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Chapter 1

Introduction

1.1 Motivation and Design Goals

The Orc hardware, now in its 4th revision, was designed to support the MASLab Robotics
Competition, held yearly at MIT. It is intended to simplify the task of building robots,
balancing cost and flexibility.

Figure 1.1: MASLab 2004. The OrcBoard was design for use in MIT’s Mobile Autonomous
Systems Laboratory (MASLab) robotics competition.

The OrcBoard was inspired by the HandyBoard, produced for MIT’s 6.270 robotics
competition. The HandyBoard was remarkable in its day, but it is now a 20 year-old design,
and does not make good use of the high-density devices available today.

A fundamental design decision behind the OrcBoard is to separate the computational
machinery (“compute”) from the robotics interface. The OrcBoard is the robotics interface–
allowing the compute to read and control sensors and actuators. Factoring the design in
this way allows robot implementors to pick a compute engine that is appropriate for them.
The compute can be any device with a serial or USB port, ranging from a lowly PIC to a
laptop.

The OrcBoard was also designed for maximum hackability. The board is constructed
using hobbyist-accessible technologies, using only simple SMT devices and socketed DIPs
whenever possible. In addition, the firmware on the OrcBoard can be readily modified to
change the functionality. For example, it is possible to support over a dozen servos by
sacrificing other capabilities.
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8 CHAPTER 1. INTRODUCTION

The OrcBoard has a companion, the OrcPad, which provides a rich user interface, includ-
ing a 128x64 pixel LCD panel, a two-axis analog joystick, and three push buttons (including
an “emergency stop” button). The OrcPad is extremely useful for robots whose compute
lacks a display, as well as for dumping diagnostic information. The OrcPad is attached to
the OrcBoard via a tether that can extend up to three meters. In addition, the OrcBoard
contains firmware for performing basic diagnostic functions on the OrcBoard’s ports, as well
as experimenting with motors and sensors. For example, without any compute engine, it is
possible to drive a robot around using built-in firmware.

1.2 Hardware Overview

The Orc hardware can be broken down into three basic categories: communication, I/O,
and motor drivers.

USB

RS-232
Ports

16-19

OrcPad

Ports

 0-15

Accessory

Power Out

Accessory

  Switch

OrcBoard

   Switch

DC In

Battery

     In

Motors

 0 & 1

Motors

2 & 3

Ports

16-19

(quadphase)

I2C

Figure 1.2: OrcBoard Floorplan. The OrcBoard combines 20 multipurpose I/O ports with
4 high-current motor drivers, and flexible power and communication capabilities.

1.2.1 Communication

The OrcBoard communicates with the host via either RS-232 or USB. RS-232 is sup-
ported at up to 230.4kbps, while TTL-level RS-232 or USB is supported at up to 250kbps.

I2C devices can be connected to the OrcBoard and controlled from the host. This allows
the OrcBoard to serve as an interface to many other devices.

1.2.2 I/O Capabilities

The ORC board has a total of 20 I/O ports with varying capabilities, plus 4 high-current
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motor ports. Many of the I/O ports can be used in different ways; for example, port 0 can
be used as an analog input, a servo controller, or a digital in/out pin. Naturally, a pin
can only be used one way at any given time, but all configuration is done in software, so
on-the-fly reconfiguration is possible. See Table 1.1.

Port Capabilities
0 Digital I/O, Servo, Analog In, Port Current Sense
1 Digital I/O, Servo, Port Current Sense
2 Digital I/O, Servo
3 Digital I/O, Servo, Analog In
4 Digital I/O, SonarPulse
5 Digital I/O, SonarEcho
6 Digital I/O, SonarPulse
7 Digital I/O, SonarEcho
8 Digital I/O, Analog In
9 Digital I/O, Analog In
10 Digital I/O, Analog In
11 Digital I/O, Analog In
12 Digital I/O, Analog In, Analog Out
13 Digital I/O, Analog In
14 Digital I/O, Analog In, Gyro Temperature
15 Digital I/O, Analog In, Gyro Integrator
16 Digital I/O, QuadPhase 0A, MonoPhase
17 Digital I/O, QuadPhase 0B
18 Digital I/O, QuadPhase 1A, MonoPhase
19 Digital I/O, QuadPhase 1B

Table 1.1: OrcBoard I/O Capabilities

Detailed descriptions of the various features are given in Chapter 2.

1.2.3 Motor Drivers

The OrcBoard also has four motor drivers; see Table 1.2.

Category Specification
Maximum Current 1.5A continuous, 3A (heat limited)

Control Mode PWM-based voltage control
Feedback Current Sense (and/or encoders via I/O)
Slew Rate Programmable

Table 1.2: Capabilities of each of the OrcBoard’s four motor drivers
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Chapter 2

User Guide

The OrcBoard and OrcPad have extensive functionality built into them. The boards actually
contain a total of three microcontrollers. These microcontrollers, known as Programmable
Systems on a Chip (PSoCs) are manufactured by Cypress Microsystems. They run at
24MHz, executing a typical instruction in around 6 cycles; they also have 2KB of RAM and
32KB of FLASH.

Rather than providing crude I/O capabilities, the microcontrollers are put to work,
providing higher-level functionality and simplifying the task of the user.

A major concern in robotics are real-time constraints. Some events require very precise
timing, and if the required timing is not achieved, some type of failure can occur. The
OrcBoard is designed to handle most of a robot’s real-time activities; this is where the
“hidden” CPU power of the OrcBoard comes in handy. The host controller can worry
about high-level control issues, leaving the timing-sensitive tasks to the OrcBoard.

2.1 Getting Started

Before using the OrcBoard/OrcPad:

• Inspect the board for missing or bridged solder joints.

• Review the power requirements section.

• Ensure that the battery is fused.

• Disconnect all motors and sensors.

When the OrcBoard starts up, the OrcPad will display a splash screen, and should display
the text “Self-tests passed”. If self-tests fail, or no message regarding self-tests appears,
then the OrcBoard is malfunctioning. Do not proceed until the problem is diagnosed and
corrected.

If the tests pass, proceed to configure and calibrate the OrcBoard and OrcPad.

2.2 Built-in Diagnostics and Configuration

The OrcBoard and OrcPad persistently maintain configuration information which gov-
erns their operation. This data will be lost when firmware is upgraded, but it will survive
power-cycling. In addition, the firmware contains various utilities which can be useful when
working on a robot.

11
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2.2.1 OrcPad Calibration

The OrcPad calibration should be performed first, in order to calibrate the joystick;
otherwise, navigating other menus may prove difficult.

To enter the OrcPad calibration, hold down the menu button for four seconds. After one
second, the OrcBoard configuration screen will pop up; this will be described in the next
section. Ignore this screen and continue to hold down the menu button until four seconds
have passed.

Follow the on-screen prompts to calibrate the joystick. Make sure that the joystick
travels around its full range of motion, and be sure to leave the joystick centered before
tapping “menu” and proceeding to the next configuration screen.

The second step of OrcPad calibration is to fine-tune the battery voltage sensor. Use a
multimeter to measure the voltage currently being applied to the OrcBoard, be it from a
battery or wall adapter. Use the joystick to adjust the displayed voltage until it matches
the reading on the multimeter.

Confirm that you are done calibrating by tapping menu again. The changes will be
written to the OrcPad’s FLASH memory.

2.2.2 OrcBoard Diagnostics and Configuration

Enter the OrcBoard configuration screen by holding down the OrcPad’s “menu” button
for one second. A menu will be displayed with various options for examining the state of the
OrcBoard. Most of these options are self-explanatory, however two deserve special mention.

Drive Mode

Most differentially-driven robots (those with two motors, each connected to a wheel on
opposite sides of the robot) can be driven from the OrcBoard’s firmware, without writing
any code.

Drive Mode assumes that the drive motors are connected to ports 0 and 2. Movements
of the joystick are translated into PWM control signals to the joystick.

Configuration

Communication parameters, such as baud rate, can be configured in the OrcBoard firmware.
These changes are written to FLASH, and so are remembered every time the OrcBoard starts
up.

2.3 Connecting to the OrcBoard

The OrcBoard can be accessed in three ways.

• The DB-9 connector provides an RS-232 interface with +/- 10V signaling.

• TTL-level RS-232 signals can be accessed from header. This is intended for small
compute platforms (PICs, Basic STAMPs), avoiding the need for them to use a charge
pump.

• The OrcBoard can be outfitted with a USBMOD3 device, which will provide a USB
interface to the board.



2.4. DETAILED FEATURE DESCRIPTIONS 13

Despite the extremely-high bandwidth available over USB, the OrcBoard in general
performs a little worse over USB than a serial connection. There are two causes: the first
(and most important) cause is the very high latency of the USB bus, which artificially adds
delays to packet reception. The second reason is that the OrcBoard only communicates
with the USB module at 250kbps, limiting the maximum achievable bandwidth to a small
fraction of USB’s theoretical capacity. While OrcBoard/Host communication is slower than
it could be, it is plenty fast for virtually any robotics application.

If the OrcBoard is being used via USB, placing it on the same USB bus as a high-
bandwidth device such as a camera should be avoided.

Once a physical connection is made to the OrcBoard, most users will use prewritten
libraries to actually issue requests and receive data. These libraries vary from platform to
platform and are consequently documented separately. However, these libraries all imple-
ment the protocols described in this document in Chapters 4 and 5.

2.4 Detailed Feature Descriptions

When writing software for the OrcBoard, the first step is to decide which features are
needed, and to decide which combination of pin configurations will be best.

The host controller should initialize each pin before it begins controlling the robot. This
must be done every time the OrcBoard is reset; the OrcBoard always starts-up in a “safe”
configuration which will probably not match your robot’s requirements.

Each pin can be used in a variety of modes. The set of modes available on each pin
varies; see Table 1.1 for a list of capabilities. The modes are described in more detail below.

Warning! It is possible to damage the OrcBoard or sensors attached to it by in-
correctly configuring ports or plugging in sensors incorrectly. The most dangerous modes
are those that cause a pin to be an “output”. If an “output” pin (e.g., Analog Out, Digital
Out, Servo, Sonar Pulse, PWM Generator) is connected to another device which is also an
“output” (e.g., analog range finder, digital switches), damage to either the device and/or
the OrcBoard can occur!

For example, connecting an analog range finder to a port configured as a digital out
causes contention: two devices both trying to make the same signal have the same voltage.
Just like shorting power and ground, this can cause a lot of current to flow and can damage
the device.

2.4.1 Analog In

Analog values are always represented by 16 bit numbers, scaled so that 0 represents 0V
and 65535 represents 5V. Ports 8-15 are 14 bit A/Ds sampled at about 1kHz. Ports 0, 3,
16, and 19 are 6 bit A/Ds sampled at about 8KHz.
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Every port has an independently programmable low pass filter, implemented in software
with an infinite impulse response (IIR) filter. A single parameter f describes the behavior
of the filter. The OrcBoard supports integer values of f from [0, 15]. The IIR filter is:

y[n] = (1− 2−f )y[n− 1] + 2−fx[n] (2.1)

The Z-transform can be written:

H(z) =
Y

X
=

2−f

1− (1− 2−f )z−1
(2.2)

Larger values of f lead to lower-pass filters, with 8 being a practical upper limit. The
filter can be disabled by setting f = 0.
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LPF=6

LPF=7

LPF=8

Figure 2.1: LPF Frequency Responses. Increasing values of the LPF increase the strength
of the low-pass filter.

Note that when a port is left unconnected, it is natural for readings of that pin to “follow”
the values of nearby pins. It does not indicate a hardware problem.

2.4.2 Analog Out

A single 8 bit digital-to-analog (DAC) converter is available on board. This DAC can
only be updated by sending a transaction to the board, which limits the maximum rate
at which it can change to a maximum of a couple hundred hertz. Consequently, it is not
suitable for audio or other waveform replication tasks. It should not drive more than a 1mA
load.
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2.4.3 Digital In

Any port can be used as a digital input whose value can be queried on demand. The
input can optionally be configured (in software) to have a 6k pullup, a 6k pulldown, or
neither.

Switches (push buttons, whisker, and others) typically make use of Digital In ports.
Ordinarily, a switch requires an external resistor, however the OrcBoard can use an internal
resistor; simply configure the pin as a “pull up” port.

Using the “pull up” configuration, the correct way to wire a switch is to wire one end
of the switch to the Digital Input pin and the other end to ground. The +5V connection is
not used.
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2.4.4 Digital Out

Any port can be used as a digital output. The digital out ports cannot source more than
5mA each.
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2.4.5 Gyroscope Integrator

The OrcBoard has built-in support for the ADXL300 gyroscope. The gyroscope produces
a voltage that is proportional to angular rate; integrating this signal gives angular position.
The gyroscope produces an output signal of 5mV per degree/second.

The gyroscope pin must be configured as an analog in port. The gyroscope integrator
will then be automatically available. The connector is the same as for an analog input.

Every 0.25ms (4kHz), the analog value of the gyroscope is read. The low-pass-filter
for that pin, if configured, will be taken into account. The value, ranging from 0-65535,
is added to the accumulator. Since the nominal zero-rate output voltage is 2.5 volts, we
then subtract 32768 from the accumulator; this reduces the rate at which the integrator will
overflow. The 32 bit accumulator is freely allowed to overflow and wrap around.

If the accumulator is sampled sufficiently fast (the rate will be described in a moment)
to ensure that the accumulator hasn’t wrapped-around, the change in the accumulator can
be correctly computed. From a change in the accumulator of N , we can compute a change
in degrees. First note that the units of N are codes*samples.

codes ∗ samples ∗ 5 V

65535 codes
∗ 1 second

4000 samples
∗ 1 degree/second

5 mV
= degrees (2.3)

In other words, given an accumulator change of N, the orientation change is:

3.8 ∗ 10−6N degrees (2.4)

If the accumulator is sampled too infrequently, it will be impossible to reliably determine
the change in value. For a 32 bit accumulator, the change must be less than half the
accumulator’s range (0x80000000.) From above, we can compute that the accumulator will
change by 2,621,640 for every degree of rotation. The integrator will overflow after 819
degrees of rotation.

Unfortunately, the gyro’s zero-rate output voltage is not exactly 2.5V. If the robot is left
stationary for some period of time, the angular drift rate can be computed and subtracted
from future estimates of angular movement. Simply measure the value of the accumulator
at the beginning and end of an accumulator and compute what the drift of the accumulator
was per unit time. This drift can then be accounted for with future measurements.

In the computations above, it is important to know how much time elapsed. While the
host may have its own timing facility, it is better to use the actual 4kHz clock used by the
OrcBoard. The API provides a means of accessing this.

The Gyro’s rate-out should be connected using an Analog-In style connector to the
OrcBoard’s port 15. Port 14 is typically used by the Gyro’s temperature sensor, allowing
user software to perform thermal compensation on the rate output. The OrcBoard does not
perform any thermal compensation itself, however.

2.4.6 Motor Control

Four high-current motor drivers are available on the OrcBoard. Each is capable of
supplying 1.5A continuously, or 3A intermittently.

The motors are controlled by an 8 bit PWM with a frequency of approximately 32kHz.
This puts any magnetostriction related noise above the range of human hearing, and puts the
PWM frequency safely faster than the mechanical and electrical time constant of (virtually)
any motor.



2.4. DETAILED FEATURE DESCRIPTIONS 17

Each motor channel has an independent 8-bit PWM controller. The PWM control
toggles the output voltage between the battery voltage and ground, at roughly 32kHz. This
is in contrast to the system on other platforms, in which the PWM toggles the output voltage
between the battery voltage and open circuit. It is much easier to implement control systems
on the OrcBoard as a result since the voltage applied to the motor is more tightly controlled.

The current consumption of each channel is also measured with a low-valued resistor
placed in the ground path. These have programmable low-pass filters identical to those used
by the analog inputs. The measured voltages are very small, and the effective resolution of
the current consumption is around 50mA. Note that motors are extremely noisy, especially
when being driven with PWM. The current measurement is affected by this noise, which
appears as very high-frequency impulses. These impulses are faster than the OrcBoard’s
A/D converter, and aliasing results. Thus, the current measurements are typically not useful
as absolute measures of current, but they are quite useful for relative measures.

The motor current circuit suffers from offset error, which produces a non-zero voltage
even when no current is flowing. The offset error is estimated by the firmware as the
minimum value read by the analog/digital converter. This minimum value is subtracted
from all current measurements in order to provide the user with a more useful measurement.

With all but the smallest motors, rapidly slewing (changing the value of) the motor’s
PWM can cause large voltage and current transients. These can blow fuses, brown out the
processors, and generally cause all sorts of problems. The solution to this problem is the
gradually change the value of the PWM. All four motor channels have independent slew-rate
control. At the slowest setting, slewing the motor from -100% to +100% can take up to
eight seconds. At the fastest setting, the slew-rate is virtually instantaneous. The slew-rate
can be reprogrammed at run-time.

The OrcBoard can be queried for the current “goal” PWM and direction, as well as the
actual PWM and direction. The latter will generally lag behind the goal values due to the
slew rate limiting.

PWM updates are performed at 64Hz. The maximum change to the PWM value during
any interval is the slew value. If the slew value is 50, then it will take five iterations (78ms)
to change the PWM from 0 to 250.

Each motor driver channel has a built-in current limiting and thermal protection mech-
anism, controlled by an RC circuit on the OrcBoard. The time constant of this circuit
controls the ”off time” after an exception occurs. The greater the RC time constant, the
greater the protection against exceptions.

Selecting an appropriate time constant is a compromise between safety and performance.
Some large motors have very high start-up current requirements; if the off-time is too long,
the motor may not get enough power to begin rotating.

The recommended value for the resistor is 33K, and the recomended capacitance is
100pF. This configuration provides enough power for most robots, and good protection
against current and thermal exceptions (including shorts in the motors.) A more aggressive
option would be to replace the 100pF capacitors with 50pF or even 20pF; this will bump up
the power available to the motors under exceptional conditions (such as stalls or startups),
at the risk of causing excessive heating of the motor drivers. In aggressive designs like this,
the motor drivers should not be socketed, but rather soldered directly to the OrcBoard so
that the copper planes on the board can help to dissipate heat. The protection mechanism
can be effectively disabled (not recommended) by removing the capacitors.

Some motors are equipped with rotary encoders. The OrcBoard supports these as well;
see below.

2.4.7 PWM Generator
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A general-purpose PWM output, independent of board’s other features, is provided. The
driving clock can be selected between 48MHz and 32.768KHz, with a programmable period
and pulse width.

The OrcBoard does not have a crystal-derived clock source, so the frequency cannot be
relied upon to be extremely accurate. Empirically, frequencies are accurate within about
2%.

The pinout is the same for a digital output.

2.4.8 Servo Control

Up to four Futaba-style servos can be controlled on the OrcBoard. Servos are imple-
mented with 16 bit PWM, clocked at 16MHz. A single PWM module is time-multiplexed
between the four servo outputs. Consequently, the maximum duty cycle for any servo is
25%.
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Servo Pinout

Ports 0 and 1 support a current-sense feature, designed to measure the current consump-
tion of servos. Current consumption is directly proportional to torque, so the current-sense
can be used to detect how much resistance the servo is experiencing.

Servos draw current in pulses, so a hardware low-pass filter (an RC filter with a time
constant of 33ms) is used to produce a more readily useful measurement.

The servo connectors are designed to be easily interfaced with the three-pin connectors
found on most servos. However, both the servo’s connector and the OrcBoard connector
are female. Rather than replacing the servo’s connector, we suggest using a 3x1 section of
wire-wrap header, which can reliably serve as a coupler.

2.4.9 Sonar

Up to two Devantech SRF04-style sonar sensors are supported on the OrcBoard. They
require a pulse to initiate a range measurement, and return a pulse proportional to range.
Consequently, each sonar connector requires two pins. With some minor hackery, these
ports can be used with Polaroid-style rangers.
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Sonar Pinout

When given a command to pulse, an approximately 10uS positive pulse is produced on
the pulse output. When the pulse goes low, a timer is started which measures the elapsed
time until a pulse on the echo input goes low. This timer uses a 1MHz clock, so if a value of
0x2400 is returned, 9.216ms has elapsed. The speed of sound is approximately 33,146 cm/s,
so multiplying the timer value by 0.016573 will convert the elapsed time to a distance in
centimeters. (Note that the measured time interval is a round-trip, accounting for an extra
factor of 2.)

Warning! Use great care when inserting a sonar connector. It must be plugged into
Ports 4/5 or Ports 6/7. Plugging it “off by one”, such as 3/4, or 5/6 can damage the device.
Also ensure that the ports have been properly configured!

2.4.10 Quadrature/Monophase Decoders

Intended for motor control applications, the OrcBoard supports two quadrature phase
decoders. The OrcBoard also supports single-channel encoders, if quadphase encoders are
not available.
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Quadphase and Monophase Pinouts

When being used as monophase decoders, the unused two pins should be left uncon-
nected, and cannot be used for other purposes.

Each encoder is implemented using a 16bit continuously wrapping counter. The host
must poll the quadrature counters often enough to ensure that counts are not lost due to
counter overflow.

Two quadrature phase counters are implemented. One is capable of decoding quadphase
at full resolution at rates up to about 20kHz. Counting errors will occur at higher rates
(these errors are counted and returned in the quadphase error registers), and the OrcBoard
may stop responding if the rate exceeds 20kHz. The other quadphase decoder is capable of
several megahertz rates, but is quarter-resolution. The monophase counters are subject to
the same 20kHz counting rate.

Despite being implemented in software, the encoders are capable of very fast counting
rates exceeding 15kHz. The software counts how many times illegal state transitions are
performed (usually indicating that the quadrature phase signal is transitioning too quickly),
and returns this error count in an 8 bit counter.

Warning! The quadrature phase headers are on the board twice, near the other
I/O pins, and also near the motor drivers. The connectors near the motor drivers have
a pinout designed to make it easy to attach HEDS-5500 style optical encoders. Under no
circumstances should both sets of connectors be used simultaneously!
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Chapter 3

Power

The OrcBoard provides an easy-to-use power design, using common 12V lead acid batteries,
and supporting seamless in-system recharging. An accessory power output connector is also
provided, which can be used to power external devices, such as embedded PCs (see Fig. 3).

Fuse

Fuse

12V Rail

5V Rail

13.8VDC

  Input

  12V Lead

Acid Battery

5V Switching

Power Supply

Switch Switch

Accessory

Power Out
 Motor

Drivers
OrcBoard/Pad

Logic/Ports

Figure 3.1: Power Block Diagram. The OrcBoard has two main power rails, a 12V rail
(which actually ranges from 10-14V), and a regulated 5V rail. Two double-throw switches
allow the OrcBoard logic and accessory power output connector to be individually controlled.

3.1 Input Power

There are two main power rails on the OrcBoard: a “12V” rail, derived from the battery
and/or wall adapter, and a 5V rail, which is derived via a switching regulator from the 12V
rail. The 12V rail actually ranges from about 10V-14.5V depending on operating conditions.
When the system is running from a depleted battery, the voltage may dip to 10V or even
lower. When running from an unloaded wall adapter (with a nominal rating of 13.8V), the
rail may climb over 14V.

The OrcBoard is designed to run from a bank of 12V sealed-gel lead acid batteries of
not more than 20 Amp-Hour capacity. The OrcBoard can also be powered by a regulated
13.8VDC wall adapter, which has a separate connector. When both the wall adapter and
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battery are plugged in, the battery will recharge; the two power sources are connected
together internally on the OrcBoard via a fuse.

This battery charging scheme is simple and fairly reliable, though it has a number of
limitations. First, if the battery is deeply discharged, then too much current might flow
from the adapter into the battery, blowing a fuse or forcing the wall adapter into shutdown.
If this happens, the battery should be recharged in a standalone battery charger that is able
to supply the needed current.

The second limitation of this battery charging system is that in order to ensure that
the battery is not over-charged (which can damage the battery), a relatively conservative
charging voltage of 13.8V is used (this is where the 13.8VDC regulated wall adapter re-
quirement comes from.) It will take a substantially longer time to recharge a robot using
the OrcBoard than with a dedicated charger which can automatically increase and then
decrease the charging voltage.

Note that the fuses on the OrcBoard are all poly-fuses, and that they reset automatically
without needing to be replaced. To reset, they simply need to cool down, which can take
up to a minute.

For safety reasons, users should always add an additional fuse to the leads of their
batteries. This fuse should be populated with the smallest acceptable current rating, which
will provide an added safety margin over the OrcBoard’s permanently-attached, high-valued
fuses.

Warning! Power safety should be taken seriously even when dealing with low volt-
ages. Electrocution is not a hazard at 12V, however, lead-acid batteries can supply hundreds
of watts of power, which can rapidly heat wires and surfaces. Consequently, it is quite easy
to be badly burned. Fuse your batteries!

3.2 Peripheral Power

The OrcBoard includes a high-performance 5V switching power supply rated for up to
5A. This supply is shared by all of the board’s electronics, as well as many of its peripherals.

The OrcBoard provides power to most of the devices connected to it, including sensors,
motors, and a PC-style power connector. The PC-style power connector is an output, not
an alternative way of supplying power into the OrcBoard. The intention of this connector
is to make it easier to power embedded PCs from the OrcBoard without additional power
supplies. A high-current switch is included, allowing the external PC to be easily switched
on or off.

Warning! The PC-style power supply uses an unregulated 12V supply; it is connected
to the OrcBoard’s “12V” rail which may vary from 10-14V. If the motors cause large voltage
transients, they might affect the entire 12V rail.

Since the OrcBoard’s microcontrollers and most peripherals share the same 5V supply, it
is critical that none draw an excessive amount current. Large servos, in particular, should be
used with caution. If they draw too much current, it could brown out the microcontrollers,
potentially causing a restart. This would be especially inconvenient if a PC were being
powered from the OrcBoard.

The motor drivers are heat limited; the drivers themselves are rated for 2.8A continuous,
5.6A peak. However, the OrcBoard is not designed to support this current load.

The total power input to the OrcBoard should not exceed 4A@12V in steady-state.

3.3 Alternative Operating Voltages
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The OrcBoard can actually operate over a range of 8-24 VDC. Under 8V, the motor
drivers will go into a safety shutdown. At voltages over 12V, the power delivered by the
motor drivers grows very rapidly (power grows as V 2/R), so great care should be taken to
ensure that they do not overheat.

An alternative operating voltage can be achieved by building a battery pack out of
smaller batteries. Three 6V batteries in series yields 18V, and two 12V batteries (again
in series) yields 24V. These can be charged in-system as well, provided a wall adapter is
suitably selected (it should be roughly 115% of the battery voltage.) However, these higher
voltage systems can draw much more current, so it is probably wiser to give up on in-system
recharging and use an external charger.

Using an alternative voltage will naturally affect the PC-style connector’s “12V” power
line. It would not be advisable to plug in a computer component if the 12V rail was actually
24V.
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Chapter 4

Packet Communication

4.1 Packets

The OrcBoard/OrcPad is implemented using three separate microcontrollers. Packets
are routed between the chips, with one chip (the “master” on the OrcBoard) serving as a
hub for all communication. Multiple packets can be in flight simultaneously.

The master serves as a router, with dedicated serial connections to the slave, the pad,
and the host. Each connection is constantly monitored for incoming packets. When one is
received, it is forwarded to the appropriate destination device. If the destination device is
the master, then the master processes the packet (it could be either a request or a response
from another device.)

Packets (Table 4.1) are variable-length and contain various bookkeeping information.

Offset Description
0 Always the value 237 (0xED)
1 The length of the packet
2 Flags (routing information and transaction ID)
3 First byte of data
... (more data)

length− 1 Modified checksum byte

Table 4.1: Format of a packet

Each packet begins with a synchronization byte, which is always the value 0xED. A
synchronization byte makes it easier to identify the beginning of a packet, skipping over
corrupted data.

The second byte of every packet is the flags byte. The flags byte contains two fields: the
routing field and the transaction ID. The high two bits are the routing flags. The lower six
bits are a user-definable transaction id. When the OrcBoard is replying to a request, the
reply message will have the same transaction ID as the request.

Note that transaction ID 0 is used for asynchronous broadcasts, and should not be used
as a transaction ID by the user.

Note that orcd, the Orc communication manager software, rewrites all user packets,
assigning them unique IDs (see Appendix D). When communicating with orcd, the requested
transaction ID is transparently replaced with an ID guaranteed to not conflict with IDs used
by another client. For the rest of this chapter, we will assume that orcd is not being used.

It is up to the user to ensure that transaction IDs are allocated in a reasonable manner.
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Value Description
00 Communication between Host and Master
01 Communication between Host and Slave
10 Communication between Host and OrcPad
11 (Used internally in OrcBoard)

Table 4.2: Routing flags

Note that the routing flags do not indicate the direction of the data flow; it is implicit
in who sent/received the packet.

4.1.1 Checksum Algorithm

The checksum algorithm used by the OrcBoard is a simple checksum with a one-bit
rotation after every byte. This checksum is very fast to compute, and gives reasonable
protection against both bit errors and byte transposition errors.

The checksum is performed on every byte in the packet except the checksum byte itself.
It can be incrementally computed one byte at a time using 8 bit arithmetic. The checksum
is initialized to zero.

newchk = (chk << 1) + data + (chk & 0x80 ? 1 : 0);

4.1.2 Event Character Support

The hardware can be configured to generate event characters after each transmitted
packet. This can be used in some applications to trigger buffer flushes, reducing communi-
cations latency. The event character is 0xEE.

The event character, when present, will simply appear to be an extraneous byte between
packets, and can be trivially detected and dropped.

4.2 Transaction Management

The simplest way to communicate with the OrcBoard is to issue a transaction, wait for
a response, and only then issue another transaction. This is simple to implement, however
if USB is being used, the latency of USB can lead to a very low transaction rate. If serial
is being used, then this scheme performs reasonably well.

To improve performance, multiple transactions can be initiated simultaneously. This
simply means that multiple requests are sent before acknowledgments have been received
for older requests. This clearly complicates the design of the client.

Since the OrcBoard is essentially a packet routing network, with different processors
simultaneously processing packets bound to them, it is possible for acknowledgments to
arrive in a different order than the requests.

4.2.1 Timeouts

All OrcBoard communications should use a timeout mechanism. If a packet is corrupted
in transmission, the OrcBoard will silently drop it. If the application is waiting for a
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response, it will never receive it. Therefore, communications should timeout, so that if a
response is not received, the transaction can be restarted.

Determining the correct interval for the timeout is a bit of an art. The OrcBoard itself
responds to most commands very quickly. However, latency in the rest of the system, be
it the USB subsystem, or serial interrupts, or the host’s multithreading scheduler, can add
occasionally add a great deal of delay.

If no additional transactions are outstanding, the slowest OrcBoard transactions take
less than 10 ms. If multiple requests are pending, the processing of other requests may also
add to the delay.

In general, a timeout of around 100 ms is “long enough”. Higher performance can be
achieved under some cases by timing out faster and re-requesting a transaction.

The host is a major bottleneck in many systems, adding tens or hundreds of milliseconds
of latency to transactions. Increasing the priority of the process that is communicating with
the OrcBoard can help tremendously. For example, under Linux, latency can be effectively
bounded by using the SCHED RR scheduler.

4.2.2 Buffer Management

The OrcBoard has a finite buffer size, which limits the amount of data that can be
queued up, both for incoming requests and for outgoing acknowledgments. The incoming
and outgoing buffers are guaranteed to have only 128 bytes.

If multiple requests totaling more than 128 bytes are pending simultaneously, it is pos-
sible to overflow the OrcBoard’s buffers. In this case, one or more packets will be silently
dropped.

In fact, the buffers on the OrcBoard are somewhat larger than 128 bytes, but the Or-
cBoard is performing transactions internally, and these transactions consume some of the
space.

The largest requests on the OrcBoard are those that write to the LCD panel in the
maximum permissible block size, currently 32 bytes. The largest responses from the Or-
cBoard are state packets, which can be nearly 64 bytes. As a quick, conservative rule of
thumb, limiting traffic to two simultaneous transactions will prevent buffer overrun on the
OrcBoard.

However, the buffers on the OrcBoard are not the limiting factor. The buffers on the
host are often more easily overrun. If the host is a PC, the PC might be busy servicing
other interrupts, and can starve the serial/USB driver. Most PC’s serial UARTS have only
a 16 byte receive buffer, making it easy to overrun them. The USB module has a 384 byte
buffer, but is far more likely to be starved. Application writers must always be prepared to
deal with lost packets.

4.2.3 Asynchronous Events

The OrcBoard sends some packets without a specific request to do so. These packets are
primarily from the OrcPad, which provides asynchronous notification when a user interface
element (the joystick or a push button) has changed state. This means that an application
which is waiting for a user to push a button or move the joystick does not need to poll
constantly; instead, these events will be sent out asynchronously.

The OrcPad is limited to sending asynchronous messages at a maximum rate of one
every 9 ms. It will send a message at least every 250 ms.
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Chapter 5

Request API

This chapter documents the low-level API, at the packet level, for the OrcBoard. Most users
won’t need this information, as they’ll use a higher-level software library which abstracts
away some of the implementation details.

In the sections that follow, we describe the length and contents of the request and
response packets. For the sake of brevity, the header and checksum bytes are not repeated.

Please note that each chip numbers its pins in a way that is convenient within that chip,
which does not always match the pin numbering used to label the ports on the board. For
example, while port 3 is the master’s pin 3, port 17 is the slave’s pin 1.

Also, some transactions are very similar between chips. Both the master and slave
implement identical digital I/O commands. These will be indicated by appropriate cross-
references.

Lastly, multi-byte quantities are always sent in network byte order, i.e., MSB first, LSB
last.

5.1 Pin Modes

Pins are configured by issuing a configuration command to the chip that implements
that pin. This is done on a pin-by-pin basis, and configuration information reverts to “safe”
values on reset.

Not all pins can be configured in every mode, see Table 1.1 for a list of supported
configurations on a pin-by-pin basis.

Pins 0-15 are implemented by the master, while pins 16-19 are implemented by the slave.
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Mode Description
0 Digital In
1 Digital In (Pull-Up)
2 Digital In (Pull-Down)
3 Digital Out
4 Digital Out (Slow)
5 Servo
6 Sonar Ping
7 Sonar Echo
8 Analog In
9 Analog Out
10 Clock Generator Out
11 Quadrature Phase (slow, full-resolution)
12 Mono Phase
14 Quadrature Phase (fast, quarter-resolution)

5.2 Simple Acknowledgments

Many requests are acknowledged very simply– with a one byte error/success code.

Response Code Description
0 Success
1 Bad Port
2 Bad Parameter
3 Unknown command

You are not guaranteed to receive an acknowledgment for every command. Some errors
(communication errors in particular) will result in a request being silently dropped.

5.3 Master Requests

The master implements ports 0-15 (except current sense on ports 0 and 1), as well as
the I2C interface. The routing field of the flags byte should be set to 0b00 for transactions
to the master.

5.3.1 State Request

The fastest way of retrieving the status of all sensors and actuators is to request a state
update.

Request
Offset Size Description

0 1 ’*’ (0x2A)
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Reply
Offset Size Description

3 1 ’*’ (0x2A)
4 2 Internal clock (4kHz)
6 2 Digital-in values (ports 0-15)
8 2 Servo 0 PWM (port 0)
10 2 Servo 1 PWM (port 1)
12 2 Servo 2 PWM (port 2)
14 2 Servo 3 PWM (port 3)
16 2 Analog In 0 (port 8)
18 2 Analog In 1 (port 9)
20 2 Analog In 2 (port 10)
22 2 Analog In 3 (port 11)
24 2 Analog In 4 (port 12)
26 2 Analog In 5 (port 13)
29 2 Analog In 6 (port 14)
30 2 Analog In 7 (port 15)
32 2 Analog In 8 (port 0)
34 2 Analog In 9 (port 3)
36 1 Analog LPF 0-1 (ports 8-9)
37 1 Analog LPF 2-3 (ports 10-11)
38 1 Analog LPF 4-5 (ports 12-13)
39 1 Analog LPF 6-7 (ports 14-15)
40 1 Analog LPF 8-9 (ports 0, 3)
41 1 Pin Modes 0-1 (ports 0-1)
42 1 Pin Modes 2-3 (ports 2-3)
43 1 Pin Modes 4-6 (ports 4-5)
44 1 Pin Modes 6-7 (ports 6-7)
45 1 Pin Modes 8-9 (ports 8-9)
46 1 Pin Modes 10-11 (ports 10-11)
47 1 Pin Modes 12-13 (ports 12-13)
48 1 Pin Modes 14-15 (ports 14-15)
49 2 Ultrasound Range 0 (port 5)
51 2 Ultrasound Range 1 (port 7)
53 1 Ultrasound Ping Count 0-1 (ports 5,7)
54 1 Clock Generator Source
55 1 Clock Generator Period
56 1 Clock Generator Width
57 1 DAC value
58 4 Gyro Integrator (port 15)

Servos are controlled by a 16bit PWM value, where 0xFFFF means 25% duty cycle. The
PWM clock runs at 16MHz, so to generate a pulse of n ms, set the PWM to n ∗ 16000.
The maximum pulse width is therefore just over 4ms. A value of zero disables the PWM,
effectively powering down the servo. Pulses are sent at 61Hz.

Analog Inputs are unsigned values, ranging from 0 (0V) to 65535 (5V).
Analog Low-Pass Filters (LPFs) are described by 4 bits; a value of zero disables the

filter, with each successive value doubling the strength of the filter. The maximum value is
15, but above 8 is probably useless. The even channel LPF is in the low four bits, the odd
channel in the upper four bits.

Pin Modes indicate the current mode of the pin, see Table 5.1. The even pin mode is in
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the low four bits, the odd mode in the upper four bits.
Ultrasound ranges are measured in intervals of a 1MHz clock.
The Ultrasound Ping count is a a 4 bit rolling counter of how many times each ultrasound

port has been pinged, with channel 0 in the low four bits, channel 1 in the high four bits.
The Gyro Integrator is a wrapping 32bit accumulator of the sum of the Analog In 7

(port 15) minus 32768, evaluated at 4kHz.

5.3.2 Analog Filter Set

Set the analog low-pass filter for a port.

Request
Offset Size Description

3 1 ’F’ (0x46)
4 1 Filter value [0-15]

The response is a simple ack.

5.3.3 Configure Clock

Configure the programmable clock generator. Note: not implemented.

Request
Offset Size Description

3 1 ’K’ (0x4B)
4 1 Source [0-15]
5 1 Period [0-255]
6 1 Width [0-255]

The response is a simple ack.

5.3.4 Configure Pin

Updates the digital out value for pins configured as a digital out.

Request
Offset Size Description

3 1 ’C’ (0x43)
4 1 Digital pin number [0-15]
5 1 Value [0, 1]

The response is a simple ack.

5.3.5 Digital Out Set

Updates the digital out value for pins configured as a digital out.

Request
Offset Size Description

3 1 ’D’ (0x44)
4 1 Digital pin number [0-15]
5 1 Value [0, 1]

The response is a simple ack.
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5.3.6 I2C Read

Perform an I2C Read transaction.

Request
Offset Size Description

3 1 ’i’ (0x69)
4 1 I2C Address
5 1 length in bytes

Reply
Offset Size Description

3 1 Result code
4 length Data

5.3.7 I2C Write

Perform an I2C Write transaction.

Request
Offset Size Description

3 1 ’I’ (0x49)
4 1 I2C Address
5 length Data to write

The response is a simple ack.

5.3.8 I2C WriteRead

Perform an I2C Write/Read transaction, with only one start bit. A write is performed,
followed immediately by a read.

Request
Offset Size Description

3 1 ’J’ (0x4A)
4 1 I2C Address
5 readlength Bytes to read
5 writelength Data to write

Reply
Offset Size Description

3 1 Result code
4 readlength Data

5.3.9 Servo Set

Change the value of the servo PWM.
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Request
Offset Size Description

3 1 ’S’ (0x53)
4 1 Servo number [0-3]
5 2 PWM Value

The response is a simple ack.

5.3.10 Sonar Initiate

Send a pulse on the sonar channel’s pulse pin, then begin measuring the pulse width
that occurs on the channel’s echo pin. For channel 0, the pulse port is 4, echo is port 5. For
channel 1, the pulse port is 6, echo is port 7.

Request
Offset Size Description

3 1 ’R’ (0x52)
4 1 Sonar channel [0-1]

The response is a simple ack.

5.4 Slave Requests

The slave device is responsible for ports 16-19, the motors, and all the current-sense
capabilities on the board (including those on ports 0 and 1). The routing field of the flags
byte should be set to 0b01 for transactions to the slave.

Motor directions come up in several transactions, and are encoded in two bits as follows:

Value Description
0 Disabled (open circuit)
1 Forward
2 Reverse

Table 5.1: Motor Direction Constants

Braking can be accomplished by selecting either forward or reverse and selecting zero
PWM.

5.4.1 State Request

The fastest way of retrieving the status of all sensors and actuators is to request a state
update.

Request
Offset Size Description

3 1 0x2A



5.4. SLAVE REQUESTS 35

Reply
Offset Size Description

3 1 ’*’ (0x2A)
4 1 Pin Modes 0-1 (ports 16-17)
5 1 Pin Modes 2-3 (ports 18-19)
6 1 Digital-in values of (ports 16-19)
7 2 Quad/Mono-phase 0 (ports 16-17)
10 1 Quad/Mono-phase 0 error count
11 2 Quad/Mono-phase 1 (ports 18-19)
12 1 Quad/Mono-phase 1 error count
13 1 Motor 0 Goal PWM
14 1 Motor 0 Actual PWM
15 1 Motor 0 Slew
16 1 Motor 1 Goal PWM
17 1 Motor 1 Actual PWM
18 1 Motor 1 Slew
19 1 Motor 2 Goal PWM
20 1 Motor 2 Actual PWM
21 1 Motor 2 Slew
22 1 Motor 3 Goal PWM
23 1 Motor 3 Actual PWM
24 1 Motor 3 Slew
25 1 Motor Dir Goal/Actual 0-1
26 1 Motor Dir Goal/Actual 2-3
27 2 Analog In 0 (Motor Current 0)
29 2 Analog In 1 (Motor Current 1)
31 2 Analog In 2 (Motor Current 2)
33 2 Analog In 3 (Motor Current 3)
35 2 Analog In 4 (Port/Servo Current 0) (port 0)
37 2 Analog In 5 (Port/Servo Current 1) (port 1)
39 2 Analog In 6 (port 16)
41 2 Analog In 7 (port 19)
43 1 Analog In LPF 0-1
44 1 Analog In LPF 2-3
45 1 Analog In LPF 4-5
46 1 Analog In LPF 6-7
47 2 Internal clock (4kHz)

The formats for the pin modes and LPFs is identical to those on the master.
The motor direction bytes encode both the desired (goal) and actual directions of the

motors. For the even-numbered channel, the goal direction is in the low two bits, and the
actual direction is in bits 3 and 4. Data for the odd-channel is similarly stored in the high
four bits.

5.4.2 All Stop

Stops all motors as quickly as the slew rate allows. This is the command that is internally
called when the emergency stop button is pressed.

Request
Offset Size Description

3 1 ’X’ (0x58)
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The response is a simple ack.

5.4.3 Analog Filter Set

Identical to the master, except only channels [0,7] exist. Channels 0-3 correspond to
motor current, 4-5 servo current, 6 to port 16, and 7 to port 19.

5.4.4 Configure Pin

Identical to the master, except only channels [0,3] exist. These correspond to ports
16-19.

5.4.5 Digital Out Set

Identical to the master, except only channels [0,3] exist. These correspond to ports
16-19.

5.4.6 Motor Set

Set the direction/speed motor.

Request
Offset Size Description

3 1 ’M’ (0x4D)
4 1 Motor channel [0-3]
5 1 Direction
6 1 PWM

The response is a simple ack.

5.4.7 Motor Slew Set

Set the slew rate for a motor. The value is the maximum change in the PWM in 1/64
second ([XXX is this rate still correct in V2 firmware?)].

Request
Offset Size Description

3 1 ’W’ (0x57)
4 1 Motor channel [0-3]
5 1 Slew rate [1-255]

The response is a simple ack.

5.5 Pad Requests

The pad handles all LCD drawing/writing/reading functions, as well as reading the
status of the joystick and buttons. The routing field of the flags byte should be set to 0b10
for transactions to the OrcPad.
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Two different types of text drawing are supported. One allows text to be arbitrarily
positioned on the screen, while the other implements “console”-type behavior, including
automatic scrolling.

Note that text as actually limited to be vertically aligned on 8 pixel boundaries. I.e.,
text can only be drawn on the y values 0, 8, 16, ..., 56.

A number of fonts are available for drawing in. The are all (at most) 8 pixels high, but
have different widths.

LCD requests tend to be dramatically slower than most other type of requests. The
interface to the LCD is quite slow, and drawing operations can require a large number of
operations.

Font Code Description
A (0x41) Smallest font
a (0x61) Smallest font, white on black
B (0x42) Small font
b (0x62) Small font, white on black
C (0x43) Medium font
c (0x63 Medium font, white on black

D (0x44) Large font
d (0x64) Large font, white on black

Table 5.2: Font Codes for use in Text Drawing

The state of the buttons on the OrcPad can be queried. The button state is the logical
or of the button flags listed below.

Mask Description
0x01 Stick Button
0x02 Menu Button
0x04 Stop Button

Table 5.3: Button Masks

5.5.1 State Request

Pad status packets are special, in that they are sent asynchronously (without having
been requested) when the joystick or buttons change state. This is to eliminate the need
for constantly polling for user interface activity. These asynchronous updates are sent at a
minimum rate of 4Hz.

There is no reason to explicitly request a state request, since the changes are asyn-
chronously broadcasted.

Request
Offset Size Description

3 1 ’*’ (0x2A)
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Reply
Offset Size Description

3 1 ’*’ (0x2A)
4 1 Joystick X position (0=left, 255=right)
5 1 Joystick Y position (0=up, 255=down)
6 1 Button state (logical OR of button codes)
7 1 Move up counter, Move down counter
8 1 Move left counter, Move right counter
9 2 Battery voltage, in hundredths of a volt

The move counters are continuously wrapping 4 bit counters of “synthetic” key events.
If the joystick is held up for a short while, it generates an “up” event. This is analogous
to a conventional keyboard’s auto-repeat. The OrcPad interprets all joystick movements
as possible up/down/left/right movements to simplify those users who desire that sort of
interface, while simultaneously giving all applications the same “feel”. You can detect if a
button has been pressed by testing if the counter has changed value.

The move up and move down counters are stored in one byte, with “up” stored in the
low 4 bits, and “down” in the upper four bits. Similarly, “left” is stored in the low 4 bits
and “right” in the upper 4 bits.

5.5.2 Clear Display

Clear the display.

Request
Offset Size Description

3 1 ’C’ (0x43)

The response is a simple ack.

5.5.3 Console Goto Cursor

Clear the console and home the cursor.

Request
Offset Size Description

3 1 ’G’ (0x47)
4 1 x position [0, 26]
5 1 y position [0, 7]

The response is a simple ack.

5.5.4 Console Home Cursor

Clear the console and home the cursor.

Request
Offset Size Description

3 1 ’H’ (0x48)

The response is a simple ack.
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5.5.5 Console Set Size

Set the size of the console “window”. Dimensions are in “characters”.

Request
Offset Size Description

3 1 ’S’ (0x53)
4 1 top
5 1 height
6 1 left
7 1 width

The response is a simple ack.

5.5.6 Console Write

Draw text at the current console position, wrapping and scrolling as necessary.

Request
Offset Size Description

3 1 ’W’ (0x57)
4 (≤ 32) String

The response is a simple ack.

5.5.7 Draw Mode Set

Set the draw mode

Request
Offset Size Description

3 1 ’M’ (0x4D)
4 1 The mode, 0=clear, 1=set, 2=xor

The response is a simple ack.

5.5.8 Draw Lines

Plot one or more lines in the current drawing mode. Lines are drawn from (xa, ya) to
(xb, yb).

Request
Offset Size Description

3 1 ’L’ (0x4C)
4 1 xa0

5 1 ya0

6 1 xb0

7 1 yb0

... ... ...
4 + 4n + 0 1 xan

4 + 4n + 1 1 yan

4 + 4n + 2 1 xbn

4 + 4n + 3 1 ybn
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The response is a simple ack.

5.5.9 Draw text

Draw text at a random location in a user-definable font.
Request

Offset Size Description
3 1 ’T’ (0x54)
4 1 x
5 1 y
6 1 font code
7 (≤ 32) String

5.5.10 Draw top text

Draw text on the top line.

Request
Offset Size Description

3 1 ’t’ (0x74)
4 1 x
5 (≤ 32) String

The response is a simple ack.

5.5.11 Draw Pixels

Plot one or more pixels in the current drawing mode.

Request
Offset Size Description

3 1 ’P’ (0x50)
4 1 x0

5 1 y0

... ... ...
4 + 2n + 0 1 xn

4 + 2n + 1 1 yn

The response is a simple ack.

5.5.12 Fill Display

Fill the display with a pattern, x=even columns, y=odd columns. For example, to fill
with a checkerboard pattern, use x=0x55, y=0xAA. To fill with vertical stripes, x=0xFF,
y=0x00. To fill with horizontal stripes, x=0x55, y=0x55.

Request
Offset Size Description

3 1 ’F’ (0x46)
4 1 even column value
5 1 odd column value

The response is a simple ack.
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5.5.13 Raw read

Read the LCD’s frame buffer in a horizontal swath, 8 columns high. See Appendix B
for more information.

Request
Offset Size Description

3 1 ’r’ (0x72)
4 1 x
5 1 y
6 1 length ≤ 32

Reply
Offset Size Description

3 1 result code
4 length data

5.5.14 Raw write

Write the LCD’s frame buffer in a horizontal swath, 8 columns high. See Appendix B
for more information.

Request
Offset Size Description

3 1 ’R’ (0x52)
4 1 x
5 1 y
6 (≤ 32) data

The response is a simple ack.
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Appendix A

Soldering and PCB Assembly

To a beginner, soldering can seem very simple: melt some metal “glue” to join two other
metal bits together. However, glue is not glue. Creating a good solder joint–one which is
both electrically and mechanically reliable– is a function of chemistry and technique.

A.1 Chemistry and Metallurgy of Soldering

In a piece of metal, the metal atoms form metallic bonds. In this state, an electron is not
associated with any particular atom, but is free to move around the metal. This freedom of
mobility is what gives metals such good electrical and thermal conductivity.

When building circuits, we often want to join together two smaller bits of metal, making
a good thermal/electrical/mechanical connection. In other words, we want to make the two
pieces of metal act as though they were a single piece.

There are two main enemies of a good metal joint. The first is oxidation: instead of
forming metallic bonds, the metal atoms form ionic bonds with oxygen atoms. In these
molecules, electrons are tightly bound to their molecule. Electrons can’t move, and poor
conductivity results.

The second enemy of a good metal joint is a poor mechanical linkage. Not only should
the two metals be as physically close as possible, but there should be no sudden changes
in the composition/properties of the material when moving from one piece of metal to the
next piece. When the interface between two different materials occurs over a very small
distance, a poor mechanical linkage results. These interfaces act like cracks in a crystal.

One approach to joining bits of metal is to melt the two bits and let them cool together.
This makes a terrific joint. But the melting point of copper is 1084 degrees Celsius, making
this an impractical approach.

The goal of soldering is to join bits of metal by using an intermediary metal that has a
low melting point. For example, typical tin/lead solder melts at around 350 degrees Celsius.
Of course the solder will fill gaps and spaces between the two pieces. More importantly,
however, when the bits of metal are heated as well, the solder will diffuse into the bits of
metal. When it does this, it forms an alloy where the concentration of the bit of metal and
solder gradually changes. The result is a stronger mechanical connection.

The metals used in electronics oxidize in the presence of oxygen, forming a “skin” layer
which has poor conductivity. When soldering, this layer must be removed. The solution is
flux, an acid which reduces the metallic oxides to metallic salts and water which then flow
away from the joint.

Most solder comes with flux mixed in. Flux can be any of a number of chemicals, but
is often an organic carboxylic (R-COOH) acid. The “smoke” you see when soldering is
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actually a result of the flux burning, and contains very little metal. The burning of the flux
also helps to remove oxygen immediately around the joint, which helps to prevent oxidation
in the joint itself.

Fluxes which use organic acids leave residue on the PCB which, depending on the sever-
ity, may need to be removed using a solvent. “No-clean” fluxes are available which typically
perform quite poorly, but they do not require cleaning.

Key points:

• Both the solder and the metal it is being applied to must be heated, in order for
an alloy to form. “Cold joints” can be difficult to detect visually, so they must be
prevented through good technique.

• The joint must be free of oxidation. Oxidation is often easy to spot; it results in a dull,
lumpy, or “rusty” appearance. A good joint should always appear clean and lustrous.

A.2 Soldering Tools

Achieving high quality soldering results requires a number of tools. Good quality tools
can very quickly pay for themselves by making it possible to work much more quickly and
efficiently.

A basic set of tools consists of:

• A high-quality soldering iron. If the iron costs less than $40, it is almost certaily
garbage. Good irons typically cost at least $100. If that sounds like a lot, consider
the value of your time and that making a joint with a lousy iron– if possible at all–
can easily take many times longer. Weller’s WESD-51D and WLC-100 are both fine
irons.

• Several sizes of rosin-core flux. For fine electronics work (e.g., SMT devices), use thin
solder (0.015-0.025 inch diameter): it gives you a great amount of control over how
much solder is being applied. On larger soldering jobs (such as rows of DIPs or power
connectors), thicker solder (0.050 inch diameter) is less tedious to apply. The solder
must have flux; I prefer solders with a greater amount of flux (3.3%). Additional flux
makes the solder flow better, but the additional residue left on the board can require
cleaning in order to get a “professional” look.

• Solder removing device(s). There are two basic types: solder suckers and solder braid,
each preferred by different folks. I vastly prefer solder suckers. With both devices,
the trick to removing solder is that you often need to add solder first, so that there’s
enough thermal conductivity to melt the entire chunk of solder at once.

• Tweezers, preferrably normally-closed. When working on two-terminal SMD devices,
tweezers are a must. Tweezers which are normally-closed will be much less tiring to
use.

• Flux pen. Particularly when working on fine-pitch components, adding a little flux
can make the solder flow much better. Or, when solder has been overworked and is
beginning to oxidize, it is helpful to be able to add a bit more flux.

• A “helping hand” unit, basically two alligator clips on positionable arms, can be very
helpful when making cables.
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• An anti-static mat and wrist-band. After assembling a board, it’d be unfortunate it
if got zapped before you even got a chance to use it!

• Fume extractor. Flux fumes can irritate the respiratory tract, so if doing a lot of
soldering, using a fume extractor is a good idea. Inexpensive units, consisting of little
more than a fan to suck the exhaust with an activated carbon filter, are available for
under $30.

A.3 Assembly Strategy

Planning your assembly process in advance, and staying organized, will greatly assist
assembly. Here are some basic tips:

• Start with the shortest/smallest components first. This will help the board lay flat,
making it easier to keep components in position while assembling them.

• Add through-hole devices in batches. Gently bending the leads on electroylitic capac-
itors will prevent them from falling out. Then you can solder them all at once. It’s
often helpful to “tack” each capacitor in position with just one lead; then the tacked
pin can be reflowed and the capacitor pushed flush to the board.

• Keep the iron tip clean with a sponge or tip cleaner. The tip should be smooth and
lustrous. It should also be “primed” with a small amount of solder; this will aid
thermal conduction to joints. If the tip is severely soiled, adding flux will often help.
Never sharpen or slice off oxidation from the tip; it will ruin the tip!

• Use moderate iron temperatures. High temperatures can damage components. For
most board work, a temperature of 650 degrees should be sufficient.

• Somewhat paradoxically, the best soldering results come from work that is performed
quickly (i.e., where the length of time that solder is liquefied is minimized.) Painstak-
ingly applying and “working” solder is doomed to produce heavily oxidized joints. Of
course, it takes some practice to learn how to move quickly.

When your soldering technique is developed, you’ll find that solder acts like a liquid with
pretty high surface tension. This surface tension does most of the work for you– if you put
solder near a joint, it will flow onto the joint and cover it.

A.4 Making Cables

A surprisingly difficult problem in practical electrical enginnering is how to connect
two devices. There are several features which someone might look at when selecting a
cable/connector system:

• Mechanical Robustness. The connectors stay connected, and the connector/cable will
not fatigue and break.

• Polarization. The connector can only be inserted one way, eliminating the risk of
damaging equipment.

• Inexpensive.
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• Physical Size. Depending on the application, an easily manipulatable (large) connector
might be preferrable, or density might be an issue, where fitting the maximum number
of connectors per unit area is critical.

• Electrical Properties. Current carrying capacity, parasitic inductance, capacitance,
resistance, can all be important in some situations. Motor connectors, for example,
should be able to carry more power than a simple push button.

The OrcBoard has a lot of sensor connectors, so an inexpensive and physically small
connector are used predominantly. These connectors are constructed from 0.100” male
and female header. These connectors are not polarized (though the distinctive pattern of
Pin-Pin-Blank-Pin is intended to make it easy to discern the correct polarization.)

It takes a fair amount of practice to produce reliable cables using 0.100” header, and
several steps are required (see Fig. A.4). Of critical importance is the use of stranded, rather
than solid wire. Solid wire fatigues very rapidly with mechanical stress, whereas stranded
wire is much more robust.

Figure A.1: Making Cables. Beginning with stranded ribbon cable (a), separate the leads
about 1” (b). Strip about 0.25” from each lead and lightly twist together the stranded wires
(c). Tin the ends of the wire and the connector (d), then slip on 0.3” lengths of heatshrink
tubing onto each wire (e). Join the wires and the header (f), adding more solder if necessary.
Position the heatshrink tubing and heat it (g). For added structural strength, apply hot
glue to the connector (h).

Notice that virtually every connector on the OrcBoard has “ground” on the outside of
the board. The convention of OrcBoard cables is to call the ground wire “pin 1”, and to
color that wire to designate it as such. The color coding thus provides a polarization cue:
the colored wire should be on the outside of the board.
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An option to those who loathe assembling cables as described in this section is to use
female crimp connectors. The sensors connectors (now female) are then attached to the
OrcBoard (also female) by using a coupler created from wire-wrap male header.

A.5 Assembling through-hole devices

The OrcBoard contains a substantial number of through-hole components, mostly in an
attempt to maximize the number of parts which are socketed (and can be easily replaced if
they fail.)

The steps for assembling a through-hole part are shown in Fig. A.5. Making sure that
the part is flush with the board is important for both cosmetic and signal integrity reasons.
The best way to mount components so that they are flush is to tack down one pin, then
reflow that pin while pushing the part flush to the board. Then, tack down the other pins.

Figure A.2: Through-hole Soldering. Beginning with an unsoldered connection (a), add
solder while heating both the pin and the pad (b). When finished, the joint should be
conical and lustrous (c). Joint (d) doesn’t have enough solder; often only a thin membrane
of solder is in place, and the joint is very weak. A common result of heating the pin but
not the pad is (e), known as a “lollipop joint”. These joints can be difficult to spot, since
the solder on the pin conceals the missing connection to the pad. Joint (f) shows signs of
oxidation: the solder has become sticky and is too thick; it also shows a little “tail”. These
joints are usually functional, if unattractive. Joint (g) is grotesquely oxidized; the solder
has become sludgy and is on far too thick. Adding additional flux and reflowing might fix
the joint, but removing the solder and starting over can be necessary.

Be especially aware of “lollipop joints”, a joint where solder has only adhered to the pin
and not to the pad. It is caused by not heating the pad with the iron. These joints can be
hard to see when they do occur, because the solder attached to the pin makes it hard to see
whether there is a connection to the pad.

A.6 Assembling SMT devices

Two-terminal SMT devices, including capacitors and resistors, are easy to assemble and
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take up little board space. In the case of resistors, it is also easier to read the value of the
resistor (which is printed in ordinary numerals on the package): the last digit is typically
the power of 10, so “1202” means 120 ∗ 102, or 12k.

Two-terminal devices can be easily assembled by amateurs with ordinary equipment.
There’s a little trick (see Fig. A.6). In short, put a dab of solder on one pad, then slide the
part into position while melting that dab. Then (and only then!) add solder to the second
terminal.

Figure A.3: SMT Soldering. When soldering two-terminal SMT devices such as capacitors
and resistors, begin by adding solder to just one pad (a, b). Then reflow the solder and slide
the component into place (c, d, e). Finally, add solder to the other terminal (f).

Let’s discuss for a moment the challenge of assembling high-density SMT devices, such
as those in TQFP packages. There are a number of approaches suggested by hobbyists.
They all start with carefully aligning the package and tacking down the part, usually by
carefully soldering two pins on opposite sides of the part.

Many approaches involve using solder paste (balls of solder in a flux suspension). You
can sparingly “paint” an area with cold paste, then run the iron over the paste and pins.
For the most part, the solder will melt, and, thanks to surface tension, spread out over the
pins and pads without any manual effort. I don’t like this approach; it’s hard to regulate
how much paste to put down, hard to put it where you want it, and impossible to get rid of
solder balls that escaped the heat of the iron. These lonely, unmelted solder balls can cause
problems later, migrating around and potentially shorting pins.

My favored approach is brute force, using an iron with a tiny tip and a spool of super-
thin solder (0.015 inch). At first, position the solder at the point where the end of the pin
touches the pad, then lightly touch both the pin and the pad with the iron. Proceed pin by
pin.

After a little practice, you learn how to keep just the right “buffer” of melted solder on
your iron, dragging the iron along the pins, very slowly adding more solder to the iron/pins.
In this way, it is possible to solder a couple pins per second.

The finer the pitch on SMT components is, the more likely it is that the solder will form
a bridge connecting two adjacent pins. It can be very hard to remove bridges. I rely first
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and foremost on a flux pen (to keep the solder flowing easily) and a solder sucker. But in
cases where you’ve really made a mess, a dental pick to scrape molten solder from the pins
can be a help.

I consider a stereo microscope essential with parts finer than TQFP44, and I generally
consider TQFP144s the upper-limit of what can/should be assembled without specialized
equipment.
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Appendix B

LCD Memory Map

When drawing large or complicated images to the LCD, it is often faster and more efficient
to access the frame buffer directly, rather than through the various draw functions. Two
raw functions are available, Raw Read and Raw Write. To use these, however, requires
understanding the memory map of the LCD frame buffer.

The LCD is composed of 128x64 pixels. Each pixel is stored in a single bit. The entire
frame buffer is 128 ∗ 64/8 = 1024 bytes in size.

Each byte in the frame buffer corresponds to a column of eight adjacent pixels. The low
bits correspond to pixels closer to the top of the screen. Consecutive bytes move in rows.

In other words, writing a block of N bytes to the frame buffer has the effect of rewriting
a region 8 pixels high and N bytes wide. The first eight rows of pixels are stored in 0x000-
0x07F, and the second row in 0x080-0x0FF, and so on.

To modify a single pixel, the old frame buffer value must be read, then modified, then
rewritten to the frame buffer. Drawing a line causes many of these operations to be per-
formed. To minimize the number of transactions required to perform simple drawing func-
tions, these functions are implemented in the firmware.
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Figure B.1: LCD Memory Map.

This memory layout accounts for some of the limitations of the built-in firmware, namely
that text can only be drawn at rows that are a multiple of eight, and that all the built-
in fonts are 8 pixels high. These limitations greatly simplified the implementation of the
drawing routines, since text drawing never involves read-modify-write operations. In fact,
the built-in fonts are laid-out in memory in rows of pixels 8 columns high, allowing font
characters to be rapidly blitted to the screen.

The availability of the raw read/write commands allows any arbitrary drawing to be
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performed. Despite the fact that the display is monochrome, video can be displayed in a
reasonably intelligent way, provided that the frame is redrawn fast enough ( 8 Hz) to achieve
some “temporal dithering.”

In truth, the frame buffer is somewhat more complicated; the left half of the screen is
addressed independently of the right half of the screen, and there are in fact two distinct
frame buffers. However, this complexity is handled by the OrcPad firmware.
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The OrcPad as a Prototyping
Board

The OrcPad can be used as a standalone prototyping board. It contains a DB-9 connector
and a RS-232 charge pump that, when populated, allow the OrcPad to be directly connected
to a host without an OrcBoard.

The OrcPad can use either the 128x64 pixel LCD, or a character LCD module, such as
the CFAH1602B. The graphical LCD panel uses a large number of pins; using a character
module frees up some of those pins, allowing them to be used to implement other features.
Note that the character module and graphical module cannot be used at the same time, and
also that they require separate contrast adjustment potentiometers.

Ordinarily, the OrcPad receives its power from the OrcBoard. In a standalone applica-
tion, the OrcPad can receive its power from a wall adapter (a power jack is provided) and
a 5V linear regulator. If a regulated 5VDC wall adapter is used, then the 5V regulator is
unnecessary; simply short pins 1 and 3 with a short piece of wire.
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Appendix D

Orcd, The Orc Communications
Manager

In simple applications, a single application will connect to the OrcBoard (see Fig. D). These
applications have exclusive access to the OrcBoard.

COM Port

Application

Figure D.1: System without Orcd. In simple systems, a single application communicates
directly with the OrcBoard.

In many applications, it is convenient for many applications to access the same OrcBoard.
Orcd allows multiple applications to share an OrcBoard. Applications access orcd via TCP
sockets. Orcd implements the following features:

• Allows multiple applications to connect and issue transactions to the OrcBoard. Re-
sponses generated by other applications are automatically filtered out.

• Assigns new transaction IDs to all requests (and their responses) so that requests
from multiple applications do not collide. Each packet is transparently rewritten,
so that the response packet’s transaction ID received by an application matches the
transaction ID used in the application’s request.

• Provides a simple synchronous interface for requests/responses. Each connection to
command port (TCP port 7320) allows a single outstanding request, and is guaranteed
to send either the Orc’s response or a timeout error packet. An application can support
multiple simultaneous transactions by connecting more than once. This makes writing
an application much easier.

• Automatically polls the master and slave for state update requests, and publishes the
results to the asynchronous event port (TCP port 7321). A client can enter a simple
infinite read loop to receive these packets. Use of this feature conserves OrcBoard
bandwidth since all applications can share the same state update information.

55



56 APPENDIX D. ORCD, THE ORC COMMUNICATIONS MANAGER

It is important to note that orcd does not perform any resource allocation. For example,
if two applications try to set a motor port to different values, both transactions will be
processed.

A system using orcd is diagrammed in Fig. D.

COM Port

Application ApplicationOrcShell

Orcd

Figure D.2: System with Orcd. More complex systems might have multiple applications
which communicate (simultaneously) with the OrcBoard. Orcd moderates these transac-
tions, ensuring that each can issue transactions without confusing each other.



Appendix E

Firmware Overview

The firmware used on the OrcBoard and OrcPad is available under the GPL license. It
is available under other licenses by contacting the copyright owner (Edwin Olson,
The firmware is a mix of PSoC/M8C assembly and C.

By modifying the firmware, not only can you fix bugs, but you can add new features. The
“basic” firmware that ships with the OrcBoard tries to be a “Swiss Army Knife”, providing
a bit of everything. But many specialized robots will need more specialized functionality.
For example, the firmware could be changed to support a dozen servos, at the expense of
some of the other built-in features.

When implementing new commands,keep in mind the nature of the packet-based mes-
saging system. Packets may be lost, so commands and responses which are idempotent
are desirable whenever possible. For example, rather than implementing “Increase Motor
Speed”, implement “Set Motor Speed”. If an acknowledgment is not received by the user
after sending an “increase” command, there’s no way of knowing whether the request was
received, whether it was executed, or whether the acknowledgment was lost. If it retrans-
mits, it might effectively increase the motor speed twice. Clearly, a “set” function does not
have this problem.

This chapter will describe some of the common design patterns in the firmware, as well
as explaining a few of the “tricks” that were used. A basic familiarity with PSoCs will be
assumed.

E.1 Pin Reconfiguration

Many pins on the OrcBoard have multiple functions. This is accomplished in a straight-
forward way in the firmware. In almost every case, any given pin can only be in one of
three modes: a digital in/out pin, an analog in/out pin, or a single “special” function. The
special modes change for each pin, but include all those modes which use a digital block:
servos, sonar echo, PWM, etc.

Using the PSoC’s internal routing, the digital blocks which implement each pin’s special
function are statically routed to their pin. When switching the mode of a pin to the special
function, only a single configuration bit needs to be changed.

E.2 Interrupts and Performance

The firmware is written for high performance, low latency, and maximum throughput.
Serial read and write operations are all performed via interrupt-driven queues. This way,
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Host Master Slave

Pad

LCD

Joystick

Ports 0-15 Ports 16-19

Motors

(quadphase)

OrcBoard

OrcPad
Buttons

Figure E.1: Internal Block Diagram. The Host, Slave, and Pad are connected to the Master
via high-speed serial connections. The master can route packets between any two devices.

the host can perform other tasks while waiting for slow I/O operations to complete.
Each PSoC’s firmware is structured about the same way; after initialization, they enter

an infinite “idle” loop. The idle loop checks for new data on the serial port(s), processing
packets when they have been fully received. Other tasks are also performed during the idle
loop, such as updating the A/D converter (and updating the LPF values), or performing
other house keeping.

It is critical to minimize the maximum ISR latency. The PSoC’s serial receive buffer is
only one byte in size; if two bytes are received before the receive ISR can be called, data
will be lost. This problem is especially acute on the master, where data can be received on
three ports at the same time.

Each chip also uses the PSoC’s hardware sleep timer as a system clock. Often, tasks
need to be completed periodically, and the sleep timer helps to control the rate of these
tasks. But rather than executing these tasks in the Interrupt Service Routine (ISR), the
idle loop polls the value of the clock, comparing it to the last sampled value. If the value
has changed, then the doSleepInterval() function is called. This mechanisms moves much
more code into non-interrupt mode, ensuring that tasks can be interrupted by important
activities (such as the serial RX ISR.)

Interrupts are used for transmission as well. If the transmit buffer is full, then the
putChar() function will block. Note that Cypress’ provided code for writing to the serial
ports should not be used, since they do not call the correct putChar() function.

E.3 Master

Packets are routed on a store-and-forward basis: a packet is fully received (and checksum
verified) before it is enqueued for transmission on an outgoing port. This is suboptimal for
minimizing latency compared to wormhole routing, where the forwarding of a packet can
begin before the packet is fully received. However, wormhole routing would significantly
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complicate the firmware.

E.4 Slave

The slave’s most interesting feature is the quadrature phase decoder ISR. Configured to
run whenever the General Purpose I/O (GPIO) pins change state, they implement a state
machine. The state is the last sampled value of the two quadrature phase pins, and the
input is the new value of the two pins. A lookup table is used to branch to an appropriate
routine, which increments/decrements the counter, or increments the error counter if an
illegal transition was detected. This process is repeated for both quadrature phase channels.

The ports are reconfigured to perform simple (monophase) decoding by simply using a
different lookup table.

The slave is also responsible for implementing the PWM slewing function. When the
system timer (implemented by the sleep counter) changes, the PWM values of each motor
channel are updated. (Actually, the system clock runs at 4kHz, so the PWM values are
updated only periodically.)

Implementing the motor PWM modules required exploiting the PSoC’s digital Look-
Up-Tables (LUTs). Each motor is controlled by three pins: an enable pin, and two control
pins (call them A and B). To drive forward or backward, the enable pin must be set.
Driving forward is accomplished by setting A=PWM and B=0, while driving backwards is
accomplished by setting A=0 and B=PWM. Each motor’s PWM signal is routed to two
LUTs. These LUTs can then be set to follow the PWM signal or to be the constant value
0. Changing the LUTs allows the direction to be changed.

E.5 Pad

The Pad’s chief responsibility is managing the LCD and updating measurements of the
two analog joystick axes and the three binary push buttons.

In addition, it monitors the battery voltage so it can be displayed on the LCD. This is
done on the Pad instead of the OrcBoard in order to avoid the need for the pad to query the
master/slave for the voltage, and also because the pad’s PSoC had an extra pin left over,
whereas pins were very scarce on the master and slave.

A powerful feature of the pad is its ability to generate synthetic cursor events. The
joystick is monitored for movement up, down, left, and right; when enough movement has
occurred, a discrete “key press” is generated. If the joystick is held in a particular direction,
additional discrete key presses are generated, much like a keyboard’s auto-repeat function.
This feature is implemented by integrating the joystick’s deviation in the X and Y direction,
and comparing the integrated value to particular thresholds. This feature simplifies the
design of other applications which are more easily described in terms of key presses than
joystick movement, while giving all such applications the same “feel.”

Uniquely, the pad will send state update messages without having been requested to do
so. When the discrete buttons change state, or the joystick state changes by a threshold,
a new packet is scheduled for transmission (the needUpdate flag is set.) However, the rate
at which these unsolicited packets are sent is limited to about 110 Hz, in order to prevent
them from consuming an excessive amount of bandwidth.

The unsolicited messages are designed so that applications do not need to rapidly poll
the pad for user input; the applications can simply go to sleep and wait for the pad to
announce that an event has occurred.
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Appendix F

Schematics

The schematics are available in electronic format for Mentor Graphics PADs PowerLogic
and PowerPCB.

F.1 Design Notes

F.1.1 Conventions

A general goal was to reduce component count in order to make assembly easier. Compo-
nents with integrated passives are used whenever available. For example, the RS-232 charge
pump is the more expensive MAX233E, which includes the passive capacitors. LEDs, please
note, are always LEDs with built-in current limiting resistors; do not substitute a conven-
tional LED!

F.1.2 Power Supply

The switching power supply was obtained by using National’s online “Web Bench” ap-
plication. The supply is rated for 5A. The high switching frequency is important for rapidly
dealing with transients. An earlier version of the OrcBoard with a slower switching supply
suffered from brownouts with load transients.

F.1.3 Motor Drivers

The two motor drivers share a single charge pump circuit, as described by the L6205N
application note.

F.1.4 Cut Header

To populate an OrcBoard and OrcPad, the following header will need to be cut:
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Type Size Qty per kit
Right-angle Male 5 x 2 2

Male 20 x 1 1
Female 20 x 1 1
Female 8 x 1 1
Female 5 x 1 2
Female 8 x 2 3
Female 4 x 2 3

F.1.5 Communications

The USBMOD3, manufactured by Elexol, can be mounted in the DIP32 (0.6”) landing
on the OrcBoard, providing a USB interface to the OrcBoard. There is only enough room
for either the DB-9 and RS-232 chargepump or the USBMOD3, so only one can be used at
once.

When using RS-232, a TX and RX LED are available. These are powered directly from
the TX and RX signals themselves, so the sources of these signals must be strong enough to
drive an LED while maintaining adequate rise/fall times. The PSoC can drive the TX pin
adequately, and the MAX233 charge pump can drive the RX pin adequately. However, the
USBMOD3 cannot drive the RX pin, so the RX LED must not be used with the USBMOD3.
A dedicated LED is available for the USBMOD3; it should be used instead.

Warning! When using a USBMOD3, you must remove FB1 in order to completely
disable bus-powered operation. This will require desoldering a two-component SMT device.

F.2 OrcBoard Schematics
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F.3 OrcPad Schematics
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