6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

- Aggregation as an approximation methodology
- Aggregate problem
- Examples of aggregation
- Simulation-based aggregation
- Q-Learning

PROBLEM APPROXIMATION - AGGREGATION

- Another major idea in ADP is to approximate the cost-to-go function of the problem with the cost-to-go function of a simpler problem. The simplification is often ad-hoc/problem dependent.
- Aggregation is a systematic approach for problem approximation. Main elements:
- Introduce a few "aggregate" states, viewed as the states of an "aggregate" system
- Define transition probabilities and costs of the aggregate system, by relating original system states with aggregate states
- Solve (exactly or approximately) the "aggregate" problem by any kind of value or policy iteration method (including simulationbased methods)
- Use the optimal cost of the aggregate problem to approximate the optimal cost of the original problem
- Hard aggregation example: Aggregate states are subsets of original system states, treated as if they all have the same cost.

AGGREGATION/DISAGGREGATION PROBS

- The aggregate system transition probabilities are defined via two (somewhat arbitrary) choices

- For each original system state j and aggregate state y, the aggregation probability $\phi_{j y}$
- The "degree of membership of j in the aggregate state y."
- In hard aggregation, $\phi_{j y}=1$ if state j belongs to aggregate state/subset y.
- For each aggregate state x and original system state i, the disaggregation probability $d_{x i}$
- The "degree of i being representative of x."
- In hard aggregation, one possibility is all states i that belongs to aggregate state/subset x have equal $d_{x i}$.

AGGREGATE PROBLEM

- The transition probability from aggregate state x to aggregate state y under control u
$\hat{p}_{x y}(u)=\sum_{i=1}^{n} d_{x i} \sum_{j=1}^{n} p_{i j}(u) \phi_{j y}, \quad$ or $\hat{P}(u)=D P(u) \Phi$ where the rows of D and Φ are the disaggr. and aggr. probs.
- The aggregate expected transition cost is $\hat{g}(x, u)=\sum_{i=1}^{n} d_{x i} \sum_{j=1}^{n} p_{i j}(u) g(i, u, j), \quad$ or $\hat{g}=D P g$
- The optimal cost function of the aggregate problem, denoted \hat{R}, is

$$
\hat{R}(x)=\min _{u \in U}\left[\hat{g}(x, u)+\alpha \sum_{y} \hat{p}_{x y}(u) \hat{R}(y)\right], \quad \forall x
$$

or $\hat{R}=\min _{u}[\hat{g}+\alpha \hat{P} \hat{R}]$ - Bellman's equation for the aggregate problem.

- The optimal cost J^{*} of the original problem is approximated using interpolation, $J^{*} \approx \tilde{J}=\Phi \hat{R}$:

$$
\tilde{J}(j)=\sum \phi_{j y} \hat{R}(y), \quad \forall j
$$

EXAMPLE I: HARD AGGREGATION

- Group the original system states into subsets, and view each subset as an aggregate state
- Aggregation probs: $\phi_{j y}=1$ if j belongs to aggregate state y.

$$
\begin{aligned}
& \begin{array}{|ccc|c|}
\hline \bullet^{1} & & \bullet^{2} & \bullet^{3} \\
& x_{1} & & x_{2} \\
\bullet^{4} & & \bullet & \\
\hline \bullet^{7} & x_{3} & \bullet^{8} & x_{4} \\
\hline
\end{array} \\
& \Phi=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Disaggregation probs: There are many possibilities, e.g., all states i within aggregate state x have equal prob. $d_{x i}$.
- If optimal cost vector J^{*} is piecewise constant over the aggregate states/subsets, hard aggregation is exact. Suggests grouping states with "roughly equal" cost into aggregates.
- Soft aggregation (provides "soft boundaries" between aggregate states).

EXAMPLE II: FEATURE-BASED AGGREGATION

- If we know good features, it makes sense to group together states that have "similar features"
- Essentially discretize the features and assign a weight to each discretization point

- A general approach for passing from a featurebased state representation to an aggregation-based architecture
- Hard aggregation architecture based on features is more powerful (nonlinear/piecewise constant in the features, rather than linear)
- ... but may require many more aggregate states to reach the same level of performance as the corresponding linear feature-based architecture

EXAMPLE III: REP. STATES/COARSE GRID

- Choose a collection of "representative" original system states, and associate each one of them with an aggregate state. Then "interpolate"

- Disaggregation probs. are $d_{x i}=1$ if i is equal to representative state x.
- Aggregation probs. associate original system states with convex combinations of rep. states

$$
j \sim \sum_{y \in \mathcal{A}} \phi_{j y} y
$$

- Well-suited for Euclidean space discretization
- Extends nicely to continuous state space, including belief space of POMDP

EXAMPLE IV: REPRESENTATIVE FEATURES

- Choose a collection of "representative" subsets of original system states, and associate each one of them with an aggregate state

- Common case: S_{x} is a group of states with "similar features"
- Hard aggregation is special case: $\cup_{x} S_{x}=\{1, \ldots, n\}$
- Aggregation with representative states is special case: S_{x} consists of just one state
- With rep. features, aggregation approach is a special case of projected equation approach with "seminorm" projection. So the TD methods and multistage Bellman Eq. methodology apply

APPROXIMATE PI BY AGGREGATION

- Consider approximate PI for the original problem, with evaluation done using the aggregate problem (other possibilities exist - see the text)
- Evaluation of policy $\mu: \tilde{J}=\Phi R$, where $R=$ $D T_{\mu}(\Phi R)$ (R is the vector of costs of aggregate states corresponding to μ). May use simulation.
- Similar form to the projected equation $\Phi R=$ $\Pi T_{\mu}(\Phi R)$ (ΦD in place of Π).
- Advantages: It has no problem with exploration or with oscillations.
- Disadvantage: The rows of D and Φ must be probability distributions.

Q-LEARNING I

- Q-learning has two motivations:
- Dealing with multiple policies simultaneously
- Using a model-free approach [no need to know $p_{i j}(u)$, only be able to simulate them]
- The Q-factors are defined by

$$
Q^{*}(i, u)=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J^{*}(j)\right), \quad \forall(i, u)
$$

- Since $J^{*}=T J^{*}$, we have $J^{*}(i)=\min _{u \in U(i)} Q^{*}(i, u)$ so the Q factors solve the equation

$$
Q^{*}(i, u)=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \min _{u^{\prime} \in U(j)} Q^{*}\left(j, u^{\prime}\right)\right)
$$

- $Q^{*}(i, u)$ can be shown to be the unique solution of this equation. Reason: This is Bellman's equation for a system whose states are the original states $1, \ldots, n$, together with all the pairs (i, u).
- Value iteration: For all (i, u)

$$
Q(i, u):=\sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha \min _{u^{\prime} \in U(j)} Q\left(j, u^{\prime}\right)\right)
$$

Q-LEARNING II

- Use some randomization to generate sequence of pairs $\left(i_{k}, u_{k}\right)$ [all pairs (i, u) are chosen infinitely often]. For each k, select j_{k} according to $p_{i_{k} j}\left(u_{k}\right)$.
- Q-learning algorithm: updates $Q\left(i_{k}, u_{k}\right)$ by

$$
\begin{aligned}
& Q\left(i_{k}, u_{k}\right):=\left(1-\gamma_{k}\left(i_{k}, u_{k}\right)\right) Q\left(i_{k}, u_{k}\right) \\
& \quad+\gamma_{k}\left(i_{k}, u_{k}\right)\left(g\left(i_{k}, u_{k}, j_{k}\right)+\alpha \min _{u^{\prime} \in U\left(j_{k}\right)} Q\left(j_{k}, u^{\prime}\right)\right)
\end{aligned}
$$

- Stepsize $\gamma_{k}\left(i_{k}, u_{k}\right)$ must converge to 0 at proper rate (e.g., like $1 / k$).
- Important mathematical point: In the Q-factor version of Bellman's equation the order of expectation and minimization is reversed relative to the ordinary cost version of Bellman's equation:

$$
J^{*}(i)=\min _{u \in U(i)} \sum_{j=1}^{n} p_{i j}(u)\left(g(i, u, j)+\alpha J^{*}(j)\right)
$$

- Q-learning can be shown to converge to true/exact Q-factors (sophisticated stoch. approximation proof).
- Major drawback: Large number of pairs (i, u) no function approximation is used.

Q-FACTOR APPROXIMATIONS

- Basis function approximation for Q-factors:

$$
\tilde{Q}(i, u, r)=\phi(i, u)^{\prime} r
$$

- We can use approximate policy iteration and LSPE/LSTD/TD for policy evaluation (exploration issue is acute).
- Optimistic policy iteration methods are frequently used on a heuristic basis.
- Example (very optimistic). At iteration k, given r_{k} and state/control $\left(i_{k}, u_{k}\right)$:
(1) Simulate next transition $\left(i_{k}, i_{k+1}\right)$ using the transition probabilities $p_{i_{k} j}\left(u_{k}\right)$.
(2) Generate control u_{k+1} from

$$
u_{k+1}=\arg \min _{u \in U\left(i_{k+1}\right)} \tilde{Q}\left(i_{k+1}, u, r_{k}\right)
$$

(3) Update the parameter vector via

$$
r_{k+1}=r_{k}-(\text { LSPE or TD-like correction })
$$

- Unclear validity. Solid basis for aggregation case, and for case of optimal stopping (see text).

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

