6.231 DYNAMIC PROGRAMMING

LECTURE 13

LECTURE OUTLINE

- Control of continuous-time Markov chains -Semi-Markov problems
- Problem formulation - Equivalence to discretetime problems
- Discounted problems
- Average cost problems

CONTINUOUS-TIME MARKOV CHAINS

- Stationary system with finite number of states and controls
- State transitions occur at discrete times
- Control applied at these discrete times and stays constant between transitions
- Time between transitions is random
- Cost accumulates in continuous time (may also be incurred at the time of transition)
- Example: Admission control in a system with restricted capacity (e.g., a communication link)
- Customer arrivals: a Poisson process
- Customers entering the system, depart after exponentially distributed time
- Upon arrival we must decide whether to admit or to block a customer
- There is a cost for blocking a customer
- For each customer that is in the system, there is a customer-dependent reward per unit time
- Minimize time-discounted or average cost

PROBLEM FORMULATION

- $x(t)$ and $u(t)$: State and control at time t
- t_{k} : Time of k th transition $\left(t_{0}=0\right)$
- $x_{k}=x\left(t_{k}\right) ; \quad x(t)=x_{k}$ for $t_{k} \leq t<t_{k+1}$.
- $u_{k}=u\left(t_{k}\right) ; u(t)=u_{k}$ for $t_{k} \leq t<t_{k+1}$.
- No transition probabilities; instead transition distributions (quantify the uncertainty about both transition time and next state)
$Q_{i j}(\tau, u)=P\left\{t_{k+1}-t_{k} \leq \tau, x_{k+1}=j \mid x_{k}=i, u_{k}=u\right\}$
- Two important formulas:
(1) Transition probabilities are specified by
$p_{i j}(u)=P\left\{x_{k+1}=j \mid x_{k}=i, u_{k}=u\right\}=\lim _{\tau \rightarrow \infty} Q_{i j}(\tau, u)$
(2) The Cumulative Distribution Function (CDF) of τ given i, j, u is (assuming $p_{i j}(u)>0$)
$P\left\{t_{k+1}-t_{k} \leq \tau \mid x_{k}=i, x_{k+1}=j, u_{k}=u\right\}=\frac{Q_{i j}(\tau, u)}{p_{i j}(u)}$
Thus, $Q_{i j}(\tau, u)$ can be viewed as a "scaled CDF"

EXPONENTIAL TRANSITION DISTRIBUTIONS

- Important example of transition distributions:

$$
Q_{i j}(\tau, u)=p_{i j}(u)\left(1-e^{-\nu_{i}(u) \tau}\right),
$$

where $p_{i j}(u)$ are transition probabilities, and $\nu_{i}(u)$ is called the transition rate at state i.

- Interpretation: If the system is in state i and control u is applied
- the next state will be j with probability $p_{i j}(u)$
- the time between the transition to state i and the transition to the next state j is exponentially distributed with parameter $\nu_{i}(u)$ (independently of j):
$P\{$ transition time interval $>\tau \mid i, u\}=e^{-\nu_{i}(u) \tau}$
- The exponential distribution is memoryless. This implies that for a given policy, the system is a continuous-time Markov chain (the future depends on the past through the current state).
- Without the memoryless property, the Markov property holds only at the times of transition.

COST STRUCTURES

- There is cost $g(i, u)$ per unit time, i.e.

$$
g(i, u) d t=\text { the cost incurred in time } d t
$$

- There may be an extra "instantaneous" cost $\hat{g}(i, u)$ at the time of a transition (let's ignore this for the moment)
- Total discounted cost of $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$ starting from state i (with discount factor $\beta>0$)

$$
\lim _{N \rightarrow \infty} E\left\{\sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}} e^{-\beta t} g\left(x_{k}, \mu_{k}\left(x_{k}\right)\right) d t \mid x_{0}=i\right\}
$$

- Average cost per unit time

$$
\lim _{N \rightarrow \infty} \frac{1}{E\left\{t_{N}\right\}} E\left\{\sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}} g\left(x_{k}, \mu_{k}\left(x_{k}\right)\right) d t \mid x_{0}=i\right\}
$$

- We will see that both problems have equivalent discrete-time versions.

DISCOUNTED CASE - COST CALCULATION

- For a policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$, write $J_{\pi}(i)=E\{1$ st transition cost $\}+E\left\{e^{-\beta \tau} J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\right\}$
where $E\{1$ st transition cost $\}=E\left\{\int_{0}^{\tau} e^{-\beta t} g\left(i, \mu_{0}(i)\right) d t\right\}$ and $J_{\pi_{1}}(j)$ is the cost-to-go of $\pi_{1}=\left\{\mu_{1}, \mu_{2}, \ldots\right\}$
- We calculate the two costs in the RHS. The $E\{1$ st transition cost $\}$, if u is applied at state i, is

$$
\begin{aligned}
& G(i, u)=E_{j}\left\{E_{\tau}\{1 \text { st transition cost } \mid j\}\right\} \\
& \quad=\sum_{j=1}^{n} p_{i j}(u) \int_{0}^{\infty}\left(\int_{0}^{\tau} e^{-\beta t} g(i, u) d t\right) \frac{d Q_{i j}(\tau, u)}{p_{i j}(u)} \\
& \quad=g(i, u) \sum_{j=1}^{n} \int_{0}^{\infty} \frac{1-e^{-\beta \tau}}{\beta} d Q_{i j}(\tau, u)
\end{aligned}
$$

- Thus the $E\{1$ st transition cost $\}$ is

$$
G\left(i, \mu_{0}(i)\right)=g\left(i, \mu_{0}(i)\right) \sum_{j=1}^{n} \int_{0}^{\infty} \frac{1-e^{-\beta \tau}}{\beta} d Q_{i j}\left(\tau, \mu_{0}(i)\right)
$$

(The summation term can be viewed as a "discounted length of the transition interval $t_{1}-t_{0} "$.)

COST CALCULATION (CONTINUED)

- Also the expected (discounted) cost from the next state j is

$$
\begin{aligned}
E & \left\{e^{-\beta \tau} J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\right\} \\
& =E_{j}\left\{E\left\{e^{-\beta \tau} \mid i, \mu_{0}(i), j\right\} J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\right\} \\
& =\sum_{j=1}^{n} p_{i j}\left(\mu_{0}(i)\right)\left(\int_{0}^{\infty} e^{-\beta \tau} \frac{d Q_{i j}\left(\tau, \mu_{0}(i)\right)}{p_{i j}\left(\mu_{0}(i)\right)}\right) J_{\pi_{1}}(j) \\
& =\sum_{j=1}^{n} m_{i j}\left(\mu_{0}(i)\right) J_{\pi_{1}}(j)
\end{aligned}
$$

where $m_{i j}(u)$ is given by
$m_{i j}(u)=\int_{0}^{\infty} e^{-\beta \tau} d Q_{i j}(\tau, u)\left(<\int_{0}^{\infty} d Q_{i j}(\tau, u)=p_{i j}(u)\right)$
and can be viewed as the "effective discount factor" [the analog of $\alpha p_{i j}(u)$ in discrete-time case].

- So $J_{\pi}(i)$ can be written as

$$
J_{\pi}(i)=G\left(i, \mu_{0}(i)\right)+\sum_{j=1}^{n} m_{i j}\left(\mu_{0}(i)\right) J_{\pi_{1}}(j)
$$

i.e., the (continuous-time discounted) cost of 1st period, plus the (continuous-time discounted) cost-to-go from the next state.

COST CALCULATION (CONTINUED)

- Also the expected (discounted) cost from the next state j is

$$
\begin{aligned}
E & \left\{e^{-\beta \tau} J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\right\} \\
& =E_{j}\left\{E\left\{e^{-\beta \tau} \mid i, \mu_{0}(i), j\right\} J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\right\} \\
& =\sum_{j=1}^{n} p_{i j}\left(\mu_{0}(i)\right)\left(\int_{0}^{\infty} e^{-\beta \tau} \frac{d Q_{i j}\left(\tau, \mu_{0}(i)\right)}{p_{i j}\left(\mu_{0}(i)\right)}\right) J_{\pi_{1}}(j) \\
& =\sum_{j=1}^{n} m_{i j}\left(\mu_{0}(i)\right) J_{\pi_{1}}(j)
\end{aligned}
$$

where $m_{i j}(u)$ is given by
$m_{i j}(u)=\int_{0}^{\infty} e^{-\beta \tau} d Q_{i j}(\tau, u)\left(<\int_{0}^{\infty} d Q_{i j}(\tau, u)=p_{i j}(u)\right)$
and can be viewed as the "effective discount factor" [the analog of $\alpha p_{i j}(u)$ in discrete-time case].

- So $J_{\pi}(i)$ can be written as

$$
J_{\pi}(i)=G\left(i, \mu_{0}(i)\right)+\sum_{j=1}^{n} m_{i j}\left(\mu_{0}(i)\right) J_{\pi_{1}}(j)
$$

i.e., the (continuous-time discounted) cost of 1st period, plus the (continuous-time discounted) cost-to-go from the next state.

EQUIVALENCE TO AN SSP

- Similar to the discrete-time case, introduce an "equivalent" stochastic shortest path problem with an artificial termination state t
- Under control u, from state i the system moves to state j with probability $m_{i j}(u)$ and to the termination state t with probability $1-\sum_{j=1}^{n} m_{i j}(u)$
- Bellman's equation: For $i=1, \ldots, n$,

$$
J^{*}(i)=\min _{u \in U(i)}\left[G(i, u)+\sum_{j=1}^{n} m_{i j}(u) J^{*}(j)\right]
$$

- Analogs of value iteration, policy iteration, and linear programming.
- If in addition to the cost per unit time g, there is an extra (instantaneous) one-stage cost $\hat{g}(i, u)$, Bellman's equation becomes
$J^{*}(i)=\min _{u \in U(i)}\left[\hat{g}(i, u)+G(i, u)+\sum_{j=1}^{n} m_{i j}(u) J^{*}(j)\right]$

MANUFACTURER'S EXAMPLE REVISITED

- A manufacturer receives orders with interarrival times uniformly distributed in $\left[0, \tau_{\max }\right]$.
- He may process all unfilled orders at cost $K>0$, or process none. The cost per unit time of an unfilled order is c. Max number of unfilled orders is n.
- The nonzero transition distributions are

$$
Q_{i 1}(\tau, \text { Fill })=Q_{i(i+1)}(\tau, \text { Not Fill })=\min \left[1, \frac{\tau}{\tau_{\max }}\right]
$$

- The one-stage expected cost G is

$$
G(i, \text { Fill })=0, \quad G(i, \text { Not Fill })=\gamma c i,
$$

where

$$
\gamma=\sum_{j=1}^{n} \int_{0}^{\infty} \frac{1-e^{-\beta \tau}}{\beta} d Q_{i j}(\tau, u)=\int_{0}^{\tau_{\max }} \frac{1-e^{-\beta \tau}}{\beta \tau_{\max }} d \tau
$$

- There is an "instantaneous" cost

$$
\hat{g}(i, \text { Fill })=K, \quad \hat{g}(i, \text { Not Fill })=0
$$

MANUFACTURER'S EXAMPLE CONTINUED

- The "effective discount factors" $m_{i j}(u)$ in Bellman's Equation are

$$
m_{i 1}(\text { Fill })=m_{i(i+1)}(\text { Not Fill })=\alpha,
$$

where
$\alpha=\int_{0}^{\infty} e^{-\beta \tau} d Q_{i j}(\tau, u)=\int_{0}^{\tau_{\max }} \frac{e^{-\beta \tau}}{\tau_{\max }} d \tau=\frac{1-e^{-\beta \tau_{\max }}}{\beta \tau_{\max }}$

- Bellman's equation has the form

$$
J^{*}(i)=\min \left[K+\alpha J^{*}(1), \gamma c i+\alpha J^{*}(i+1)\right], \quad i=1,2, \ldots
$$

- As in the discrete-time case, we can conclude that there exists an optimal threshold i^{*} :
fill the orders $<==>$ their number i exceeds i^{*}

AVERAGE COST

- Minimize $\lim _{N \rightarrow \infty} \frac{1}{E\left\{t_{N}\right\}} E\left\{\int_{0}^{t_{N}} g(x(t), u(t)) d t\right\}$ assuming there is a special state that is "recurrent under all policies"
- Total expected cost of a transition

$$
G(i, u)=g(i, u) \bar{\tau}_{i}(u),
$$

where $\bar{\tau}_{i}(u)$: Expected transition time.

- We apply the SSP argument used for the discretetime case.
- Divide trajectory into cycles marked by successive visits to n.
- The cost at (i, u) is $G(i, u)-\lambda^{*} \bar{\tau}_{i}(u)$, where λ^{*} is the optimal expected cost per unit time.
- Each cycle is viewed as a state trajectory of a corresponding SSP problem with the termination state being essentially n.
- So Bellman's Eq. for the average cost problem:

$$
h^{*}(i)=\min _{u \in U(i)}\left[G(i, u)-\lambda^{*} \bar{\tau}_{i}(u)+\sum_{j=1}^{n} p_{i j}(u) h^{*}(j)\right]
$$

MANUFACTURER EXAMPLE/AVERAGE COST

- The expected transition times are

$$
\bar{\tau}_{i}(\text { Fill })=\bar{\tau}_{i}(\text { Not Fill })=\frac{\tau_{\max }}{2}
$$

the expected transition cost is

$$
G(i, \text { Fill })=0, \quad G(i, \text { Not Fill })=\frac{c i \tau_{\max }}{2}
$$

and there is also the "instantaneous" cost

$$
\hat{g}(i, \text { Fill })=K, \quad \hat{g}(i, \text { Not Fill })=0
$$

- Bellman's equation:

$$
\begin{aligned}
h^{*}(i)=\min & {\left[K-\lambda^{*} \frac{\tau_{\max }}{2}+h^{*}(1),\right.} \\
& \left.c i \frac{\tau_{\max }}{2}-\lambda^{*} \frac{\tau_{\max }}{2}+h^{*}(i+1)\right]
\end{aligned}
$$

- Again it can be shown that a threshold policy is optimal.

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

