
6.231 DYNAMIC PROGRAMMING

LECTURE 15

LECTURE OUTLINE

• Review of basic theory of discounted problems

• Monotonicity and contraction properties

• Contraction mappings in DP

• Discounted problems: Countable state space
with unbounded costs

• Generalized discounted DP

• An introduction to abstract DP
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DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim E

{

N−1
∑

αkg
(

xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

}

)

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E ,
u∈U(x)

{

g(x, u w) + αJ
w

(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x
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“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim (Tµ0
Tµ1

· · · kTµk
J0)(x), Jµ(x) = lim (TµJ0)(x)

k→∞ k→∞

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J and all
x:

J∗(x) = lim (T kJ)(x)
k→∞

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk
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MAJOR PROPERTIES

• Monotonicity property: For any functions J and
J ′ on the state space X such that J(x) ≤ J ′(x)
for all x ∈ X, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x ∈ X,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X.

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
∣

∣(TJ)(x)− (TJ ′)(x)
x

∣

≤ αmax
x

′)

∣

∣

∣J(x)− J ′(x)
∣

,

max
∣

∣(TµJ)(x)−(TµJ (x) αmax J(x) J ′(x)

∣

.
x

∣

≤
x

∣

−
∣

• Shorthand writing of th

∣

e contrac

∣

tion property

∣

‖TJ−TJ ′‖ ≤ α‖J−J ′‖, ‖T ′ ′
µJ−TµJ ‖ ≤ α‖J−J ‖,

where for any bounded function J , we denote by
‖J‖ the sup-norm

‖J‖ = max
x∈X

∣

∣J(x)
∣

∣.
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CONTRACTION MAPPINGS

• Given a real vector space Y with a norm ‖ · ‖
(see text for definitions).

• A function F : Y 7→ Y is said to be a contraction
mapping if for some ρ ∈ (0, 1), we have

‖Fy − Fz‖ ≤ ρ‖y − z‖, for all y, z ∈ Y.

ρ is called the modulus of contraction of F .

• Linear case, Y = ℜn: Fy = Ay + b is a con-
traction (for some norm ‖ · ‖) if and only if all
eigenvalues of A are strictly within the unit circle.

• For m > 1, we say that F is an m-stage con-

traction if Fm is a contraction.

• Important example: Let X be a set (e.g., state
space in DP), v : X 7→ ℜ be a positive-valued
function. Let B(X) be the set of all functions
J : X 7→ ℜ such that J(s)/v(s) is bounded over s.

• The weighted sup-norm on B(X):

‖J‖ = max
|J(s)|

s∈X v(s)
.

• Important special case: The discounted prob-
lem mappings T and Tµ [for v(s) ≡ 1, ρ = α].
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A DP-LIKE CONTRACTION MAPPING

• Let X = {1, 2, . . .}, and let F : B(X) 7→ B(X)
be a linear mapping of the form

(FJ)(i) = b(i) + a(i, j)J(j), i
j

∑

∈X

∀

where b(i) and a(i, j) are some scalars. Then F is
a contraction with modulus ρ if

∑

j∈X |a(i, j)| v(j)
v(i)

≤ ρ, ∀ i

[Think of the special case where a(i, j) are the
transition probs. of a policy].

• Let F : B(X) 7→ B(X) be the mapping

(FJ)(i) = min(FµJ)(i), i
µ∈M

∀

whereM is parameter set, and for each µ ∈ M , Fµ

is a contraction from B(X) to B(X) with modulus
ρ. Then F is a contraction with modulus ρ.
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CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If
F : B(X) 7→ B(X) is a contraction with modulus
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X)
such that

J∗ = FJ∗.

Furthermore, if J is any function in B(X), then
{F kJ} converges to J∗ and we have

‖F kJ − J∗‖ ≤ ρk‖J − J∗‖, k = 1, 2, . . . .

• Similar result if F is an m-stage contraction
mapping.

• This is a special case of a general result for
contraction mappings F : Y 7→ Y over normed
vector spaces Y that are complete: every sequence
{yk} that is Cauchy (satisfies ‖ym − yn‖ → 0 as
m,n → ∞) converges.

• The space B(X) is complete [see the text (Sec-
tion 1.5) for a proof].
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GENERAL FORMS OF DISCOUNTED DP

• Monotonicity assumption: If J, J ′ ∈ R(X) and
J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• Contraction assumption:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X).

− For some α ∈ (0, 1) and all J, J ′ ∈ B(X), H
satisfies

∣

∣H(x, u, J)−H(x, u, J ′)
∣

∣ ≤ αmax
∣

∣J(y) )
y

−J ′(y
∈X

∣

for all x

∣

∈ X and u ∈ U(x).

• We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions (with identical proofs!)

• With just the monotonicity assumption (as in
shortest path problem) we can still show various
forms of the basic results under appropriate as-
sumptions (like in the SSP problem)
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EXAMPLES

• Discounted problems

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)
)}

• Discounted Semi-Markov Problems

n

H(x, u, J) = G(x, u) +
∑

mxy(u)J(y)
y=1

where mxy are “discounted” transition probabili-
ties, defined by the transition distributions

• Deterministic Shortest Path Problems

(
)

{

a J
H(x, u, J = xu + u) if u 6= t,

axt if u = t

where t is the destination

• Minimax Problems

H(x, u, J) = max
[

g(x, u, w)+αJ
w∈W (x,u)

(

f(x, u, w)
)]
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RESULTS USING CONTRACTION

• The mappings Tµ and T are sup-norm contrac-
tion mappings with modulus α over B(X), and
have unique fixed points in B(X), denoted Jµ and
J∗, respectively (cf. Bellman’s equation). Proof :
From contraction assumption and fixed point Th.

• For any J ∈ B(X) and µ ∈ M,

lim T k
µJ = Jµ, lim T kJ = J∗

k→∞ k→∞

(cf. convergence of value iteration). Proof : From
contraction property of Tµ and T .

• We have TµJ∗ = TJ∗ if and only if Jµ = J∗

(cf. optimality condition). Proof : TµJ∗ = TJ∗,
then T ∗

µJ = J∗, implying J∗ = Jµ. Conversely,
if Jµ = J∗, then TµJ∗ = TµJµ = Jµ = J∗ = TJ∗.

• Useful bound for Jµ: For all J ∈ B(X), µ ∈ M

‖Jµ − J
‖T‖ ≤ µJ − J‖

1− α

Proof: Take limit as k → ∞ in the relation

k k

‖T k
µJ−J‖ ≤

∑

T
ℓ=1

‖ ℓ
µJ−T ℓ−1

µ J‖ ≤ ‖TµJ−J‖
∑

αℓ−1

ℓ=1
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RESULTS USING MON. AND CONTRACTION I

• Existence of a nearly optimal policy: For every
ǫ > 0, there exists µǫ ∈ M such that

J∗(x) ≤ Jµǫ(x) ≤ J∗(x) + ǫv(x), ∀ x ∈ X

Proof: For all µ ∈ M, we have J∗ = TJ∗ ≤ T J∗
µ .

By monotonicity, J∗ ≤ T k+1
µ J∗ ≤ T k

µJ∗ for all k.
Taking limit as k → ∞, we obtain J∗ ≤ Jµ.

Also, choose µǫ ∈ M such that for all x ∈ X,

‖TµǫJ∗−J∗‖ =
∥

∥(TµǫJ∗)(x)−(TJ∗)(x)
∥

∥ ≤ ǫ(1−α)

From the earlier error bound, we have

‖Jµ
‖− ∗

‖T‖ ≤ µJ∗ − J∗

J ,
1− α

∀ µ ∈ M

Combining the preceding two relations,

∣

∣Jµǫ(x)− J∗(x)
∣

∣

v(x)
≤ ǫ(1− α)

1− α
= ǫ, ∀ x ∈ X

• Optimality of J∗ over stationary policies:

J∗(x) = min Jµ(x),
µ∈M

∀ x ∈ X

Proof: Take ǫ ↓ 0 in the preceding result.
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RESULTS USING MON. AND CONTRACTION II

• Nonstationary policies: Consider the set Π of
all sequences π = {µ0, µ1, . . .} with µk ∈ M for
all k, and define for any J ∈ B(X)

Jπ(x) = lim sup(Tµ0Tµ1 · · ·Tµk
J)(x), x

k→∞
∀ ∈ X,

(the choice of J does not matter because of the
contraction property).

• Optimality of J∗ over nonstationary policies:

J∗(x) = min Jπ(x),
π∈Π

∀ x ∈ X

Proof: Use our earlier existence result to show
that for any ǫ > 0, there is µǫ such that
∗

‖Jµǫ −
J ‖ ≤ ǫ(1− α). We have

J∗(x) = min Jµ(x) ≥ min Jπ(x)
µ∈M π∈Π

Also
T kJ ≤ Tµ0 · · ·Tµk−1J

Take limit as k → ∞ to obtain J ≤ Jπ for all
π ∈ Π.

12



MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



