
Team Fourteen Paper


Overview 

The experience in Maslab of my team was excellent, occupying and stimulating; the 
project in general greatly exceeded all our collective expectations, both in terms of 
commitment and reward. Inevitably, we made many mistakes and concurrently acquired 
enormous amounts of information on everything from Java to managing team dynamics 
and from mechanical structure to computational objectives and implementation. We ended 
up spending approximately 40 – 50 hours per week per person on our task, and spending 
additional time would have been beneficial. Our team had minimal experience both in the 
mechanical implementation of the rigor of a robotics course and with computational 
requirements of robotics in particular. This course is certainly feasible for groups and 
individuals of no experience, but in such instances, we strongly recommend a certain 
ingenuity and willingness to explore alternative possibilities and paradigm shifts. 

Overall Strategy 

We reasoned that the winning strategy would implement field goals, since their score 
yield (5 per ball) was greater than traditional goals (3), and we hoped to win rather than 
merely excel. To that end, we fashioned our robot around the requirements of detecting, 
capturing, lifting, and scoring balls, within the constraints of fitting our robot into the 
storage box and within the various time restrictions and material limitations. 

Mechanical Design 

Structurally, our bot was divided into three horizontal tiers; their precise configuration 
emerged as a consequence of our design needs. In general, our chassis began with a 
rectangular platform twenty centimeters wide and thirty centimeters long with two motors 
mounted on the back corners and two free wheels mounted on the front corners. 

We divided the mechanical problem into three parts: collecting the balls, lifting them, and 
depositing them in the goal. To collect the balls, we found inspiration from a Wisconsin 
girl in our dorm and mounted a ‘bailer’ on the front of our robot akin to the mechanism 
used to collect wheat and form it into bales; the mechanism consisted of a servo rotating a 
horizontal bar about twenty centimeters wide approximately five centimeters from the 
axis. We installed a ramp slightly behind the bailer, which lifted the balls up 
approximately four centimeters onto the bottom level of the bot. We had to spend 
considerable time calibrating the spacing and inclination of the ramp with respect to the 



bailer so as to achieve a path that a ball would always follow regardless of approach and 
initial velocity, but we succeeded; surprisingly, the angle of the ramp was very steep, but 
in general, any ball in the path of the bailer would be collected. The bottom tier was 
inclined slightly toward the front, so after the balls were collected by the bailer and ramp, 
they would roll to the back of the bot. The second mechanism had to lift the balls from the 
bottom tier to the top tier, which was at its peak approximately thirty-five centimeters 
above the ground; we resolved to use an arm powered by a high-torque motor mounted 
directly on the robot superstructure. Positioning the arm was difficult; it had to be 
sufficiently compact to fit in the box, long enough to raise the ball to the appropriate 
height and positioned correctly to avoid crashing into any other parts of the robot – 
clearance was a factor. The ‘ball end’ of the arm had a short metal cylinder we referred to 
as the ‘cup;’ the ball would firmly stay in place due to minor shaping adjustments we 
implemented. The arm only rotated through 180 degrees; it would hit ‘bumpers’ 
positioned at the desired limits of motion. The motor was slightly off-center with respect 
to the back of the bot along the horizontal axis. The third mechanism required the fewest 
moving parts; the balls were at this point thirty-five centimeters off the ground and had to 
pass over a thirty-centimeter tall wall; we had a gentle, constant incline that took the shape 
of a wedged siphon at the back of the bot which gave way to a slender, single pathway 
comprised of a number of dowels. A servo powered barricade restrained the balls in the 
siphon until such a point as we desired them to move. The final ramp extended over the 
bailer at the front of the robot, so the robot did not have to drive all the way up to the wall 
for the balls to have clearance. Given the three mechanisms, then, the chassis and 
remaining hardware structure of the bot became little more than a mounting platform for 
the ball transporting devices, the computational hardware and the sensors. We constructed 
it using three vertical columns between the bottom tier and the top tier; a middle level was 
installed to mount the Eden, battery and Orcpad, leaving the bottom level completely free 
for the balls to roll to the back of the bot, where they would be lifted by the arm. Because 
of small but annoying misalignments in the construction of the bot, different parts of the 
bot were slightly crooked, but in general the construction was sound. Wood was our 
primary material, with metal sufficing for parts which were required to be especially 
sturdy, especially precise, or especially light. 

Sensors 

Our primary navigational sensors were a pair of short-range infrared sensors mounted on 
two structural columns near the front of the bot. The distance along the length of the robot 
from the front to the infrared sensors was approximately ten centimeters, which we 
believed was sufficient to avoid the non-linear behavior of the sensors as the range 
approaches zero. The sensors were mounted high on the columns – sufficiently high to 
avoid being inadvertently triggered by either our spinning bailer or by gaps at the goal. 
The camera was mounted between the IR sensors with slight declination, and with an 
elevation of about twelve centimeters with respect to the ground. This caused some 



problems; as the robot closed on a ball, the ball would drop out of visual range. This made 
modifications in our algorithms necessary. Also critical for navigation in the original 
configuration were two encoders mounted on our drive wheels and the gyroscope 
supplied. Additional motor output came from the servo on the bailer, the servo governing 
the barricade on the release tier, and the high-torque motor on the back of the bot. 

Software Design 

Because we had two primary programmers, we relegated the division of code into 
modules based on either sensory input, processing and interpretation or motor and 
hardware response. We considered threading, but decided that the vast bulk of the 
processing would be in a single thread, with minor secondary threads to monitor such 
small tasks as the clock, rotating the back arm, and Our primary sensor input besides the 
infrared sensor navigation was the camera; processing was executed in HSV format; we 
implemented an HSV function which was more efficient than the provided procedure. 
Rather than completely converting every pixel in the image, it sampled regions in a search 
for red pixels (or other colors, depending upon our needs); we incorporated blue-line 
filtering to negate the wall. While the input code was initially more complicated to digest 
and accurately plot the positions of objects on the field, once odometry was abandoned, 
our image needs vastly simplified. Our initial intent was to construct a powerful map 
based on the gyroscope, odometry, and landmark recognition, loosely founded on 
Kallman odometry. We devised a method to drive straight by providing feedback to the 
motors’ power settings based on their odometry rates; turning hinged upon our gyroscope, 
which was fantastically temperamental. Retrospectively, calibrating the gyroscope with a 
regression function would have been fantastic, but we did not believe the massive 
gyroscope drift was entirely deterministic. To proceed once our bot had constructed the 
detailed map during the exploration round, we devised a series of algorithms to plot 
waypoints for the robot to follow in an effort to maximize our search efficiency and to 
optimize our red ball and goal finding processes. A more sophisticated wander algorithm 
was implemented to avoid the shortcomings of wall-following and of random wandering; 
the algorithm divided regions into cells based on the positioning of the walls, and then 
thoroughly evaluated each cell to determine whether a ball was present by turning slightly 
more than the angle required to dodge walls and turning 360 degrees at calculated 
intervals. Unfortunately, during the testing of this powerful series of algorithms, 
seemingly overwhelming problems emerged; the behavior was nothing like designed. 
After nearly a day of debugging and little progress, on the Wednesday before competition, 
the algorithms were abandoned in favor of simpler structures which we believed were 
more reliable, largely due to their simplicity. Unfortunately, because of time constraints 
and hardware malfunctions with the encoders, the odometry was completely abandoned. 
Our basic structure was a looped finite state machine; a wander algorithm would run, 
taking pictures intermittently until a red ball was located. At that point, a getRedBall 
function would retrieve the ball, returning to the wander algorithm. After two minutes had 



elapsed, red ball operations would terminate and the bot would seek the goal again using 
the wander algorithm. This was a vastly simplified structure to our original, more 
ambitious configuration. The new wander algorithm was vastly simpler, merely 
encountering and turning away from walls, with a periodic 360 degree turn; it lacked the 
higher order functions that were possible with accurate odometry and was effectively a 
random algorithm based on the positioning of the walls it encountered. Also, we 
discovered shortly before the competition that one of our two infrared sensors was 
critically miscalibrated, such that its behavior no longer linearly varied with distance. It is 
likely this error contributed to the failure of our original algorithms; there were no 
available replacement sensors and time quickly ran out before we were able to counter this 
problem. Unfortunately, we still had not determined a viable solution to the gyroscope 
problem (a problem we had hoped odometry would have been able to assist), so our 
navigation had critical errors going into the final competition and turning was erratic. 

Overall Performance 

While our theoretical design was well-thought and extremely robust, our execution 
encountered often insurmountable problems. Our hardware design malfunctioned because 
our the gears of our high-torque motor stripped away, making any hopes of a complete 
180 degree rotation impossible. Because we failed to solve that problem in the last few 
days, as well as the gyroscope and infrared sensor bugs, our robot had very little chance of 
actually scoring during the final round. Moreover, in an effort to get the simple algorithms 
up and running for the competition, the time stream was neglected while attention was 
diverted to the wander algorithms, so our robot would not universally stop after three 
minutes. As it turns out, the only way our robot would have come to a stop would have 
been had it successfully located a goal in its field of view between t = 170s and 180s. That 
did not happen during the competition, and we were penalized. The pragmatic success of 
our robot was severely lacking, but we generated many theoretical and interesting 
approaches to the obstacles which faced us. Obviously the general failure of our bot to 
complete its objectives was extremely disheartening, but the practical experience which 
we obtained in addition to mentally attacking the problem was stimulating and highly 
rewarding. 

Suggestions for future teams: 

●	 When you design an algorithm or mechanical solution, it doesn’t have to be the optimal or 
perfect solution, it merely has to work. Once you have a working implementation, you can 
improve it enormously. 

●	 Make sure you have something working very early on; if you attempt the impossible and find 
yourself incapable of completing your task before the deadline, your substitute will lack many 
improvements and refinements you solved very early on. 

●	 Test ridiculously frequently and refine everything as many times as you can reasonably afford. 



●	 Delusions of grandeur and computing excellence have no place in the pragmatic world; a solution 
to the problem must be implemented before idealism can hope to survive. 

●	 Organize early on and outline clear objectives for everyone on the team. Address conceptual and 
design problems together, then implement them solitarily. 

●	 Try to work on designs long before you need them; start building the chassis as early as you have 
clear objectives and designs, e.g. 

●	 Invest as much time as you can humanly afford from the beginning. 
●	 Always have a backup plan; Murphy was right. 
●	 When in doubt, use a regression equation. 


	Local Disk
	PhpWiki - Team Fourteen Paper


