Solution 4

Exercise 6.2

a) Consider the CEC applied to this problem. At stage 1 we solve the deterministic problem:

$$
\begin{aligned}
\min _{u_{1}}\left(0+J_{2}\left(x_{2}\right)\right)=\min _{u_{1}}\left\|x_{2}\right\| & =\min _{u_{1}}\left\|x_{1}+b u_{1}+d \bar{w}_{1}\right\| \\
& =\min _{u_{1}}\left\|x_{1}+b u_{1}\right\| .
\end{aligned}
$$

Thus, $\mu_{1}^{*}\left(x_{1}\right)=-x_{1}^{1}$ (i.e. the first coordinate of x_{1}), and the optimal cost to go is $J_{1}\left(x_{1}\right)=\left\|\begin{array}{c}0 \\ x_{1}^{2}\end{array}\right\|$ (where x_{1}^{2} is the second coordinate of x_{1}).

At stage 0 we solve the deterministic problem:

$$
\min _{u_{0}}\left(0+J_{1}\left(x_{1}\right)\right)=\min _{u_{0}}\left\|\begin{array}{c}
0 \\
x_{1}^{2}
\end{array}\right\|=\min _{u_{0}}\left\|\begin{array}{c}
0 \\
x_{0}^{2}+(\sqrt{2} / 2) \bar{w}_{0}
\end{array}\right\|=0 ;
$$

so μ_{0} is unconstrained. We choose $\mu_{0}^{*}(0)=0$
The corresponding cost of the CEC is:

$$
\begin{aligned}
E\left\{\left\|x_{2}\right\|\right\} & =E\left\{\left\|x_{0}+b \mu_{0}^{*}(0)+d w_{0}+b \mu_{1}^{*}\left(x_{0}+b \mu_{0}^{*}(0)+d w_{0}\right)+d w_{1}\right\|\right\} \\
& =E\left\{\left\|\left[\begin{array}{c}
0 \\
\sqrt{2} / 2
\end{array}\right] w_{0}+\left[\begin{array}{c}
1 / 2 \\
\sqrt{2} / 2
\end{array}\right] w_{1}\right\|\right\} .
\end{aligned}
$$

Using the probability distribution of w_{0} and w_{1}, it is straightforward to obtain $E\left\{\left\|x_{2}\right\|\right\}=1$.
b) Consider the open-loop optimal policy. Here we solve the problem:

$$
\min _{u_{0}, u_{1}} E\left\{\left\|x_{2}\right\|\right\}=\min _{u_{0}, u_{1}} E\left\{\left\|x_{0}+b\left(u_{0}+u_{1}\right)+d\left(w_{0}+w_{1}\right)\right\|\right\} .
$$

For the given values of x_{0}, b and d, and the probability distribution of w_{0} and w_{1}, the problem is written as:

$$
\min _{u_{0}, u_{1}} \frac{1}{4}\left\{\left\|\begin{array}{c}
u_{0}+u_{1}+1 \\
\sqrt{2}
\end{array}\right\|+\left\|\begin{array}{c}
u_{0}+u_{1} \\
0
\end{array}\right\|+\left\|\begin{array}{c}
u_{0}+u_{1} \\
0
\end{array}\right\|+\left\|\begin{array}{c}
u_{0}+u_{1}-1 \\
-\sqrt{2}
\end{array}\right\|\right\} .
$$

It is straightforward to check that the minimum is attained when $u_{0}+u_{1}=0$, in which case we obtain the optimal open loop cost as:

$$
\frac{1}{4}\left\|\begin{array}{c}
1 \\
\sqrt{2}
\end{array}\right\|+\left\|\begin{array}{c}
-1 \\
-\sqrt{2}
\end{array}\right\|=\frac{\sqrt{3}}{2} .
$$

Therefore, the CEC is strictly suboptimal.
c) Consider the closed-loop optimal policy. Here:

$$
J_{0}(0)=\min _{u_{0}}\left\{\frac{1}{2} \min _{u_{1}}\left\{\frac{1}{2}\left\|\begin{array}{c}
u_{0}+u_{1}+1 \\
\sqrt{2}
\end{array}\right\|+\frac{1}{2}\left\|\begin{array}{c}
u_{0}+u_{1} \\
0
\end{array}\right\|\right\}+\frac{1}{2} \min _{u_{1}}\left\{\begin{array}{c}
1 \\
2
\end{array} \begin{array}{c}
u_{0}+u_{1}-1 \\
-\sqrt{2}
\end{array}\left\|+\frac{1}{2}\right\| \begin{array}{c}
u_{0}+u_{1} \| \\
0
\end{array} \|\right\}\right\} .
$$

Using the figure from part b., it is seen that the optimal value is to take u_{1} so that $u_{0}+u_{1}=0$ and the same optimal value as in the open-loop case is obtained.

Exercise 6.10

Consider the example in which $r(x(t))=1, x(0)=(0,0)$, and $x(T)=(a, b)$. Then minimizing

$$
\int_{0}^{T} r(x(t)) d t
$$

over the control constraint $\|u(t)\|=1$ corresponds to finding the shortest trajectory from $x(0)$ to $x(T)$. The solution to this problem is clearly a straight line from $(0,0)$ to (a, b), which yields a distance $\sqrt{a^{2}+b^{2}}$. However, the discretization provided does not approach this distance if a and b are both nonzero. The discretization provided only allows moves in vertical and horizontal directions, and thus the shortest distance becomes $a+b$, regardless of the discretization size Δ.

Exercise 6.16

By substituting $D_{k}=p^{k}$ for $G_{k}=(p(2-p))^{k}$ into the derivation on pps. 319-320, we have $R_{k}=p(2-$ p) $R_{k-1}+p^{2} D_{k-1}\left(1-R_{k-1}\right)$, with $R_{0}=1$. Dividing both sides by $D_{k}=p D_{k-1}$, we have:

$$
\frac{R_{k}}{D_{k}}=(2-p) \frac{R_{k-1}}{D_{k-1}}+p\left(1-R_{k-1}\right)
$$

As $k \rightarrow \infty, D_{k} \rightarrow 0$, meaning $R_{k} \rightarrow 0$ also. So we obtain for large N :

$$
\frac{R_{N}}{D_{N}}=O\left((2-p)^{N}\right)
$$

Because $2-p>1, \frac{R_{k}}{D_{k}}$ increases exponentially with k.

Exercise 6.20

(a) Prop.6.3.1: Assume that for all x_{k} and k, we have

$$
\begin{equation*}
\min _{u_{k} \in \bar{U}_{k}\left(x_{k}\right)} \max _{w_{k} \in W_{k}\left(x_{k}, u_{k}\right)}\left[g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\widetilde{J}_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right] \leq \widetilde{J}_{k}\left(x_{k}\right) \tag{1}
\end{equation*}
$$

Then the cost-to-go functions corresponding to a one-step lookahead policy that uses \widetilde{J}_{k} and $\bar{U}_{k}\left(x_{k}\right)$ satisfy for all x_{k} and k

$$
\begin{equation*}
\bar{J}_{k}\left(x_{k}\right) \leq \min _{u_{k} \in \bar{U}_{k}\left(x_{k}\right)} \max _{w_{k} \in W_{k}\left(x_{k}, u_{k}\right)}\left[g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\widetilde{J}_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right] \tag{2}
\end{equation*}
$$

We define

$$
\widehat{J}_{k}\left(x_{k}\right)=\min _{u_{k} \in \bar{U}_{k}\left(x_{k}\right)} \max _{w_{k} \in W_{k}\left(x_{k}, u_{k}\right)}\left[g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\widetilde{J}_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right]
$$

and through a backward induction approach similar to that in Prop.6.3.1, the above conclusion in (2) can be proved.

Prop.6.3.2: Let $\widetilde{J}_{k}(x), k=0,1, \ldots, N$, be functions of x_{k} with $\widetilde{J}_{k}\left(x_{N}\right)=g_{N}\left(x_{N}\right)$ for all x_{N}, and let $\pi=\left\{\bar{\mu}_{0}, \cdots, \bar{\mu}_{N-1}\right\}$ be a policy such that for all x_{k} and k, we have

$$
\begin{equation*}
\max _{w_{k} \in W_{k}\left(x_{k}, u_{k}\right)}\left[g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\widetilde{J}_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right] \leq \widetilde{J}_{k}(x)+\delta_{k} \tag{3}
\end{equation*}
$$

where $\delta_{0}, \delta_{1}, \cdots, \delta_{N-1}$ are some scalars. Then for all x_{k} and k, we have

$$
\begin{equation*}
J_{\pi, k}\left(x_{k}\right) \leq \widetilde{J}_{k}(x)+\sum_{i=k}^{N-1} \delta_{i} \tag{4}
\end{equation*}
$$

where $J_{\pi, k}\left(x_{k}\right)$ is the cost-to-go of π starting from state x_{k} at stage k. Through a backward induction approach similar to that in Prop.6.3.2, the above conclusion in (4) can be proved.
(b) In a rollout algorithm, since for all x_{k} and k we have $\mu_{k}\left(x_{k}\right) \in \bar{U}_{k}\left(x_{k}\right)$, the assumption in (1) is satisfied and the desired result directly follows (2).

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

