6.231 DYNAMIC PROGRAMMING

LECTURE 14

LECTURE OUTLINE

- We start a ten-lecture sequence on advanced infinite horizon DP and approximation methods
- We allow infinite state space, so the stochastic shortest path framework cannot be used any more
- Results are rigorous assuming a finite or countable disturbance space
- This includes deterministic problems with arbitrary state space, and countable state Markov chains
- Otherwise the mathematics of measure theory make analysis difficult, although the final results are essentially the same as for finite disturbance space
- We use Vol. II of the textbook, starting with discounted problems (Ch. 1)
- The central mathematical structure is that the DP mapping is a contraction mapping (instead of existence of a termination state)

DISCOUNTED PROBLEMS/BOUNDED COST

- Stationary system with arbitrary state space

$$
x_{k+1}=f\left(x_{k}, u_{k}, w_{k}\right), \quad k=0,1, \ldots
$$

- Cost of a policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$
$J_{\pi}\left(x_{0}\right)=\lim _{N \rightarrow \infty} \underset{\substack{w_{k} \\ k=0,1, \ldots}}{E}\left\{\sum_{k=0}^{N-1} \alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}$
with $\alpha<1$, and for some M, we have

$$
|g(x, u, w)| \leq M, \quad \forall(x, u, w)
$$

- We have

$$
\left|J_{\pi}\left(x_{0}\right)\right| \leq M+\alpha M+\alpha^{2} M+\cdots=\frac{M}{1-\alpha}, \quad \forall x_{0}
$$

- The "tail" of the cost $J_{\pi}\left(x_{0}\right)$ diminishes to 0
- The limit defining $J_{\pi}\left(x_{0}\right)$ exists

WE ADOPT "SHORTHAND" NOTATION

- Compact pointwise notation for functions:
- If for two functions J and J^{\prime} we have $J(x)=$ $J^{\prime}(x)$ for all x, we write $J=J^{\prime}$
- If for two functions J and J^{\prime} we have $J(x) \leq$ $J^{\prime}(x)$ for all x, we write $J \leq J^{\prime}$
- For a sequence $\left\{J_{k}\right\}$ with $J_{k}(x) \rightarrow J(x)$ for all x, we write $J_{k} \rightarrow J$; also $J^{*}=\min _{\pi} J_{\pi}$
- Shorthand notation for DP mappings (operate on functions of state to produce other functions)

$$
(T J)(x)=\min _{u \in U(x)} E\{g(x, u, w)+\alpha J(f(x, u, w))\}, \forall x
$$

$T J$ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ.

- For any stationary policy μ

$$
\left(T_{\mu} J\right)(x)=\underset{w}{E}\{g(x, \mu(x), w)+\alpha J(f(x, \mu(x), w))\}, \forall x
$$

- For finite-state problems:

$$
T_{\mu} J=g_{\mu}+\alpha P_{\mu} J, \quad T J=\min _{\mu} T_{\mu} J
$$

"SHORTHAND" COMPOSITION NOTATION

- Composition notation: $T^{2} J$ is defined by $\left(T^{2} J\right)(x)=$ $(T(T J))(x)$ for all x (similar for $T^{k} J$)
- For any policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$ and function J :
- $T_{\mu_{0}} J$ is the cost function of π for the onestage problem with terminal cost function αJ
$-T_{\mu_{0}} T_{\mu_{1}} J$ (i.e., $T_{\mu_{0}}$ applied to $T_{\mu_{1}} J$) is the cost function of π for the two-stage problem with terminal cost $\alpha^{2} J$
- $T_{\mu_{0}} T_{\mu_{1}} \cdots T_{\mu_{N-1}} J$ is the cost function of π for the N-stage problem with terminal cost $\alpha^{N} J$
- For any function J :
- TJ is the optimal cost function of the onestage problem with terminal cost function αJ
- $T^{2} J$ (i.e., T applied to $T J$) is the optimal cost function of the two-stage problem with terminal cost $\alpha^{2} J$
- $T^{N} J$ is the optimal cost function of the $N-$ stage problem with terminal cost $\alpha^{N} J$

"SHORTHAND" THEORY - A SUMMARY

- Cost function expressions [with $J_{0}(x) \equiv 0$]
$J_{\pi}(x)=\lim _{k \rightarrow \infty}\left(T_{\mu_{0}} T_{\mu_{1}} \cdots T_{\mu_{k}} J_{0}\right)(x), \quad J_{\mu}(x)=\lim _{k \rightarrow \infty}\left(T_{\mu}^{k} J_{0}\right)(x)$
- Bellman's equation: $J^{*}=T J^{*}, J_{\mu}=T_{\mu} J_{\mu}$
- Optimality condition:
$\mu:$ optimal $\quad<==>\quad T_{\mu} J^{*}=T J^{*}$
- Value iteration: For any (bounded) J and all x,

$$
J^{*}(x)=\lim _{k \rightarrow \infty}\left(T^{k} J\right)(x)
$$

- Policy iteration: Given μ^{k} :
- Policy evaluation: Find $J_{\mu^{k}}$ by solving

$$
J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}}
$$

- Policy improvement: Find μ^{k+1} such that

$$
T_{\mu^{k+1}} J_{\mu^{k}}=T J_{\mu^{k}}
$$

SOME KEY PROPERTIES

- Monotonicity property: For any functions J and J^{\prime} such that $J(x) \leq J^{\prime}(x)$ for all x, and any μ

$$
\begin{array}{rlr}
(T J)(x) \leq\left(T J^{\prime}\right)(x), & \forall x \\
\left(T_{\mu} J\right)(x) \leq\left(T_{\mu} J^{\prime}\right)(x), & \forall x
\end{array}
$$

Also

$$
J \leq T J \quad \Rightarrow \quad T^{k} J \leq T^{k+1} J, \quad \forall k
$$

- Constant Shift property: For any J, any scalar r, and any μ

$$
\begin{aligned}
(T(J+r e))(x)=(T J)(x)+\alpha r, & \forall x, \\
\left(T_{\mu}(J+r e)\right)(x) & =\left(T_{\mu} J\right)(x)+\alpha r,
\end{aligned} \quad \forall x, ~ l
$$

where e is the unit function $[e(x) \equiv 1]$ (holds for most DP models).

- A third important property that holds for some (but not all) DP models is that T and T_{μ} are contraction mappings (more on this later).

CONVERGENCE OF VALUE ITERATION

- If $J_{0} \equiv 0$,

$$
J^{*}(x)=\lim _{N \rightarrow \infty}\left(T^{N} J_{0}\right)(x), \quad \text { for all } x
$$

Proof: For any initial state x_{0}, and policy $\pi=$ $\left\{\mu_{0}, \mu_{1}, \ldots\right\}$,

$$
\begin{aligned}
J_{\pi}\left(x_{0}\right)= & E\left\{\sum_{k=0}^{\infty} \alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\} \\
= & E\left\{\sum_{k=0}^{N-1} \alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\} \\
& +E\left\{\sum_{k=N}^{\infty} \alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}
\end{aligned}
$$

from which
$J_{\pi}\left(x_{0}\right)-\frac{\alpha^{N} M}{1-\alpha} \leq\left(T_{\mu_{0}} \cdots T_{\mu_{N-1}} J_{0}\right)\left(x_{0}\right) \leq J_{\pi}\left(x_{0}\right)+\frac{\alpha^{N} M}{1-\alpha}$,
where $M \geq|g(x, u, w)|$. Take the min over π of both sides. Q.E.D.

BELLMAN'S EQUATION

- The optimal cost function J^{*} satisfies Bellman's Eq., i.e. $J^{*}=T J^{*}$.

Proof: For all x and N,

$$
J^{*}(x)-\frac{\alpha^{N} M}{1-\alpha} \leq\left(T^{N} J_{0}\right)(x) \leq J^{*}(x)+\frac{\alpha^{N} M}{1-\alpha},
$$

where $J_{0}(x) \equiv 0$ and $M \geq|g(x, u, w)|$.

- Apply T to this relation and use Monotonicity and Constant Shift,

$$
\begin{aligned}
\left(T J^{*}\right)(x)-\frac{\alpha^{N+1} M}{1-\alpha} & \leq\left(T^{N+1} J_{0}\right)(x) \\
& \leq\left(T J^{*}\right)(x)+\frac{\alpha^{N+1} M}{1-\alpha}
\end{aligned}
$$

- Take limit as $N \rightarrow \infty$ and use the fact

$$
\lim _{N \rightarrow \infty}\left(T^{N+1} J_{0}\right)(x)=J^{*}(x)
$$

to obtain $J^{*}=T J^{*}$. Q.E.D.

THE CONTRACTION PROPERTY

- Contraction property: For any bounded functions J and J^{\prime}, and any μ,

$$
\max _{x}\left|(T J)(x)-\left(T J^{\prime}\right)(x)\right| \leq \alpha \max _{x}\left|J(x)-J^{\prime}(x)\right|,
$$

$\max _{x}\left|\left(T_{\mu} J\right)(x)-\left(T_{\mu} J^{\prime}\right)(x)\right| \leq \alpha \max _{x}\left|J(x)-J^{\prime}(x)\right|$.
Proof: Denote $c=\max _{x \in S}\left|J(x)-J^{\prime}(x)\right|$. Then

$$
J(x)-c \leq J^{\prime}(x) \leq J(x)+c, \quad \forall x
$$

Apply T to both sides, and use the Monotonicity and Constant Shift properties:

$$
(T J)(x)-\alpha c \leq\left(T J^{\prime}\right)(x) \leq(T J)(x)+\alpha c, \quad \forall x
$$

Hence

$$
\left|(T J)(x)-\left(T J^{\prime}\right)(x)\right| \leq \alpha c, \quad \forall x .
$$

Similar for T_{μ}. Q.E.D.

IMPLICATIONS OF CONTRACTION PROPERTY

- We can strengthen our earlier result:
- Bellman's equation $J=T J$ has a unique solution, namely J^{*}, and for any bounded J, we have

$$
\lim _{k \rightarrow \infty}\left(T^{k} J\right)(x)=J^{*}(x), \quad \forall x
$$

Proof: Use

$$
\begin{aligned}
\max _{x}\left|\left(T^{k} J\right)(x)-J^{*}(x)\right| & =\max _{x}\left|\left(T^{k} J\right)(x)-\left(T^{k} J^{*}\right)(x)\right| \\
& \leq \alpha^{k} \max _{x}\left|J(x)-J^{*}(x)\right|
\end{aligned}
$$

- Special Case: For each stationary μ, J_{μ} is the unique solution of $J=T_{\mu} J$ and

$$
\lim _{k \rightarrow \infty}\left(T_{\mu}^{k} J\right)(x)=J_{\mu}(x), \quad \forall x
$$

for any bounded J.

- Convergence rate: For all k,

$$
\max _{x}\left|\left(T^{k} J\right)(x)-J^{*}(x)\right| \leq \alpha^{k} \max _{x}\left|J(x)-J^{*}(x)\right|
$$

NEC. AND SUFFICIENT OPT. CONDITION

- A stationary policy μ is optimal if and only if $\mu(x)$ attains the minimum in Bellman's equation for each x; i.e.,

$$
T J^{*}=T_{\mu} J^{*}
$$

Proof: If $T J^{*}=T_{\mu} J^{*}$, then using Bellman's equation $\left(J^{*}=T J^{*}\right)$, we have

$$
J^{*}=T_{\mu} J^{*},
$$

so by uniqueness of the fixed point of T_{μ}, we obtain $J^{*}=J_{\mu}$; i.e., μ is optimal.

- Conversely, if the stationary policy μ is optimal, we have $J^{*}=J_{\mu}$, so

$$
J^{*}=T_{\mu} J^{*} .
$$

Combining this with Bellman's equation ($J^{*}=$ $T J^{*}$), we obtain $T J^{*}=T_{\mu} J^{*}$. Q.E.D.

COMPUTATIONAL METHODS - AN OVERVIEW

- Typically must work with a finite-state system. Possibly an approximation of the original system.
- Value iteration and variants
- Gauss-Seidel and asynchronous versions
- Policy iteration and variants
- Combination with (possibly asynchronous) value iteration
- "Optimistic" policy iteration
- Linear programming
$\operatorname{maximize} \sum_{i=1}^{n} J(i)$
subject to $J(i) \leq g(i, u)+\alpha \sum_{j=1}^{n} p_{i j}(u) J(j), \quad \forall(i, u)$
- Versions with subspace approximation: Use in place of $J(i)$ a low-dim. basis function representation, with state features $\phi_{m}(i), m=1, \ldots, s$

$$
\tilde{J}(i, r)=\sum_{m=1}^{s} r_{m} \phi_{m}(i)
$$

and modify the basic methods appropriately.

USING Q-FACTORS I

- Let the states be $i=1, \ldots, n$. We can write Bellman's equation as

$$
J^{*}(i)=\min _{u \in U(i)} Q^{*}(i, u) \quad i=1, \ldots, n
$$

where

$$
Q^{*}(i, u)=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J^{*}(j)\right)
$$

for all (i, u)

- $Q^{*}(i, u)$ is called the optimal Q -factor of (i, u)
- Q-factors have optimal cost interpretation in an "augmented" problem whose states are i and $(i, u), u \in U(i)$ - the optimal cost vector is $\left(J^{*}, Q^{*}\right)$
- The Bellman Eq. is $J^{*}=T J^{*}, Q^{*}=F Q^{*}$ where

$$
\left(F Q^{*}\right)(i, u)=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \min _{v \in U(j)} Q^{*}(j, v)\right)
$$

- It has a unique solution.

USING Q-FACTORS II

- We can equivalently write the VI method as

$$
J_{k+1}(i)=\min _{u \in U(i)} Q_{k+1}(i, u), \quad i=1, \ldots, n
$$

where Q_{k+1} is generated for all i and $u \in U(i)$ by

$$
\begin{aligned}
& Q_{k+1}(i, u)=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \min _{v \in U(j)} Q_{k}(j, v)\right) \\
& \text { or } J_{k+1}=T J_{k}, Q_{k+1}=F Q_{k} .
\end{aligned}
$$

- Equal amount of computation ... just more storage.
- Having optimal Q-factors is convenient when implementing an optimal policy on-line by

$$
\mu^{*}(i)=\min _{u \in U(i)} Q^{*}(i, u)
$$

- Once $Q^{*}(i, u)$ are known, the model $[g$ and $\left.p_{i j}(u)\right]$ is not needed. Model-free operation.
- Stochastic/sampling methods can be used to calculate (approximations of) $Q^{*}(i, u)\left[\operatorname{not} J^{*}(i)\right]$ with a simulator of the system.

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

