 64-bit pointer

 But wait…why is addition slow?

28

4(k) Why Is Addition Slow? Well, it isn’t…

 Addition isn’t slow, but…

 Determining module base address can be slow

• To find base address, RTtypeid calls RtlPcToFileHeader

• RtlPcToFileHeader grabs loader lock, walks list of loaded modules to
find RTTI data

• This can be slow

• N.B.: This is why we see calls to zwQueryVirtualMemory

 For more info:

http://blogs.msdn.com/junfeng/archive/2006/10/17/dynamic-cast-is-

slow-in-x64.aspx

http://blogs.msdn.com/junfeng/archive/2006/10/17/dynamic-cast-is-slow-in-x64.aspx
http://blogs.msdn.com/junfeng/archive/2006/10/17/dynamic-cast-is-slow-in-x64.aspx

29

4(l) What Did We Learn?

 RtTypeId is called from a bunch of places

 RtTypeId is not, however, called from Root too often

 RtTypeId is small and fast: not main contributor in most stacks

(except IncRef and DecRef)

 Lots of little calls add up

 Caller view was important here!

 (btw: 2 solutions:

• 1. Statically compute base addr and cache

• 2. Use latest runtime library, which avoids RtlToPcFileHeader)

Lesson: Little things (32-bit vs. 64-bit) may matter…don’t discriminate!

30

Case Study #5: Memory Usage Woes

 Why is excessive memory usage a problem?

• Can slow down application if paging is induced

• May cause application to crash (if you exceed per-process limit…2GB in 32-bit

Windows)

 Memory leak vs. memory accumulation

• Leak: memory was allocated, not live anymore (dangling reference)

• Accumulation: pointer exists to data, but data not used anymore (a logical

leak)

31

Tools for Analyzing Memory Usage

 Windows:

• Purify, GlowCode, Memory Validator, malloc hooks and heap dump utilities
from Microsoft, etc.

 Linux:

• Valgrind, malloc hooks from Google (example: http://goog-
perftools.sourceforge.net/), etc.

 Basic idea:

• Hook calls to malloc

• Figure out liveness of pointers (do you leave scope without free()?)

• But…can be unusably slow if you do a lot of allocations!

http://goog-perftools.sourceforge.net/
http://goog-perftools.sourceforge.net/

32

A Trivial Memory Leak

 void bar() {

 foo();

}

 void foo() {

 char *p = malloc(24);

 <do some computation>

 return; /* memory pointed at by p is never freed */

}

33

Memory Analysis

 Easing memory allocation in C++: use reference-counted objects

instead of “naked” pointers

• Each use of an item increments a reference count

• When no references exist, delete the item

• Does not solve memory accumulation problem

34

Memory Performance Problem

 Server application runs out of memory after several hours

 Use Purify (on a much smaller setup):

• Leak not detected because data was assigned to a reference

• Instead, examine memory in use

 Do 100 iterations of an operation

 See 6400B of allocations for an item (100 64B allocations)

 Code inspection revealed that item was actually not used anymore…a “logical” leak

(i.e., there was a free(), but it was never called because the item was thought to be in use)

Lesson:

If an effect is small, find ways to magnify it.

35

Case Study #6: Another Memory Analysis Problem

 User complains that server is getting slower and slower

 CPU/network/disk not saturated

 Memory, however, is increasing dramatically

 Eventually, system crashes

36

Looking at Memory Usage: Perfmon in Windows

 Chart of “Private Bytes” for a process vs. time

 Memory growing at
alarming rate! Not
good.

 Private bytes: memory
committed to process
(swap space is
allocated for it)

 Memory given by OS to
app, not necessarily
memory requested by
app (example:
fragmentation)

Server is functioning fine, but memory is growing really fast.
This could lead to a crash. Let’s investigate…

37

Reference-counted objects

0

10000

20000

30000

40000

50000

60000

1 70 139 208 277 346 415 484 553 622 691 760 829 898 967

(286_0) Vmacore::System::MutexImpl

(232_0)

Vmacore::System::ConditionWin32

(165_0)

Vmacore::System::WaitableObjectImpl

(810_0) Vmomi::Activation

Profiling Reference-counted Objects

internal threads

0

2

4

6

8

10

12

14

16

18

20

1 72 143 214 285 356 427 498 569 640 711 782 853 924 995

 Hmm…number of
threads consumed is
also increasing

 Some thread-
related objects
increasing

*** Log files show threads
being killed due to
uncaught exceptions

Pink: mutex

Teal: condition variable

Blue: thread activation state

38

Customized Profiling: Pros and Cons

 Advantages of our customized profiler:

• Tailored to our application

• Can be made very fast

• Can be run in production environments

 Disadvantages:

• Requires code recompilation (then again, so does Purify)

• Specific to this application (code must be refactored for use in other apps)

• Only counts ref-counted objects: what about C code? What about non-ref-
counted objects?

Lesson: Memory profiling is critical.

Sad Reality: Sometimes, commercial tools don‟t work at scale

You may have to write your own

39

Case Study #7: How well do you understand networking?

 User issues a request to perform an operation on a VM

• Setup A: Client/Server version 1 to host version 1: 8s

• Setup B: Client/Server version 2 to host version 1: 16s

• Consistent, repeatable difference

• Regression when using new code to talk to older host!

 Step 1: Log everywhere

• Client-imposed latency: same in both cases

• Server-imposd latency: same

• Host imposed-latency: extra 8s in Setup B Focus on the host

40

Networking Issue: Analyzing the host

 Step 2: More logging (standard tools aren’t available on host)

• Narrow down the time...

 Agent <-> HAL, Setup A: 10ms per call

 Agent <-> HAL, Setup B: 200ms per call

 Wow!

 Step 3: Examine configuration

• Setup A: named pipe between Agent and HAL

• Setup B: TCP/IP connection between Agent and HAL

41

Networking Issue: Resolution

 Step 4: Solution (intuition by developer)

• Named pipe communication, setup A: 10ms

• TCP/IP communication, setup B: 200ms

• Why? Nagle algorithm on socket connection

 On a TCP socket, wait for more data before sending packets

 Can be disabled through TCP_NODELAY option

 Step 5: Result

• Use TCP_NODELAY, both have same performance

• Eventually use a cache to avoid interprocess communication

 Lesson?

• “Little” changes can mean a lot

• Client/server code: understand the client/server interaction!

42

Case Study #8: Correctness Impacts Performance

 Trying to Power on a VM

• Sometimes, powering on VM would take 5 seconds

• Other times, powering on VM would take 5 minutes!

 Where to begin?

• Powering on a VM requires disk activity on host Check disk metrics for host

43

Examining Disk Latencies…

Chart shows highest disk latency for each 5-minute period

Max Disk Latencies range from 100ms to 1100ms…very high! Why?

Rule of thumb:

latency > 20ms is

Bad.

Here:

1,100ms

REALLY BAD!!!

44

High Disk Latency: Mystery Solved

Host events: disk has connectivity issues high latencies!

Bottom line: correctness issue (bad disk controller) impacts

performance!

45

Prelude to Case Studies 9 & 10: CPU Scheduling for VMs

ESX

CPU

0

CPU

1

CPU

2

CPU

3

VM0 VM1 VM2 VM3

VM4

Run (accumulating used time)

Ready (wants to run, no physical CPU available)

Wait: blocked on I/O or voluntarily descheduled

VM5
VM6

Run

Ready

Wait/Idle

VM1

VM4

46

Case Study 9: “But it’s only a small probe VM…”

ESX 1 ESX 2

vSphere

VM
Probe VM

vSphere

DB

ODBC

vSphere communicates with DB

Probe VM monitors vSphere-to-DB traffic

The more traffic, the more work done by Probe VM

User Complaint: vSphere VM is suddenly very unresponsive

Sniffs

Traffic
Clip art © source unknown. All rights
reserved. This content is excluded
from our Creative Commons license.
For more information, see
http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

47

CPU Usage vs. Time for DB and Probe VM

 DB VM ready time goes from 12.5% when idle to ~20% when user busy

 DB ready time increases because Probe VM is busy

 Probe VM takes CPU away from DB VM user responsiveness suffers

Lesson: Understand the

Implications of Monitoring

48

Case Study #10: What Does This Metric Mean?

 Problem

• Customer Performs a Load Test: keeps attaching clients to a server

• At some point, CPU is NOT saturated, but latency starts to degrade

• At some point, client is unusable

• Why?

49

“Oh yeah, it’s a disk problem…”

CPU Usage Increases…

Uh-oh! Disk Latencies go over a cliff!

50

Hmm. Not So Fast!!!

 Problem:

 Yes, Disk Latency gets worse at 4pm. (btw…due to swapping)

 However, Application latency gets worse at 3:30pm!

 What’s going on from 3:30pm to 4pm?

51

Looking at a different chart…

%Used? %Run? What‟s the difference?

%used: normalized to base clock frequency

%run: normalized to clock frequency while VM is running…

%run > %used: Power Management is kicking in…

In this case, turn off power managementlatency problems go away

Lesson: understand

your metrics!

vm1
vm2
vm3
vm4

52

The 10 Performance Issues I Mentioned

 1. DB Lock % increase with decreasing load

• Be careful when you draw conclusions…

 2. PowerCLI vs. Java

• Garbage-In, Garbage-Out: scalable solutions require careful design

 3. Remote Console Issues

• Create APIs that are easy to use and difficult to abuse

 4. 32-bit vs. 64-bit

• A small change can make a HUGE difference

 5. “Logical” leak

• Just because you do “new/delete,” doesn‟t mean memory won‟t grow (btw.,

Java doesn‟t save you!)

• Exaggerate a problem to make it easier to find the root cause

53

The 10 Performance Issues I Mentioned

 6. Slow memory growth until crash

• Sometimes you need customized profilers

 7. Nagling

• Understand client/server interactions

 8. Disk Latency

• Correctness Impacts Performance

 9. Probe VM activity hurting performance of other VMs

• Understand the Impact of Monitoring

 10. Power Management affecting Performance

• Understand your metrics & consider the whole system

54

Conclusion: Tips for Performance Engineering

 Avoid assumptions! (see #10)

 Understand the ENTIRE SYSTEM

• Your code

• Other people‟s code

• Hardware

 Be persistent and thorough

• Look at tons of metrics

• Look at behavior when things work as well as when they don‟t work

MIT OpenCourseWare

http://ocw.mit.edu

6.172 Performance Engineering of Software Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

