
Exercise 6.2

a) Consider the CEC applied to this problem. At stage 1 we solve the deterministic problem:
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The corresponding cost of the CEC is:
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Using the probability distribution of w0 and w1, it is straightforward to obtain E{‖x2‖} = 1.

b) Consider the open-loop optimal policy. Here we solve the problem:

min E{‖x2‖} = min E{‖x0 + b(u0 + u1) + d(w0 + w1)
u0,u1 u0,u1

‖}.

For the given values of x0, b and d, and the probability distribution of w0 and w1, the problem is written as:
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Therefore, the CEC is strictly suboptimal.

c) Consider the closed-loop optimal policy. Here:
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Using the figure from part b., it is seen that the optimal value is to take u1 so that u0 +

∥∥

u1 = 0 and

∥∥

the
same optimal value as in the open-loop case is obtained.
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Exercise 6.16

By substituting Dk = pk for Gk = (p(2 − p))k into the derivation on pps. 319-320, we have Rk = p(2 −
p)Rk−1 + p2Dk−1(1−Rk−1), with R0 = 1. Dividing both sides by Dk = pDk−1, we have:

Rk

Dk
= (2− p)

Rk−1

Dk−1
+ p(1−Rk−1)

As k →∞, Dk → 0, meaning Rk → 0 also. So we obtain for large N :

RN

DN
= O((2− p)N )

Because 2− p > 1, Rk

Consider the example in which r(x(t)) = 1, x(0) = (0, 0), and x(T ) = (a, b). Then minimizing

∫ T

r (x(t)) dt
0

increases exponentially with kD .
k

Exercise 6.10

over the control constraint ‖u(t)‖ = 1 corresponds to finding the shortest trajectory from x(0) to x(T ).
The solution to this problem is clearly a straight line from (0, 0) to (a, b), which yields a distance

√
a2 + b2.

However, the discretization provided does not approach this distance if a and b are both nonzero. The
discretization provided only allows moves in vertical and horizontal directions, and thus the shortest distance
becomes a + b, regardless of the discretization size ∆.

Exercise 6.20

(a) Prop.6.3.1: Assume that for all xk and k, we have

min
uk∈Uk(xk)

max
wk∈Wk(xk,uk)

[ ]
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk)) ≤ J̃k(xk). (1)

Then the cost-to-go functions corresponding to a one-step lookahead policy that uses J
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k̃ and Uk(xk)

for all xk and k

Jk(xk) ≤ min max gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk)) . (2)
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k k k

[ ]

and through a backward induction approach similar to that in Prop.6.3.1,

˜

the above conclusion in (2) can
be proved.

Prop.6.3.2: Let J̃k(x), k = 0, 1, ..., N , be functions of xk with J̃k(xN ) = gN (xN ) for all xN , and let
π = {µ0, · · · , µN 1} be a policy such that for all xk and k, we have−
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where δ0, δ1,
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· · · , δN−1 are some scalars. Then for all xk and k, we have
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∑

δi, (4)
i=k

where J

˜

π,k(xk) is the cost-to-go of π starting from state xk at stage k. Through a backward induction
approach similar to that in Prop.6.3.2, the above conclusion in (4) can be proved.

(b) In a rollout algorithm, since for all xk and k we haveµk(xk) ∈ Uk(xk), the assumption in (1) is satisfied
and the desired result directly follows (2).
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