
6.231 DYNAMIC PROGRAMMING

LECTURE 17

LECTURE OUTLINE

• Undiscounted problems

• Stochastic shortest path problems (SSP)

• Proper and improper policies

• Analysis and computational methods for SSP

• Pathologies of SSP

• SSP under weak conditions
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UNDISCOUNTED PROBLEMS

• System: xk+1 = f(xk, uk, wk)

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim sup E g xk, µk(xk), wk
wN→∞ k

k=0,1,...

{

k

∑

=0

}

( )

Note that Jπ(x0) and J∗(x0) can be +∞ or −∞
• Shorthand notation for DP mappings

(TJ)(x) = min E
{

g(x, u, w) + J
u∈U(x) w

(TµJ)(x) = E g x, µ(x), w + J f

(

f(x, u, w) , ∀ x

{ (

(x, µ(x), w

)

)

}

, ∀ x
w

• T and Tµ need not be

)

contr

(

actions in ge

)

n

}

eral,
but their monotonicity is helpful (see Ch. 4, Vol.
II of text for an analysis).

• SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

− They share features of both.

− Some nice theory is recovered thanks to the
termination state, and special conditions.
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SSP THEORY SUMMARY I

• As before, we have a cost-free term. state t, a
finite number of states 1, . . . , n, and finite number
of controls.

• Mappings T and Tµ (modified to account for
termination state t). For all i = 1, . . . , n:

n

(TµJ)(i) = g
(

i, µ(i)
)

+
∑

pij µ(i) J(j),
j=1



n

( )

(TJ)(i) = min g(i, u) +
∑

pij(u)J(j) ,
u∈U(i)

j=1



or TµJ = gµ + PµJ and TJ = minµ[gµ + Pµ



J ].

• Definition: A stationary policy µ is called proper,
if under µ, from every state i, there is a positive
probability path that leads to t.

• Important fact: (To be shown) If µ is proper,
Tµ is contraction w. r. t. some weighted sup-norm

1
max

i

1
(

vi
| TµJ)(i)−(TµJ ′)(i)| ≤ ρµ max

i
i

v
|J(i) (

i
−J ′ )|

• T is similarly a contraction if all µ are proper
(the case discussed in the text, Ch. 7, Vol. I).
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SSP THEORY SUMMARY II

• The theory can be pushed one step further.
Instead of all policies being proper, assume that:

(a) There exists at least one proper policy

(b) For each improper µ, Jµ(i) = ∞ for some i

• Example: Deterministic shortest path problem
with a single destination t.

− States <=> nodes; Controls <=> arcs

− Termination state <=> the destination

− Assumption (a) <=> every node is con-
nected to the destination

− Assumption (b) <=> all cycle costs > 0

• Note that T is not necessarily a contraction.

• The theory in summary is as follows:

− J∗ is the unique solution of Bellman’s Eq.

− µ∗ is optimal if and only if T ∗J∗ ∗
µ = TJ

− VI converges: T kJ → J∗ for all J ∈ ℜn

− PI terminates with an optimal policy, if started
with a proper policy
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SSP ANALYSIS I

• For a proper policy µ, Jµ is the unique fixed
point of Tµ, and T k

µJ → Jµ for all J (holds by the
theory of Vol. I, Section 7.2)

• Key Fact: A µ satisfying J ≥ TµJ for some
J ∈ ℜn must be proper - true because

k−1

J ≥ T k
µJ = P k

µJ +
∑

Pm
µ gµ

m=0

since Jµ =
∑∞

m=0 P
m
µ gµ and some component of

the term on the right blows up as k → ∞ if µ is
improper (by our assumptions).

• Consequence: T can have at most one fixed
point within ℜn.

Proof: If J and J ′ are two fixed points, select µ
and µ′ such that J = TJ = TµJ and J ′ = TJ ′ =
Tµ′J ′. By preceding assertion, µ and µ′ must be
proper, and J = Jµ and J ′ = Jµ′ . Also

J = T kJ ≤ T k ′′
µ′J → Jµ = J

Similarly, J ′ ≤ J , so J = J ′.
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SSP ANALYSIS II

• We first show that T has a fixed point, and also
that PI converges to it.

• Use PI. Generate a sequence of proper policies
{µk} starting from a proper policy µ0.

• µ1 is proper and Jµ0 ≥ Jµ1 since

Jµ0 = Tµ0J k
µ0 ≥ TJµ0 = Tµ1Jµ0 ≥ T

µ1Jµ0 ≥ Jµ1

• Thus {Jµk} is nonincreasing, some policy µ̄ is
repeated and Jµ̄ = TJµ̄. So Jµ̄ is fixed point of T .

• Next show that T kJ → Jµ̄ for all J , i.e., VI
converges to the same limit as PI. (Sketch: True
if J = Jµ̄, argue using the properness of µ̄ to show
that the terminal cost difference J − Jµ̄ does not
matter.)

• To show Jµ̄ = J∗, for any π = {µ0, µ1, . . .}

Tµ0 · · ·Tµk−1J0 ≥ T kJ0,

where J0 ≡ 0. Take lim sup as k → ∞, to obtain
Jπ ≥ Jµ̄, so µ̄ is optimal and Jµ̄ = J∗.
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SSP ANALYSIS III

• Contraction Property: If all policies are proper
(cf. Section 7.1, Vol. I), Tµ and T are contractions
with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
inal, but the transition costs are all equal to −1.

ˆLet J be the corresponding optimal cost vector.
For all µ,

n n

Ĵ(i) = −1+ min
∑

pij(u)Ĵ(j) ≤ −1+ )
u∈U(i)

j=

∑

pij µ(i) Ĵ(j

1 j=1

( )

ˆFor vi = −J(i), we have vi ≥ 1, and for all µ,

n
∑

pij
(

µ(i)
)

vj ≤ vi − 1 ≤ ρ vi, i = 1, . . . , n,
j=1

where
vi 1

ρ = max
−

i=1,...,n
< 1.

vi

This implies Tµ and T are contractions of modu-
lus ρ for norm ‖J‖ = maxi=1,...,n |J(i)|/vi (by the
results of earlier lectures). 7



SSP ALGORITHMS

• All the basic algorithms have counterparts un-
der our assumptions; see the text (Ch. 3, Vol. II)

• “Easy” case: All policies proper, in which case
the mappings T and Tµ are contractions

• Even with improper (infinite cost) policies all
basic algorithms have satisfactory counterparts

− VI and PI

− Optimistic PI

− Asynchronous VI

− Asynchronous PI

− Q-learning analogs

• ** THE BOUNDARY OF NICE THEORY **

• Serious complications arise under any one of the
following:

− There is no proper policy

− There is improper policy with finite cost ∀ i

− The state space is infinite and/or the control
space is infinite [infinite but compact U(i)
can be dealt with]
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PATHOLOGIES I: DETERM. SHORTEST PATHS

a 1 2 1 2 t b

t b Destination

t b c u′, Cost 0

u, Cost b

• Two policies, one proper (apply u), one im-
proper (apply u′)

• Bellman’s equation is

J(1) = min
[

J(1), b]

Set of solutions is (−∞, b].

• Case b > 0, J∗ = 0: VI does not converge to
J∗ except if started from J∗. PI may get stuck
starting from the inferior proper policy

• Case b < 0, J∗ = b: VI converges to J∗ if
started above J∗, but not if started below J∗. PI
can oscillate (if started with u′ it generates u, and
if started with u it can generate u′)
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PATHOLOGIES II: BLACKMAILER’S DILEMMA

• Two states, state 1 and the termination state t.

• At state 1, choose u ∈ (0, 1] (the blackmail
amount demanded) at a cost −u, and move to t
with prob. u2, or stay in 1 with prob. 1− u2.

• Every stationary policy is proper, but the con-
trol set in not finite (also not compact).

• For any stationary µ with µ(1) = u, we have

Jµ(1) = −u+ (1− u2)Jµ(1)

from which Jµ(1) = − 1
u

• Thus J∗(1) = −∞, and there is no optimal
stationary policy.

• A nonstationary policy is optimal: demand
µk(1) = γ/(k + 1) at time k, with γ ∈ (0, 1/2).

− Blackmailer requests diminishing amounts over
time, which add to ∞.

− The probability of the victim’s refusal dimin-
ishes at a much faster rate, so the probabil-
ity that the victim stays forever compliant is
strictly positive.
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SSP UNDER WEAK CONDITIONS I

• Assume there exists a proper policy, and J∗ is
real-valued. Let

Ĵ(i) = min Jµ(i), i = 1, . . . , n
µ:proper

ˆ ˆNote that we may have J =6 J∗ [i.e., J(i) 6= J∗(i)
for some i].

• ˆIt can be shown that J is the unique solution
ˆof Bellman’s equation within the set {J | J ≥ J}

• ˆ ˆAlso VI converges to J starting from any J ≥ J

• The analysis is based on the δ-perturbed prob-
lem: adding a small δ > 0 to g. Then:

− All improper policies have infinite cost for
some states in the δ-perturbed problem

− All proper policies have an additional O(δ)
cost for all states

− The optimal cost J∗
δ of the δ-perturbed prob-
ˆlem converges to J as δ ↓ 0

• There is also a PI method that generates a
ˆsequence {µk} with Jµk → J . Uses sequence δk ↓

0, and policy evaluation based on the δk-perturbed
problems with δk ↓ 0. 11



SSP UNDER WEAK CONDITIONS II

• J∗ need not be a solution of Bellman’s equation!
Also Jµ for an improper policy µ.

Cost 0

Destination

2

1

3

4

5

Cost 0

Cost 1

Cost 1 Cost −1

Cost −1 Cost 2Cost −2

6

7

Prob. p Prob. 1− p

t

)

t b

0 1 3 4 5

0 2 3 4 5

0 1 2 4 5

0 1 2 3 5

0 1 2 3 4

u Cost

1

1 u Cost 1

u Cost 1Cost 0 CostCost 0 Cost 2 Cost

0 1 2 3 4 5 7

0 1 2 3 4 5 6

p

1 2 b

• For p = 1/2, we have

Jµ(1) = 0, Jµ(2) = Jµ(5) = 1, Jµ(3) = Jµ(7) = 0, Jµ(4) = Jµ(6) = 2,

Bellman Eq. at state 1, J (1) = 1
µ Jµ(2)+Jµ(5) ,2

is violated.

( )

• References: Bertsekas, D. P., and Yu, H., 2015.
“Stochastic Shortest Path Problems Under Weak
Conditions,” Report LIDS-2909; Math. of OR, to
appear. Also the on-line updated Ch. 4 of the
text. 12
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