Solution 4

Exercise 6.2

a) Consider the CEC applied to this problem. At stage 1 we solve the deterministic problem:

$$\min_{u_1} (0 + J_2(x_2)) = \min_{u_1} ||x_2|| = \min_{u_1} ||x_1 + bu_1 + d\bar{w}_1||$$
$$= \min_{u_1} ||x_1 + bu_1||.$$

Thus, $\mu_1^*(x_1) = -x_1^1$ (i.e. the first coordinate of x_1), and the optimal cost to go is $J_1(x_1) = \begin{pmatrix} 0 \\ x_1^2 \end{pmatrix}$ (where x_1^2 is the second coordinate of x_1).

At stage 0 we solve the deterministic problem:

$$\min_{u_0} \left(0 + J_1(x_1) \right) = \min_{u_0} \left\| \begin{array}{c} 0 \\ x_1^2 \end{array} \right\| = \min_{u_0} \left\| \begin{array}{c} 0 \\ x_0^2 + (\sqrt{2}/2)\bar{w}_0 \end{array} \right\| = 0$$

so μ_0 is unconstrained. We choose $\mu_0^*(0) = 0$

The corresponding cost of the CEC is:

$$E\{\|x_2\|\} = E\{\|x_0 + b\mu_0^*(0) + dw_0 + b\mu_1^*(x_0 + b\mu_0^*(0) + dw_0) + dw_1\|\}$$

$$= E\left\{ \left\| \begin{bmatrix} 0\\\sqrt{2}/2 \end{bmatrix} w_0 + \begin{bmatrix} 1/2\\\sqrt{2}/2 \end{bmatrix} w_1 \right\| \right\}.$$

Using the probability distribution of w_0 and w_1 , it is straightforward to obtain $E\{||x_2||\} = 1$.

b) Consider the open-loop optimal policy. Here we solve the problem:

$$\min_{u_0, u_1} E\{\|x_2\|\} = \min_{u_0, u_1} E\{\|x_0 + b(u_0 + u_1) + d(w_0 + w_1)\|\}.$$

For the given values of x_0 , b and d, and the probability distribution of w_0 and w_1 , the problem is written as:

$$\min_{u_0,u_1} \frac{1}{4} \left\{ \left\| \begin{array}{c} u_0 + u_1 + 1 \\ \sqrt{2} \end{array} \right\| + \left\| \begin{array}{c} u_0 + u_1 \\ 0 \end{array} \right\| + \left\| \begin{array}{c} u_0 + u_1 \\ 0 \end{array} \right\| + \left\| \begin{array}{c} u_0 + u_1 - 1 \\ -\sqrt{2} \end{array} \right\| \right\}.$$

It is straightforward to check that the minimum is attained when $u_0 + u_1 = 0$, in which case we obtain the optimal open loop cost as:

$$\frac{1}{4} \left\| \frac{1}{\sqrt{2}} \right\| + \left\| \frac{-1}{-\sqrt{2}} \right\| = \frac{\sqrt{3}}{2}$$

Therefore, the CEC is strictly suboptimal.

c) Consider the closed-loop optimal policy. Here:

$$J_{0}(0) = \min_{u_{0}} \left\{ \frac{1}{2} \min_{u_{1}} \left\{ \frac{1}{2} \left\| \begin{array}{c} u_{0} + u_{1} + 1 \\ \sqrt{2} \end{array} \right\| + \frac{1}{2} \left\| \begin{array}{c} u_{0} + u_{1} \\ 0 \end{array} \right\| \right\} + \frac{1}{2} \min_{u_{1}} \left\{ \frac{1}{2} \left\| \begin{array}{c} u_{0} + u_{1} - 1 \\ -\sqrt{2} \end{array} \right\| + \frac{1}{2} \left\| \begin{array}{c} u_{0} + u_{1} \\ 0 \end{array} \right\| \right\} \right\}.$$

Using the figure from part b., it is seen that the optimal value is to take u_1 so that $u_0 + u_1 = 0$ and the same optimal value as in the open-loop case is obtained.

Exercise 6.10

Consider the example in which r(x(t)) = 1, x(0) = (0, 0), and x(T) = (a, b). Then minimizing

$$\int_0^T r\left(x(t)\right) dt$$

over the control constraint ||u(t)|| = 1 corresponds to finding the shortest trajectory from x(0) to x(T). The solution to this problem is clearly a straight line from (0,0) to (a,b), which yields a distance $\sqrt{a^2 + b^2}$. However, the discretization provided does not approach this distance if a and b are both nonzero. The discretization provided only allows moves in vertical and horizontal directions, and thus the shortest distance becomes a + b, regardless of the discretization size Δ .

Exercise 6.16

By substituting $D_k = p^k$ for $G_k = (p(2-p))^k$ into the derivation on pps. 319-320, we have $R_k = p(2-p)R_{k-1} + p^2D_{k-1}(1-R_{k-1})$, with $R_0 = 1$. Dividing both sides by $D_k = pD_{k-1}$, we have:

$$\frac{R_k}{D_k} = (2-p)\frac{R_{k-1}}{D_{k-1}} + p(1-R_{k-1})$$

As $k \to \infty$, $D_k \to 0$, meaning $R_k \to 0$ also. So we obtain for large N:

$$\frac{R_N}{D_N} = O((2-p)^N)$$

Because 2-p > 1, $\frac{R_k}{D_k}$ increases exponentially with k.

Exercise 6.20

(a) **Prop.6.3.1**: Assume that for all x_k and k, we have

$$\min_{u_k \in \overline{U}_k(x_k)} \max_{w_k \in W_k(x_k, u_k)} \left[g_k(x_k, u_k, w_k) + \widetilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right] \le \widetilde{J}_k(x_k).$$
(1)

Then the cost-to-go functions corresponding to a one-step lookahead policy that uses J_k and $\overline{U}_k(x_k)$ satisfy for all x_k and k

$$\overline{J}_k(x_k) \le \min_{u_k \in \overline{U}_k(x_k)} \max_{w_k \in W_k(x_k, u_k)} \left[g_k(x_k, u_k, w_k) + \widetilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right].$$

$$\tag{2}$$

We define

$$\widehat{J}_k(x_k) = \min_{u_k \in \overline{U}_k(x_k)} \max_{w_k \in W_k(x_k, u_k)} \left[g_k(x_k, u_k, w_k) + \widetilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right]$$

and through a backward induction approach similar to that in Prop.6.3.1, the above conclusion in (2) can be proved.

Prop.6.3.2: Let $\tilde{J}_k(x), k = 0, 1, ..., N$, be functions of x_k with $\tilde{J}_k(x_N) = g_N(x_N)$ for all x_N , and let $\pi = \{\overline{\mu}_0, \dots, \overline{\mu}_{N-1}\}$ be a policy such that for all x_k and k, we have

$$\max_{w_k \in W_k(x_k, u_k)} \left[g_k(x_k, u_k, w_k) + \widetilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right] \le \widetilde{J}_k(x) + \delta_k, \tag{3}$$

where $\delta_0, \delta_1, \dots, \delta_{N-1}$ are some scalars. Then for all x_k and k, we have

$$J_{\pi,k}(x_k) \le \widetilde{J}_k(x) + \sum_{i=k}^{N-1} \delta_i, \tag{4}$$

where $J_{\pi,k}(x_k)$ is the cost-to-go of π starting from state x_k at stage k. Through a backward induction approach similar to that in Prop.6.3.2, the above conclusion in (4) can be proved.

(b) In a rollout algorithm, since for all x_k and k we have $\mu_k(x_k) \in \overline{U}_k(x_k)$, the assumption in (1) is satisfied and the desired result directly follows (2).

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.