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Solution 2

Exercise 4.1 

LQ Problem with Forecasts: 

xk+1 = Akxk + Bkuk + wk k = 0, 1, . . . , N − 1 

  
N −1 

 
NQN xN + (x 

kQkxk + u 
kRkuk)cost: E x 

wk 
k=0,1,...,N−1 k=0

Let: 

yk = Forecast available at the beginning of period k 

= p.d.f. of w given ykPk | yk k 

kpyk = a priori p.d.f. of yk at stage k 

Following sections 1.4 and 4.1 we have the following DP algorithm: 

JN (xN , yN ) = x 
N QN xN

n
  

k+1Jk(xk, yk) = min E x Qkxk + u Rkuk + 
 

p Jk+1(xk+1, i) ykk k i u wkk 
k=0,1,...,N−1 i=1

where the expectation is taken with respect to Pk | yk 
. 

Theorem: Under the conditions of the problem: 

Jk(xk, yk) = x 
kKkxk + x 

kbk(yk) + ck(yk) k = 0, 1, . . . , N, 

where bk(yk) is an n-dimensional vector, ck(yk) is a scalar, and Kk is generated by the discrete-time 

Riccati equation. 

Proof: The proof will follow by induction, deriving µ ∗ 
k(xk, yk) on the way. For k = N the theorem is 

clearly true. 

1



2

Assume: Jk+1(xk+1, yk+1) = x′k+1Kk+1xk+1 + x′k+1bk+1(yk+1) + ck+1(yk+1). Then:

Jk(xk, yk) = min E
{

x′kQkxk + u′kRkuk+
uk wk

∑n

pk+1
i

[
x′k+1Kk+1xk+1 + x′k+1bk+1(i) + ck+1(i)

i=1

] ∣∣ yk

}

= x′kQkxk + min
{

u′kRkuk + E
{

(Akxk + Bkuk + wk)′Kk+1(Akxk + Bkuk + wk)+
uk wk

n

(A k+1
kxk + Bkuk + wk)′

∑
pi bk+1(i)

︸i=1 ︷︷ ︸
bk+1

∣∣ yk

}
+

n∑

i=1

pk+1
i ck+1(i)

︸ ︷︷

}

γk+1

︸

= x′kQkxk + x′kA′kKk+1Akxk + 2x′kA′kKk+1 E{wk | yk}+
E{w′ + ′ ′ + ′

{kKk+1wk | yk} xkAkbk+1 bk+1 E{wk | yk}+ γk+1+

min u′k(Rk + Bk
′Kk+1Bk)uk + 2u′kBk

′Kk+1Akxk + 2u′kBk
′Kk+1 E wk yk

uk

{ | }

+ u′kBk
′ bk+1

We know that Rk > 0. This implies

}

that Rk + Bk
′Kk+1Bk > 0, since Kk+1 ≥ 0 by induction. Thus, we can

find the minimum by finding the stationary point via differentiation:

2(Rk + Bk
′Kk+1Bk)u∗k + 2Bk

′Kk+1(Akxk + E{wk | yk}+ Bk
′ bk+1) = 0

This gives the optimal control law:

u∗k = µ∗k( 1
xk, yk) = −(Rk + Bk

′Kk+1Bk)− Bk
′Kk+1(Akxk + E{wk | yk}) + αk

where αk = − 1
2 (Rk + B′

kKk+1Bk)−1
B′

kbk+1. Now we substitute u∗k back into Jk(xk, yk) yielding:

Jk(xk, yk)

= x′k(Qk + A′kKk+1Ak)xk − x′k[A′kKk+1Bk(Rk + B′
kKk+1Bk)−1

B′
kKk+1Ak]xk︸ ︷︷ +

quadratic term x′ Kkxkk

︸

2x′kA′kKk+1 E{wk | yk}+ x′kA′kbk+1

− 2 1
x′kA′kKk+1Bk(Rk + Bk

′Kk+1Bk)− Bk
′Kk+1 E{wk | yk}

1−
2
x′kA′kKk+1Bk(Rk + B′

kKk+1Bk)−1
B′

kbk+1

︸ ︷︷
+

linear term x′ bk(yk)
k

︸

E{wk
′ Kk+1wk | yk}+ b′k+1 E{wk | yk}+ γk+1

− 1
E{wk

′ | yk}Kk+1Bk(Rk + Bk
′Kk+1Bk)− Bk

′Kk+1 E{wk | yk}
1−
4
b′k+1Bk(Rk + B′

kKk+1Bk)−1
B′

kbk+1

︸ ︷︷
constant term ck(yk)

︸
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Q.E.D. 

Exercise 4.2 

We note first from integral tables: 
/ ∞

−(ax 2 

� 
π

e(b2−4ac)/4ae +bx+c)dx = for a > 0 
a−∞ 

1Let w be a normal random variable with zero mean and variance σ2 < . Using this definite integral, we 2 

have: 
∞ 

w1 
/ 

−2 2 
E 

{
e(a+w) 

} 
= √ e(a+w) e 2σ

2
2 dw 

σ 2π −∞ 

1 ∞ 
1 2 2

/ 
−( −w −2aw−a 2)2σ2 w= √ e dw 

σ 2π −∞ 
2 2 14a +4a ( −1) 

1 π 
2 

4( −1) 
2σ� 

1 
2σ2= √ e 

σ 2π 1 − 12σ2 

1 2 a 

e 1−2σ2 

1 − 2σ2 
= √ 

Theorem: If the DP algorithm has a finite minimizing value at each step, 

βk xk ,Jk(xk) = αk e
2 

βk > 0, k = 0, 1, . . . 

Proof: The proof follows by induction. For k = N , 

JN (xN ) = exN 
2 

Assume that: 
2 

Jk+1(xk+1) = αk+1 e βk+1xk+1 , βk+1 > 0 

Then: 
2+rukJk(xk) = min 

{
ex2 

k E {Jk+1(xk+1)}
}

uk wk 

Assume that the expected value in the previous expression exists. (Note that an existence proof will 
depend on the linearity of the system). Then: 

{ 
2 2 2 

}
exk +ruk 

{ 
βk+1(akxk+bk uk+wk ) 

}
Jk(xk) = min αk+1 E e

uk wk 

2β (a x +b u )k+1 k k k k 
2 +ru 2 αk+1 1−2= min exk k e βk+1σ2 

uk 2
�

1 − 2βk+1σ 

3
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since wk is a Gaussian r.v. with 0 mean and βk+1σ2 variance. Thus, the assumption of finite minimum is 
equivalent to having 2βk+1σ2 < 1 at each stage. The calculation of the minimum reduces to minimizing: 

2βk+1(akxk + bkuk) 
x2 

k + ru2 
k + 

1 − 2βk+1σ2 

2over uk. But this is a quadratic where the coefficient on u is:k 

βk+1b2 

r + k 

1 − 2βk+1σ2 

which is positive. Thus, we are minimizing a convex function and: 

∗ ∗ u = µ (xk) = γkxkk k

Substituting uk back into Jk(xk) yields: 

β2 k+1 2 2α 
�
1+rγk + 2 (ak+bk γk ) 

�
xkk+1 1−2βk+1 σJk(x ) = ek 

1 − 2βk+1σ2 

βk xk ,= αk e 
2 

with βk > 0 

Q.E.D. 

As an example where without the Gaussian assumption the control is not linear, consider the following 

pmf for wN−1: { 
1/4, if |ξ| = 1 

Pr(wN−1 = ξ) = 1/2, if ξ = 0
 

Then:
 

2 2 xN−1+ru N −1 e(aN −1x +bN −1uN −1+w 2 

uN −1 

JN−1(xN−1) = min 

{
e E 

{ 
N−1 N−1) 

}}
wN−1 

2 
= min 

{ 
1 

e 
2 [ 2 2 l}xN −1+ru N−1 e(aN −1xN−1+bN −1uN −1+1) + e(aN −1xN −1+bN −1uN −1−1) 

uN−1 2 

∗Then, in general, uN−1 = γN−1xN−1.

4
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Exercise 4.5 

a) Following the analysis in Section 4.2, we have that the DP algorithm is 

JN (xN ) = rN (xN ), 

Jk(xk) = rk(xk) + min [E {Jk+1(xk + uk − wk) ] , k = 0, . . . , N − 1.}
uk ≥0
 

Define yk = xk + uk and Gk(y) = E{Jk+1(y − w)}. Then
 

Jk(xk) = rk(xk) + min [E{Jk+1(yk − wk)}] 
yk≥xk 

= rk(xk) + min Gk(yk), k = 0, . . . , N − 1. 
yk≥xk 

Assume that Jk+1 is convex. Then, since addition and taking expectation preserves convexity, Gk is 
convex. If we also assume that lim|y|→∞ Gk(y) = ∞, then Gk has an unconstrained minimum, denoted 

by Sk and the optimal policy has the form 
{ 

Sk − xk, if xk < Sk,∗ µ (xk) = k 0, if xk ≥ Sk, 

where for each k, the scalar Sk minimizes Gk(y). To show that Jk is convex and that lim | |→∞ y Gk(y) = ∞ 

for all k, note that since rN is convex, JN is convex. Since the derivative of rN (x) goes to ∞ as x →∞ 

and to −∞ as x → −∞, JN (x) and GN −1(y) go to ∞ as |x| and |y|, respectively, approach ∞. Then the 

optimal policy at time N − 1 is given by 
{ 

SN−1 − xN −1, if xN−1 < SN−1,∗ µ (xN−1) = N−1 0, if xN−1 ≥ SN−1. 

Now assume that Jk+1 is convex and that lim|x|→∞ Jk+1(x) = ∞. Then lim|y|→∞ Gk(y) = ∞ and 

{ 
rk(xk) + E{Jk+1(Sk − wk)}, if xk < S k,

Jk(xk) = 
rk(xk) + E{Jk+1(xk − wk)}, if xk ≥ Sk. 

Thus Jk is convex and lim|x|→∞ Jk(x) = ∞. 

b) The system now evolves as 

xk+1 = xk + uk−1 − wk, k = 0, 1, . . . , N − 1. 

Adding uk to both sides and making the change of variable yk = xk + uk−1, we have 

yk+1 = yk + uk − wk, k = 0, 1, . . . , N − 1. 

The cost to minimize is 

N N−1 

E{ rk(xk)} = E{r0(x0) + rk+1(xk+1)}
k=0 k=0 

N−1 

= E{r0(y0 − u−1) + rk+1(yk − wk)}
k=0 

N−1 

= E{r0(y0 − u−1) + r̂ (yk)},k 

k=0 

where
 

r̂k(yk) = Ewk {rk+1(yk − wk)}, k = 0, . . . , N − 1.
 

By defining r̂N (yN ) to be the constant r0(y0 − u−1) for all yN , our cost has the form of the problem of 
part (a). 
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Exercise 4.29 

a) As suggested by the hint, consider the case where only one out of two available questions can be 

answered. 

E[reward using order 1 → 2] = p1R1 

E[reward using order 2 → 1] = p2R2 

An appropriate index for this problem would thus be piRi as opposed to piRi/(1 − pi). 

b) We now have a problem that has N available questions, but the maximum number of questions that can 

be answered is N − 1. 

Let Ai, for i = 1, 2, . . . , N , be the set of all orderings with question i ordered last (meaning we never reach 

question i since it is ordered Nth). The sets Ai, i = 1, 2, . . . , N , form a partition of the set of all possible 

orderings. 

Consider the problem of maximizing expected reward over the set of orders Aj . Because question j is 
always last, this problem is equivalent to finding the optimal ordering for N − 1 questions (all questions 
except question j) without a limit on the number of questions that can be answered. Thus, the optimal 
ordering over the set Aj , denoted Lj , uses the index piRi/(1 − pi) for i = j. 

To find the optimal ordering over the set of all possible orderings, we only need to compare N orderings: 

choose ordering Lj that satisfies 

E[reward using order Lj ] = maxLi,i=1,2,...,N E[reward using order Li] 

Exercise 4.33 

(a) We formulate this as a DP problem involving the following two states: 

S: The state where the singer is satisfied just following a performance. 

S: The state where the singer is not satisfied just following a performance (but may still be placated to sing on 
the following night with the offer of a gift). 

The initial state is S. 
The transition probabilities are:

6
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Without the offer of a gift:
 
pSS = p, p = 1 − p,
SS 

p = 0, p = 1.SS SS 

With the offer of a gift:
 
pSS = p, p = 1 − p,
SS 

p = qp, p = 1 − qp. SS SS 

Notice we may assume that the director never offers a gift when the singer is satisfied, meaning at state S, 
the cost-per-stage is 0. At state S, the cost-per-stage is C without a gift offer, and G + (1 − q)C with a gift 
offer. 

The DP algorithm is
 
Jk(S) = pJk+1(S) + (1 − p)Jk+1(S),
 

Jk(S) = min 
[
C + Jk+1(S), G + (1 − q)C + qpJk+1(S) + (1 − qp)Jk+1(S)

] 
, 

JN (S) = JN (S) = 0. 

An alternative DP algorithm uses the singer’s state at the beginning of a performance instead. Let T 
represent that the singer is satisfied at the beginning of a performance and T that the singer is not satisfied at 
the beginning of a performance (and will therefore not perform that night). Noting that the director’s decision 
occurs after she has declared herself satisfied or not at the end of the performance, we have: 

˜ ˜Jk(T ) = pJ̃k+1(T ) + (1 − p) min{J̃k+1(T ), G + qJ̃k+1(T ) + (1 − q)Jk+1(T )}, 

˜ ˜Jk(T ) = C + min{J̃k+1(T ), G + qJ̃k+1(T ) + (1 − q)Jk+1(T )}, 
˜ ˜JN (T ) = 0, JN (T ) = C. 

(b) The optimal policy is to offer a gift in state S at time k if 

C + Jk+1(S) ≥ G + (1 − q)C + pqJk+1(S) + (1 − qp)Jk+1(S), 

or equivalently if 
G − qC ≤ Jk+1(S) − Jk+1(S). 

qp 

We will now show by induction that 

Jk(S) − Jk(S) ≥ Jk+1(S) − Jk+1(S), k = 0, 1, . . . , N − 1, 

so that the threshold for offering a gift is lower in the early nights. This means, that the optimal strategy is 
specified by some time index k: it is optimal to send a gift to placate a dissatisfied singer at all nights before 
night k, and not to send at night k and any subsequent night. 

Indeed, let
 
βk = Jk(S) − Jk(S).
 

We have βN = 0 and from the DP algorithm, we have 

βk = min
{
C + pβk+1, G + (1 − q)C + p(1 − q)βk+1

d
, 

so we have βN−1 ≥ βN . The relation βk ≥ βk+1 follows from the above equation and a simple induction. 
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We now define k using the fact that for k ≥ k, the optimal policy does not send a gift. For k ≥ k we have 
1−p N−k 

the recursion βk = C + pβk+1, starting with βN = 0. Solving this in closed form, we have βk = 1−p C for 
k ≤ k ≤ N − 1. Therefore, we define k as the smallest integer k satisfying 

N−k−1G − qC 1 − p
> β k+1 = C 

qp 1 − p 

or equivalently 
G 1 − pN−k 

> . 
qC 1 − p 

Notice if G ≤ qC, then k = N , which means it is optimal to send a gift at all stages. If G > qC, then k ≤ N − 1. 
(c) Consider the case where q is not constant but rather is a function of the stage index, say qk. We write the 
same DP algorithm, replacing q with qk, and once again we let βk = Jk(S) − Jk(S). The optimal policy is then 
to offer a gift in state S and stage k if G ≤ qk(C + pβk+1). 

If qk, which represents the probability of success of a gift, is a decreasing function in k, then intuitively the 
form of the optimal policy found in part (b) should still be optimal. More specifically, if the optimal policy 
when qk is constant is to stop sending gifts at some point in time, then having qk decrease over time should not 
make sending gifts at later stages (after stages at which it was optimal to not send) profitable. 

Following the same procedure as in part (b), we may find the optimal policy is to send a gift when the singer 
is unsatisfied if and only if k is less than k, where k is the smallest integer k satisfying 

1 − pN−k 
G > qkC .

1 − p 

Notice that k exists because the right-hand side of the above equation is decreasing in k. To verify that this 
N−k N −k1−p 1−ppolicy is optimal, we may show by induction that βk = C for k ≤ k ≤ N and βk ≤ C for1−p 1−p 

0 ≤ k ≤ k − 1. 

Exercise 4.34 

(a) This problem is the same as the “asset selling” problem on p.168 except it has the same state evolution as 
the “case of correlated prices” on p. 173. The resulting DP algorithm is then: ⎧ 

max{(1 + r)N −kxk, E λxk + wk)]} if xk  = T⎨ [Jk+1(slwk 

Jk(xk) = 
sell 

p
⎩ 

0 if xk = T 

p sl  
do not sell

 

{ 
xN if xN = T

JN (xN ) = 
0 if xN = T 

(b) It turns out for each stage k, a threshold for xk exists above which it is optimal to sell and below which it 
is optimal to not sell. These thresholds are decreasing as k increases. 

Jk(xk)Let Vk(xk) = The DP algorithm then becomes: 
(1+r)N−k . 

⎧
⎨ max{ xk (1 + r)−1Ewk [Vk+1(λxk + wk)]} xk  = T, p

Vk(xk) = sell ⎩ 
psl sl 

sell 
 

xk 

do not

0 = T { 
xN xN = T

VN (xN ) = 
0 xN = T

8
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The optimal stopping set for stage N − 1 is straightforward to find: 

VN−1(x) = max{x, (1 + r)−1EwN −1 [λx + wN−1]}
λx + w̄ 

= max{x, }
1 + r 
λx + w̄ 

TN−1 = {x | x ≥ }
1 + r 

= {x | x ≥ αN−1} 

w̄where αN−1 = and w̄ = E[wk] for all k. Depending on the magnitude of wk relative to λ, xk+1 can be 1+r−λ 
either greater or less than xk, therefore TN −1 is not absorbing. We show by induction that Vk(x) is convex, has 
a slope of 1 as x approaches infinity, and has a positive slope less than 1 as x approaches negative infinity. 
We first show a base case. VN −1(x) is the maximum of affine functions, which is convex. VN−1(x) = x for 

λx+w̄ x ≥ αN −1, meaning VN−1(x) has slope 1 as x → ∞. VN−1(x) = for x < αN−1, meaning VN −1(x) has 1+r 
λslope < 1 as x → −∞.1+r 

We now assume for induction that Vk+1(x) is convex, has a slope of 1 as x →∞, and has a positive slope less 
than 1 as x → −∞. Consider 

Vk(x) = max{x, hk(x)}, 

where hk(x) = (1 + r)−1Ewk [Vk+1(λx + wk)]. We note that hk(x) is convex because performing a linear 
transformation, taking the expectation, and multiplying by a positive constant all preserve convexity. Because 

λ λ0 < < 1, hk(x) has slope as x → ∞ and some positive slope less than 1 as x → −∞. Given the form 1+r 1+r 
of hk(x), we then know that hk(x) and the function x have exactly one intersection point, say αk, and that 

� x x > α k
Vk(x) = hk(x) x < αk 

This form of Vk(x) corresponds to the optimal policy: 

sell if xk > αk 

do not sell if xk < αk 

Notice that Vk(x) is convex, has a slope of 1 as x →∞, and has a positive slope less than 1 as x → −∞. 
Noting that VN −1(x) = max{x, (1+r)−1EwN [λx+wN−1]} ≥ x = VN (x) for all x, we have by the monotonicity −1 

property that Vk(x) ≥ Vk+1(x) for all x, k = 0, 1, . . . , N −1, meaning hk−1(x) ≥ hk(x) for all x, k = 1, 2, . . . , N − 
1. Therefore, αk ≥ αk+1 for k = 0, 1, . . . , N − 1 (which is also apparent because we know Tk ⊂ Tk+1 for all k). 

(c) The optimal policy remains the same. Assume we can sell a fraction β of the stock on one day and the 
fraction (1 − β) on a different day. Then it is optimal to sell when the value of the stock exceeds βαk and 
(1 − β)αk respectively. But this will happen simultaneously, so if it is optimal to sell the fraction β it is also 
optimal to sell the fraction (1 − β). 
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