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These lecture slides are based on the two-
volume book: “Dynamic Programming and
Optimal Control” Athena Scientific, by D.
P. Bertsekas (Vol. I, 3rd Edition, 2005; Vol.
II, 4th Edition, 2012); see

http://www.athenasc.com/dpbook.html

Two related reference books:

(1) “Abstract Dynamic Programming,” by
D. P. Bertsekas, Athena Scientific, 2013

(2) “Neuro-Dynamic Programming,” Athena
Scientific, by D. P. Bertsekas and J. N.
Tsitsiklis, 1996

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.
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6.231: DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Problem Formulation

• Examples

• The Basic Problem

• Significance of Feedback
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DP AS AN OPTIMIZATION METHODOLOGY

• Generic optimization problem:

min g(u)
u∈U

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set

• Categories of problems:

− Discrete (U is finite) or continuous

− Linear (g is linear and U is polyhedral) or
nonlinear

− Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) = Ew G(u,w)

where w is a random p

{

arameter

}

.

• DP can deal with complex stochastic problems
where information about w becomes available in
stages, and the decisions are also made in stages
and make use of this information.
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BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called distur-
bance or noise depending on the context)

− N : Horizon or number of times control is
applied

• Cost function that is additive over time

E

{

N−1

gN (xN ) +
∑

gk(xk, uk, wk)
k=0

}

• Alternative system description: P (xk+1 | xk, uk)

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk)
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INVENTORY CONTROL EXAMPLE

uk

Stock ordered at
Period k

Stock at Period k

xk
Stock at Period k + 1

Inventory System

Cost of Period k

r(xk) + cuk

xk + 1 = xk + uk - wk

Demand at Period kwk

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time

E

{

N−1

gN (xN ) +
∑

gk(xk, uk, wk)
k=0

}

= E

{

N−1
∑

(

cuk + r(xk + uk

k=0

− wk)

}

• Optimization over policies: Rules/functio

)

ns uk =
µk(xk) that map states to controls
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ADDITIONAL ASSUMPTIONS

• The set of values that the control uk can take
depend at most on xk and not on prior x or u

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

− Otherwise past values of w or x would be
useful for future optimization

• Sequence of events envisioned in period k:

− xk occurs according to

xk = fk−1

(

xk−1, uk−1, wk−1

− uk is selected with knowledge of x

)

k, i.e.,

uk ∈ Uk(xk)

− wk is random and generated according to a
distribution

Pwk
(xk, uk)
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DETERMINISTIC FINITE-STATE PROBLEMS

• Scheduling example: Find optimal sequence of
operations A, B, C, D

• A must precede B, and C must precede D

• Given startup cost SA and SC , and setup tran-
sition cost Cmn from operation m to operation n

A

SA

C

SC

AB

CAB

ACCAC

CDA

CAD

ABC

CA

CCD CD

ACD

ACB

CAB

CAD

CBC

CCB

CCD

CAB

CCA

CDA

CCD

CBD

CDB

CBD

CDB

CAB

Initial
State
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STOCHASTIC FINITE-STATE PROBLEMS

• Example: Find two-game chess match strategy

• Timid play draws with prob. pd > 0 and loses
with prob. 1−pd. Bold play wins with prob. pw <
1/2 and loses with prob. 1− pw

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

pd

pd

pd

1 - pd

1 - pd

1 - pd

1 - pw

pw

1 - pw

pw

1 - pw

pw

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play

pd

0 - 0
1 - pd

0 - 1

0 - 0

0 - 1

1 - pw

pw
0.5-0.5

1st Game / Bold Play

1 -  0
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BASIC PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control contraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

N−1

Jπ(x0) = E

{

gN (xN ) +
∑

gk(xk, µk(xk), wk)
k=0

}

• Optimal cost function

J∗(x0) = min Jπ(x0)
π

• Optimal policy π∗ satisfies

Jπ∗(x0) = J∗(x0)

When produced by DP, π∗ is independent of x0.
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SIGNIFICANCE OF FEEDBACK

• Open-loop versus closed-loop policies
wk

u  = m (x )k k k           System xk

x  = f (x ,u ,w )k + 1 k k k k

mk

uk = µk(xk)

) µk

• In deterministic problems open loop is as good
as closed loop

• Value of information; chess match example

• Example of open-loop policy: Play always bold

• Consider the closed-loop policy: Play timid if
and only if you are ahead

Timid Play

1 - pd

pd

Bold Play

0 - 0

1 -  0

pw

1 - pw

0 - 1

1.5-0.5

1 - 1

1 -  1Bold Play
pw

1 - pw

0 - 2
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VARIANTS OF DP PROBLEMS

• Continuous-time problems

• Imperfect state information problems

• Infinite horizon problems

• Suboptimal control
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LECTURE BREAKDOWN

• Finite Horizon Problems (Vol. 1, Ch. 1-6)

− Ch. 1: The DP algorithm (2 lectures)

− Ch. 2: Deterministic finite-state problems (1
lecture)

− Ch. 4: Stochastic DP problems (2 lectures)

− Ch. 5: Imperfect state information problems
(2 lectures)

− Ch. 6: Suboptimal control (2 lectures)

• Infinite Horizon Problems - Simple (Vol. 1, Ch.
7, 3 lectures)

********************************************

• Infinite Horizon Problems - Advanced (Vol. 2)

− Chs. 1, 2: Discounted problems - Computa-
tional methods (3 lectures)

− Ch. 3: Stochastic shortest path problems (2
lectures)

− Chs. 6, 7: Approximate DP (6 lectures)
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COURSE ADMINISTRATION

• Homework ... once a week or two weeks (30%
of grade)

• In class midterm, near end of October ... will
cover finite horizon and simple infinite horizon ma-
terial (30% of grade)

• Project (40% of grade)

• Collaboration in homework allowed but indi-
vidual solutions are expected

• Prerequisites: Introductory probability, good
gasp of advanced calculus (including convergence
concepts)

• Textbook: Vol. I of text is required. Vol. II
is strongly recommended, but you may be able to
get by without it using OCW material (including
videos)
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A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment or precise mathematical statements

• Figures are meant to convey and enhance ideas,
not to express them precisely

• Omitted proofs and a much fuller discussion
can be found in the textbook, which these slides
follow
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6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• The basic problem

• Principle of optimality

• DP example: Deterministic problem

• DP example: Stochastic problem

• The general DP algorithm

• State augmentation
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BASIC PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control constraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

N−1

Jπ(x0) = E

{

gN (xN ) +
∑

gk(xk, µk(xk), wk)
k=0

}

• Optimal cost function

J∗(x0) = min Jπ(x0)
π

• Optimal policy π∗ is one that satisfies

Jπ∗(x0) = J∗(x0)
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PRINCIPLE OF OPTIMALITY

• Let π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} be optimal policy

• Consider the “tail subproblem” whereby we are
at xi at time i and wish to minimize the “cost-to-
go” from time i to time N

{

N−1

E gN (xN ) +
∑

gk
(

xk, µk(xk), wk

k=i

}

)

and the “tail policy” {µ∗
i , µ

∗
i+1, . . . , µ

∗
N−1}

0 i N

xi Tail Subproblem

• Principle of optimality : The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

• DP first solves ALL tail subroblems of final
stage

• At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length
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DETERMINISTIC SCHEDULING EXAMPLE

• Find optimal sequence of operations A, B, C,
D (A must precede B and C must precede D)

A

C

AB

AC

CDA

ABC

CA

CD

ACD

ACB

CAB

CAD

Initial
State1 0

7 6

2

8
6

6

2

2

9

3

3
3

3

3

3

5

1

5

4
4

3

1

5

4

• Start from the last tail subproblem and go back-
wards

• At each state-time pair, we record the optimal
cost-to-go and the optimal decision
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STOCHASTIC INVENTORY EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk  + 1 = xk  + uk -  wk

uk
Cost of Period k

cuk + r (xk  + uk - wk)

• Tail Subproblems of Length 1:

JN−1(xN−1) = min E N
w

{

cu −1
uN−1≥0 N−1

+ r(xN−1 + uN−1 − wN−1)
}

• Tail Subproblems of Length N − k:

Jk(xk) = min E cuk + r(xk + uk
uk≥0wk

− wk)

+ J

{

k+1(xk + uk − wk)
}

• J0(x0) is opt. cost of initial state x0
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DP ALGORITHM

• Start with

JN (xN ) = gN (xN ),

and go backwards using

Jk(xk) = min E k
uk∈Uk(x )wk

{

g (xk, uk, wk)
k

+ Jk+1

(

fk(xk, uk, wk)
)}

, k = 0, 1, . . . , N − 1.

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

π∗ = {µ∗
0, . . . , µ

∗
N−1}

where µ∗
k(xk) minimizes in the right side above for

each xk and k, is optimal

• Justification: Proof by induction that Jk(xk) is
equal to J∗

k (xk), defined as the optimal cost of the
tail subproblem that starts at time k at state xk

• Note:

− ALL the tail subproblems are solved (in ad-
dition to the original problem)

− Intensive computational requirements
20



PROOF OF THE INDUCTION STEP

• Let πk =
{

µk, µk+1, . . . , µN−1

}

denote a tail
policy from time k onward

• Assume that Jk+1(xk+1) = J∗
k+1(xk+1). Then

∗Jk (xk) = min E

{

gk
(

xk, µk(xk), wk
(µk,πk+1) wk,...,wN−1

N−1

)

+ gN (xN ) +
∑

gi
(

xi, µi(xi), wi

i=k+1

}

)

= min E

{

gk
(

xk, µk(xk), wk
µk wk

)

N−1

+ min E gN (xN ) + gi xi, µi(xi), wi
πk+1

[

wk+1,...,wN−1

{

i=k+1

}]}

∑

= min E x

(

{

gk
(

k, µk(xk), wk

)

+ ∗J
(

fk
(

xk, µk(xk), w

)

k+1 k
µk wk

= min E
{

gk
(

xk, µk(xk), wk

)

+ Jk+1

(

fk xk, µk(xk), wk

))}

µk wk

= min E g

(

{

k(xk, uk, wk) + Jk+1

(

fk(xk, uk, wk)

))}

uk∈Uk(xk) wk

= Jk(xk)

)}
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LINEAR-QUADRATIC ANALYTICAL EXAMPLE

Temperature
         u0

Temperature
          u1

Final 
Temperature x2

Initial 
Temperature x0

Oven 1 Oven 2x1

• System

xk+1 = (1− a)xk + auk, k = 0, 1,

where a is given scalar from the interval (0, 1)

• Cost
r(x2 − T )2 + u2

0 + u2
1

where r is given positive scalar

• DP Algorithm:

J2(x2) = r(x2 − T )2

2
J1(x1) = min

[

u2
1 + r (1− a)x1 + au1

u
− T

1

]

J0(x0) = min

( )

u0

[

u2
0 + J1

(

(1− a)x0 + au0

)]
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STATE AUGMENTATION

• When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate/augment the state

• DP algorithm still applies, but the problem gets
BIGGER

• Example: Time lags

xk+1 = fk(xk, xk−1, uk, wk)

• Introduce additional state variable yk = xk−1.
New system takes the form

(

xk+1 f uk, w )
= k(xk, yk, k

yk+1

) (

xk

)

View x̃k = (xk, yk) as the new state.

• DP algorithm for the reformulated problem:

Jk(xk, xk−1) = min E
uk∈Uk(xk) wk

{

gk(xk, uk, wk)

+ Jk+1

(

fk(xk, xk−1, uk, wk), xk

)

}
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6.231 DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Deterministic finite-state DP problems

• Backward shortest path algorithm

• Forward shortest path algorithm

• Shortest path examples

• Alternative shortest path algorithms
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DETERMINISTIC FINITE-STATE PROBLEM

. . .

. . .

. . .

Stage 0 Stage 1 Stage 2 Stage N  - 1 Stage N

Initial State
               s

t
Artificial Terminal
Node

Terminal Arcs
with Cost Equal
to Terminal Cost

. . .

• States <==> Nodes

• Controls <==> Arcs

• Control sequences (open-loop) <==> paths
from initial state to terminal states

• akij : Cost of transition from state i ∈ Sk to state
j ∈ Sk+1 at time k (view it as “length” of the arc)

• aNit : Terminal cost of state i ∈ SN

• Cost of control sequence <==> Cost of the cor-
responding path (view it as “length” of the path)
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BACKWARD AND FORWARD DP ALGORITHMS

• DP algorithm:

JN (i) = aNit , i ∈ SN ,

Jk(i) = min
j∈Sk+1

[

akij+Jk+1(j)
]

, i ∈ Sk, k = 0, . . . , N−1

The optimal cost is J0(s) and is equal to the
length of the shortest path from s to t

• Observation: An optimal path s → t is also an
optimal path t → s in a “reverse” shortest path
problem where the direction of each arc is reversed
and its length is left unchanged

• Forward DP algorithm (= backward DP algo-
rithm for the reverse problem):

J̃N (j) = a0sj , j ∈ S1,

J̃ (j) = min
[

aN−k ˜
k ij + Jk+1(i)

i∈SN−k

]

, j ∈ SN−k+1

˜The optimal cost is J0(t) = min N ˜
i∈SN

[

ait + J1(i)

• ˜View Jk(j) as

]

optimal cost-to-arrive to state j
from initial state s
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A NOTE ON FORWARD DP ALGORITHMS

• There is no forward DP algorithm for stochastic
problems

• Mathematically, for stochastic problems, we
cannot restrict ourselves to open-loop sequences,
so the shortest path viewpoint fails

• Conceptually, in the presence of uncertainty,
the concept of “optimal-cost-to-arrive” at a state
xk does not make sense. For example, it may be
impossible to guarantee (with prob. 1) that any
given state can be reached

• By contrast, even in stochastic problems, the
concept of “optimal cost-to-go” from any state xk

makes clear sense
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GENERIC SHORTEST PATH PROBLEMS

• {1, 2, . . . , N, t}: nodes of a graph (t: the desti-

nation)

• aij : cost of moving from node i to node j

• Find a shortest (minimum cost) path from each
node i to node t

• Assumption: All cycles have nonnegative length.
Then an optimal path need not take more than N
moves

• We formulate the problem as one where we re-
quire exactly N moves but allow degenerate moves
from a node i to itself with cost aii = 0

Jk(i) = opt. cost of getting from i to t inN−k moves

J0(i): Cost of the optimal path from i to t.

• DP algorithm:

Jk(i) = min
[

aij+Jk+1(j)
j=1,...,N

]

, k = 0, 1, . . . , N−2,

with JN−1(i) = ait, i = 1, 2, . . . , N
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EXAMPLE

JN−1(i) = ait, i = 1, 2, . . . , N,

Jk(i) = min
[

aij+Jk+1(j)
]

, k = 0, 1, . . . , N−2.
j=1,...,N

29
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     5

(a)
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5
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Stage k
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ESTIMATION / HIDDEN MARKOV MODELS

• Markov chain with transition probabilities pij

• State transitions are hidden from view

• For each transition, we get an (independent)
observation

• r(z; i, j): Prob. the observation takes value z
when the state transition is from i to j

• Trajectory estimation problem: Given the ob-
servation sequence ZN = {z1, z2, . . . , zN}, what is

ˆthe “most likely” state transition sequence XN =
{x̂0, x̂1, . . . , x̂N} [one that maximizes p(XN | ZN )
over all XN = {x0, x1, . . . , xN}].

. . .

. . .

. . .

s x0 x1 x2 xN - 1 xN t
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VITERBI ALGORITHM

• We have
p(X

p(XN | N , ZN )
ZN ) =

p(ZN )

where p(XN , ZN ) and p(ZN ) are the unconditional
probabilities of occurrence of (XN , ZN ) and ZN

• Maximizing p(XN | ZN ) is equivalent with max-
imizing ln(p(XN , ZN ))

• We have (using the “multiplication rule” for
cond. probs)

N

p(XN , ZN ) = πx0

∏

pxk−1xk
r(zk;xk−1, xk)

k=1

so the problem is equivalent to

N

minimize− ln(πx0
)−

∑

ln
(

pxk−1xk
r(zk;xk−1, xk)

k=1

over all possible sequences {x0, x1, . . . , x

)

N}.

• This is a shortest path problem.
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GENERAL SHORTEST PATH ALGORITHMS

• There are many nonDP shortest path algo-
rithms. They can all be used to solve deterministic
finite-state problems

• They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

• Essential for problems with HUGE state spaces.

• Combinatorial optimization is prime example
(e.g., scheduling/traveling salesman)

1

1 20

20

5

3

5

4

4

15

15

3

Artificial Terminal Node t

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15
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LABEL CORRECTING METHODS

• Given: Origin s, destination t, lengths aij ≥ 0.

• Idea is to progressively discover shorter paths
from the origin s to every other node i

• Notation:

− di (label of i): Length of the shortest path
found (initially ds = 0, di = ∞ for i 6= s)

− UPPER: The label dt of the destination

− OPEN list: Contains nodes that are cur-
rently active in the sense that they are candi-
dates for further examination (initially OPEN={s})

Label Correcting Algorithm

Step 1 (Node Removal): Remove a node i from
OPEN and for each child j of i, do step 2

Step 2 (Node Insertion Test): If di + aij <
min{dj ,UPPER}, set dj = di + aij and set i to
be the parent of j. In addition, if j 6= t, place j in
OPEN if it is not already in OPEN, while if j = t,
set UPPER to the new value di + ait of dt

Step 3 (Termination Test): If OPEN is empty,
terminate; else go to step 1
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VISUALIZATION/EXPLANATION

• Given: Origin s, destination t, lengths aij ≥ 0

• di (label of i): Length of the shortest path found
thus far (initially ds = 0, di = ∞ for i 6= s). The
label di is implicitly associated with an s → i path

• UPPER: The label dt of the destination

• OPEN list: Contains “active” nodes (initially
OPEN={s})

i j

REMOVE

Is di + aij < dj  ?
(Is the path s --> i --> j 
better than the 
current path s --> j ?)

Is di + aij < UPPER  ?

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?)

YES

YES

INSERT

O P E N

Set  dj = di + aij
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EXAMPLE

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Artificial Terminal Node t

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15

1

2

5

6

7

8

9

1 0

3

4

Iter. No. Node Exiting OPEN OPEN after Iteration UPPER

0 - 1 ∞
1 1 2, 7,10 ∞
2 2 3, 5, 7, 10 ∞
3 3 4, 5, 7, 10 ∞
4 4 5, 7, 10 43

5 5 6, 7, 10 43

6 6 7, 10 13

7 7 8, 10 13

8 8 9, 10 13

9 9 10 13

10 10 Empty 13

• Note that some nodes never entered OPEN
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VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from
the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina-
tion

Proof: (1) Each time a node j enters OPEN, its
label is decreased and becomes equal to the length
of some path from s to j

(2) The number of possible distinct path lengths
is finite, so the number of times a node can enter
OPEN is finite, and the algorithm terminates

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and
let d∗ be the shortest distance. If UPPER > d∗

at termination, UPPER will also be larger than
the length of all the paths (s, j1, . . . , jm), m =
1, . . . , k, throughout the algorithm. Hence, node
jk will never enter the OPEN list with djk equal
to the shortest distance from s to jk. Similarly
node jk−1 will never enter the OPEN list with
djk−1 equal to the shortest distance from s to jk−1.
Continue to j1 to get a contradiction
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6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Examples of stochastic DP problems

• Linear-quadratic problems

• Inventory control
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LINEAR-QUADRATIC PROBLEMS

• System: xk+1 = Akxk +Bkuk + wk

• Quadratic cost

N−1

E x′
NQNxN + (x′

kQkxk + u′
kRkuk)

wk
k=0,1,...,N−1

{

k

∑

=0

}

whereQk ≥ 0 and Rk > 0 [in the positive (semi)definite
sense].

• wk are independent and zero mean

• DP algorithm:
JN (xN ) = x′

NQNxN ,

J ′ ′
k(xk) = minE xkQkxk + ukRkuk

uk

{

+ Jk+1(Akxk +Bkuk + wk)

• Key facts:

}

− Jk(xk) is quadratic

− Optimal policy {µ∗ ∗
0, . . . , µN−1} is linear:

µ∗
k(xk) = Lkxk

− Similar treatment of a number of variants
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DERIVATION

• By induction verify that

µ∗
k(xk) = Lkxk, Jk(xk) = x′

kKkxk+constant,

where Lk are matrices given by

Lk = −(B′
kK

′
+1B −1

k k +Rk) BkKk+1Ak,

and where Kk are symmetric positive semidefinite
matrices given by

KN = QN ,

K = A′ ′
k k

(

Kk+1 −Kk+1Bk(BkKk+1Bk

+R −
k) 1B′

kKk+1 Ak +Qk

• This is called the discrete-time Ric

)

cati equation

• Just like DP, it starts at the terminal time N
and proceeds backwards.

• Certainty equivalence holds (optimal policy is
the same as when wk is replaced by its expected
value E{wk} = 0).
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ASYMPTOTIC BEHAVIOR OF RICCATI EQ.

• Assume stationary system and cost per stage,
and technical assumptions: controlability of (A,B)
and observability of (A,C) where Q = C ′C

• The Riccati equation converges limk→−∞ Kk =
K, where K is pos. definite, and is the unique
(within the class of pos. semidefinite matrices) so-
lution of the algebraic Riccati equation

K = A′
(

K −KB(B′KB +R)−1B′K
)

A+Q

• The optimal steady-state controller µ∗(x) = Lx

L = −(B′KB +R)−1B′KA,

is stable in the sense that the matrix (A+BL) of
the closed-loop system

xk+1 = (A+BL)xk + wk

satisfies limk→∞(A+BL)k = 0.

40



GRAPHICAL PROOF FOR SCALAR SYSTEMS

A
2
R

B
2 + Q

P 0

Q

F(P)

450

PPk Pk + 1
P*

-
R

B
2

• Riccati equation (with Pk = KN−k):

Pk+1 = A2

(

B2P 2

Pk − k +
B2Pk +R

)

Q,

or Pk+1 = F (Pk), where

2

F (P ) = A2

(

B2P
P −

B2P +R

)

+Q =
A2RP

+Q
B2P +R

• Note the two steady-state solutions, satisfying
P = F (P ), of which only one is positive.
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RANDOM SYSTEM MATRICES

• Suppose that {A0, B0}, . . . , {AN−1, BN−1} are
not known but rather are independent random
matrices that are also independent of the wk

• DP algorithm is

JN (xN ) = x′
NQNxN ,

Jk(xk) = min E x′
kQkxk

uk w ,A ,Bk k k

+ u′
kRku

{

k + Jk+1(Akxk +Bkuk + wk)

∗

}

• Optimal policy µk(xk) = Lkxk, where

Lk = − −
Rk + E{ 1

B′
kK

′
k+1Bk} E{BkKk+1Ak},

and whe

(

re the matrices Kk ar

)

e given by

KN = QN ,

K = E{A′ ′
k kKk+1Ak} − E{AkKk+1Bk}

(

Rk + E{ −1
B′K ′

k kk +1Bk}
)

E{BkK +1Ak}+Qk

42



PROPERTIES

• Certainty equivalence may not hold

• Riccati equation may not converge to a steady-
state

Q

450

0 P

F (P)

-
R

E{B
2}

• ˜We have Pk+1 = F (Pk), where

E
F̃ (P ) =

{A2}RP TP 2

+Q+
E{B2}P +R

,
E{B2}P +R

{ } { } −
(

{ }
)2( { }

)2
T = E A2 E B2 E A E B
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INVENTORY CONTROL

• xk: stock, uk: stock purchased, wk: demand

xk+1 = xk + uk − wk, k = 0, 1, . . . , N − 1

• Minimize

E

{

N−1

cuk +H(xk + uk)
k

}

∑

=0

( )

where

H(x+ u) = E{r(x+ u− w)}

is the expected shortage/holding cost, with r de-
fined e.g., for some p > 0 and h > 0, as

r(x) = pmax(0,−x) + hmax(0, x)

• DP algorithm:

JN (xN ) = 0,

Jk(xk) = min cuk+H(xk+uk)+E Jk+1(xk+uk−wk)
u ≥0k

[ { }]
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OPTIMAL POLICY

• DP algorithm can be written as JN (xN ) = 0,

Jk(xk) = min
[

cuk +H(xk + uk) + E
{

Jk+1(xk + uk − wk)
u ≥0k

= min Gk(xk + uk)− cxk = min Gk(y)− cxk,

}]

u ≥0 y≥xk k

where

Gk(y) = cy +H(y) + E
{

Jk+1(y − w)
}

• If Gk is convex and lim|x|→∞ Gk(x) → ∞, we
have

µ∗ − x
(x ) =

{

Sk k if xk < Sk,
k k

0 if xk ≥ Sk,

where Sk minimizes Gk(y).

• This is shown, assuming that H is convex and
c < p, by showing that Jk is convex for all k, and

lim Jk(x) → ∞
|x|→∞
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JUSTIFICATION

• Graphical inductive proof that Jk is convex.

- cy
y

H(y)

cy + H(y)

SN - 1

cSN - 1

- cy

JN - 1(xN - 1)

xN - 1SN - 1
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LECTURE OUTLINE

• Stopping problems

• Scheduling problems

• Minimax Control
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PURE STOPPING PROBLEMS

• Two possible controls:

− Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

− Continue [using xk+1 = fk(xk, wk) and incur-
ring the cost-per-stage]

• Each policy consists of a partition of the set of
states xk into two regions:

− Stop region, where we stop

− Continue region, where we continue

STOP
REGION

CONTINUE 
REGION

Stop State
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EXAMPLE: ASSET SELLING

• A person has an asset, and at k = 0, 1, . . . , N −1
receives a random offer wk

• May accept wk and invest the money at fixed
rate of interest r, or reject wk and wait for wk+1.
Must accept the last offer wN−1

• DP algorithm (xk: current offer, T : stop state):

x if x 6= T ,
JN (xN ) = N N

0 if xN = T ,
{

max
[

(1 + r)N

{

−kxk, E
{

Jk+1(wk)
}]

if xk =6 T ,Jk(xk) =
0 if xk = T .

• Optimal policy;

accept the offer xk if xk > αk,

reject the offer xk if xk < αk,

where
E +

α =

{

Jk 1(wk)
k

}

(1 + r)N−k
.
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FURTHER ANALYSIS

0 1 2 N - 1 N k

ACCEPT

REJECT

a 1

a N - 1

a 2

• Can show that αk ≥ αk+1 for all k

• Proof: Let V N−k
k(xk) = Jk(xk)/(1 + r) for xk 6=

T. Then the DP algorithm is

VN (xN ) = xN , Vk(xk) = max

[

xk, (1 + r)−1
E
w

{

Vk+1(w)
}

]

We have αk = Ew

{

Vk+1(w) /(1 + r), so it is enough
to show that Vk(x) ≥ Vk+1(x) for all x and k. Start
with VN−1(x) ≥ VN (x) and

}

use the monotonicity
property of DP. Q.E.D.

• We can also show that if w is bounded, αk → a
as k → −∞. Suggests that for an infinite horizon
the optimal policy is stationary.
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GENERAL STOPPING PROBLEMS

• At time k, we may stop at cost t(xk) or choose
a control uk ∈ U(xk) and continue

JN (xN ) = t(xN ),

Jk(xk) = min
[

t(xk), min E g(xk, uk, wk)
u ∈U(x )k k

+ Jk+1 f(xk, uk, w

{

k)

• Optimal to stop at t

(

ime k for x in

)}

t

]

he set

Tk =

{

x

∣

∣

∣
t(x) ≤ min E

{

g(x, u, w) + Jk+1

(

f(x, u, w)
u∈U(x)

}

• Since JN−1(x) ≤ J

)}

N (x), we have Jk(x) ≤ Jk+1(x)
for all k, so

T0 ⊂ · · · ⊂ Tk ⊂ Tk+1 ⊂ · · · ⊂ TN−1.

• Interesting case is when all the Tk are equal (to
TN−1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

f(x, u, w) ∈ TN−1, for all x ∈ TN−1, u ∈ U(x), w.
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SCHEDULING PROBLEMS

• We have a set of tasks to perform, the ordering
is subject to optimal choice.

• Costs depend on the order

• There may be stochastic uncertainty, and prece-
dence and resource availability constraints

• Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

• Some special problems admit a simple quasi-
analytical solution method

− Optimal policy has an “index form”, i.e.,
each task has an easily calculable “cost in-
dex”, and it is optimal to select the task
that has the minimum value of index (multi-
armed bandit problems - to be discussed later)

− Some problems can be solved by an “inter-
change argument”(start with some schedule,
interchange two adjacent tasks, and see what
happens). They require existence of an op-
timal policy which is open-loop.
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EXAMPLE: THE QUIZ PROBLEM

• Given a list of N questions. If question i is an-
swered correctly (given probability pi), we receive
reward Ri; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

• Let i and j be the kth and (k + 1)st questions
in an optimally ordered list

L = (i0, . . . , ik−1, i, j, ik+2, . . . , iN−1)

E {reward of L} = E reward of {i0, . . . , ik−1}

+ pi i i0 · · · pi i j jk
(p R

−

{

+ p p R )
1

}

+ pi0 · · · pik pipjE
{

reward of {ik+2, . . . , iN−1}−1

Consider the list with i and j interchanged

}

L′ = (i0, . . . , ik−1, j, i, ik+2, . . . , iN−1)

Since L is optimal, E{reward of L} ≥ E{reward of L′},
so it follows that piRi + pipjRj ≥ pjRj + pjpiRi or

piRi/(1− pi) ≥ pjRj/(1− pj).
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MINIMAX CONTROL

• Consider basic problem with the difference that
the disturbance wk instead of being random, it is
just known to belong to a given set Wk(xk, uk).

• Find policy π that minimizes the cost

Jπ(x0) = max gN (xN )
w ∈W (x ,µ (x ))k k k k k

k=0,1,...,N−1

[

N−1

+
∑

gk
(

xk, µk(xk), wk

k=0

)

]

• The DP algorithm takes the form

JN (xN ) = gN (xN ),

Jk(xk) = min max gk(xk, uk, wk)
u ∈U(x ) w ∈W (x ,u )k k k k k k

+ Jk+1

[

(

fk(xk, uk, wk)

(Section 1.6 in the text).

)]
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DERIVATION OF MINIMAX DP ALGORITHM

• Similar to the DP algorithm for stochastic prob-
lems. The optimal cost J∗(x0) is

∗J (x0) = min · · · min max · · · max
µ0 µN−1 w0∈W [x0,µ0(x0)] wN−1∈W [xN−1,µN−1(xN−1)]

[

N−1
∑

gk
(

xk, µk(xk), wk

)

+ gN (xN )

k=0

]

= min · · · min

[

min max · · · max
µ0 µN−2 µN−1 w0∈W [x0,µ0(x0)] wN−2∈W [xN−2,µN−2(xN−2)]

[

N−2
∑

gk xk, µk(xk), wk + max
wN−1∈W [xN−1,µN−1(xN−1)]

k=0

( )

[

gN−1

(

xN−1, µN−1(xN−1), wN−1 + JN (xN )

]]

• Interchange the min over µ

]

N−1 and the m

)

ax over
w0, . . . , wN−2, and similarly continue backwards,
with N − 1 in place of N , etc. After N steps we
obtain J∗(x0) = J0(x0).

• Construct optimal policy by minimizing in the
RHS of the DP algorithm.
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UNKNOWN-BUT-BOUNDED CONTROL

• For each k, keep the xk of the controlled system

xk+1 = fk xk, µk(xk), wk

inside a given set Xk,

(

the target set a

)

t time k.

• This is a minimax control problem, where the
cost at stage k is

i
gk( k) =

{

0 f x
x k ∈ Xk,

1 if xk ∈/ Xk.

• We must reach at time k the set

Xk = xk | Jk(xk) = 0

in order to be able

{

to maintain th

}

e state within
the subsequent target sets.

• Start with XN = XN , and for k = 0, 1, . . . , N−1,

Xk =
{

xk ∈ Xk | there exists uk ∈ Uk(xk) such that

fk(xk, uk, wk) ∈ Xk+1, for all wk ∈ Wk(xk, uk)
}
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• Problems with imperfect state info

• Reduction to the perfect state info case

• Linear quadratic problems

• Separation of estimation and control
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BASIC PROBL. W/ IMPERFECT STATE INFO

• Same as basic problem of Chapter 1 with one
difference: the controller, instead of knowing xk,
receives at each time k an observation of the form

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 1

• The observation zk belongs to some space Zk.

• The random observation disturbance vk is char-
acterized by a probability distribution

Pvk (· | xk, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0)

• The initial state x0 is also random and charac-
terized by a probability distribution Px0 .

• The probability distribution Pwk
(· | xk, uk) of wk

is given, and it may depend explicitly on xk and
uk but not on w0, . . . , wk−1, v0, . . . , vk−1.

• The control uk is constrained to a given subset
Uk (this subset does not depend on xk, which is
not assumed known).
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INFORMATION VECTOR AND POLICIES

• Denote by Ik the information vector, i.e., the
information available at time k:

Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1,

I0 = z0

• We consider policies π = {µ0, µ1, . . . , µN−1}, where
each µk maps Ik into a uk and

µk(Ik) ∈ Uk, for all Ik, k ≥ 0

• We want to find a policy π that minimizes

N−1

Jπ = E gN (xN ) + gk xk, µk(Ik), wk
x ,w ,v0 k k

k=0,...,N−1

{

∑

k=0

}

( )

subject to the equations

xk+1 = fk
(

xk, µk(Ik), wk , k ≥ 0,

z0 = h0(x0, v0), zk = h x

)

k

(

k, µk−1(Ik−1), vk
)

, k ≥ 1
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REFORMULATION AS PERFECT INFO PROBL.

• System: We have

Ik+1 = (Ik, zk+1, uk), k = 0, 1, . . . , N − 2, I0 = z0

View this as a dynamic system with state Ik, con-
trol uk, and random disturbance zk+1

• Disturbance: We have

P (zk+1 | Ik, uk) = P (zk+1 | Ik, uk, z0, z1, . . . , zk),

since z0, z1, . . . , zk are part of the information vec-
tor Ik. Thus the probability distribution of zk+1

depends explicitly only on the state Ik and control
uk and not on the prior “disturbances” zk, . . . , z0

• Cost Function: Write

E
{

gk(xk, uk, wk)
}

= E

{

E
x ,wk k

{

gk(xk, uk, wk) | Ik, uk

}

}

so the cost per stage of the new system is

g̃k(Ik, uk) = E
x ,wk k

{

gk(xk, uk, wk) | Ik, uk

}
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DP ALGORITHM

• Writing the DP algorithm for the (reformulated)
perfect state info problem:

Jk(Ik) = min
[

E
{

gk(xk, uk, wk)
u ∈Uk k x ,w , zk k k+1

+ Jk+1(Ik, zk+1, uk) | Ik, uk

]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

}

JN−1(IN−1) = min

[

E
{

gN−1(xN−1, uN−1, wN−1)
uN−1∈UN−1 xN−1, wN−1

+ gN
(

fN−1(xN−1, uN−1, wN−1)
)

| IN−1, uN−1

]

}

• The optimal cost J∗ is given by

J∗ = E
z0

{

J0(z0)
}
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LINEAR-QUADRATIC PROBLEMS

• System: xk+1 = Akxk +Bkuk + wk

• Quadratic cost

N−1

′
E

{

x′ Q ′
N NxN + (xkQkxk + ukRkuk)

wk
k=0,1,...,N−1

∑

k=0

}

where Qk ≥ 0 and Rk > 0

• Observations

zk = Ckxk + vk, k = 0, 1, . . . , N − 1

• w0, . . . , wN−1, v0, . . . , vN−1 indep. zero mean

• Key fact to show:

− Optimal policy {µ∗
0, . . . , µ

∗
N−1} is of the form:

µ∗
k(Ik) = LkE{xk | Ik}

Lk: same as for the perfect state info case

− Estimation problem and control problem can
be solved separately
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DP ALGORITHM I

• Last stage N − 1 (supressing index N − 1):

′JN−1(IN−1) = min ExN−1,wN−1
x QxN−1 N−1

uN−1

+ ′ ′u Ru1 1

[

N− N− + (AxN−1 +

{

BuN−1 + wN−1)

·Q(AxN−1 +BuN−1 + wN−1) | IN−1, uN−1

}

]

• Since E{wN−1 | IN−1, uN−1} = E{wN−1} = 0,
the minimization involves

min u′
N−1(B

′QB +R)uN−1
uN−1

[

+ 2E{x | I }′A′
N−1 N−1 QBuN−1

The minimization yields the optimal µ∗
N−1

]

:

u∗
N−1 = µ∗

N−1(IN−1) = LN−1E{xN−1 | IN−1}

where

LN−1 = −(B′QB +R)−1B′QA
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DP ALGORITHM II

• Substituting in the DP algorithm

J (I ) =
{

x′
N−1 N−1 E N−1KN−1xN−1 | IN−1

xN−1

′
+ E

{(

xN−1 − E{xN−1 | IN−1}

}

xN−1

· PN−1

(

xN−1 − E{xN−1 | IN

)

−1} | IN−1

+ w′
E { N−1QNwN−1},

wN−1

) }

where the matrices KN−1 and PN−1 are given by

P ′ ′ −1
N−1 = AN−1QNBN−1(RN−1 +BN−1QNBN−1)

·B′
N−1QNAN−1,

K = A′
N−1 N−1QNAN−1 − PN−1 +QN−1

• Note the structure of JN−1: in addition to the
quadratic and constant terms, it involves a (≥ 0)
quadratic in the estimation error

xN−1 − E{xN−1 | IN−1}
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DP ALGORITHM III

• DP equation for period N − 2:

′JN−2(IN−2) = min
uN−2

[

E {x QxN−2 N−2
xN−2,wN−2,zN−1

+ ′u RuN−2 + J IN−2 N−1( N−1) | IN−2, uN−2}

= E

]

+

{

′x QxN−2 N−2 | IN−2

min

[

′u RuN−2 N−2
u

}

N−2

+ E
{

′x KN−1 N−1xN−1 | IN−2, uN−2

+ E

}

]

· P

{

N

( ′
xN−1 − E{xN−1 | IN−1}

−1

(

xN−1 − E{xN−1 | IN−

)

1}
)

| IN−2, uN−2

+ EwN−1
{ ′w QN−1 NwN−1}

}

• Key point: We have excluded the estimation
error term from the minimization over uN−2

• This term turns out to be independent of uN−2
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QUALITY OF ESTIMATION LEMMA

• Current estimation error is unaffected by past
controls: For every k, there is a function Mk s.t.

xk − E{xk | Ik} = Mk(x0, w0, . . . , wk−1, v0, . . . , vk),

independently of the policy being used

• Consequence: Using the lemma,

xN−1 − E{xN−1 | IN−1} = ξN−1,
where

ξN−1: function of x0, w0, . . . , wN−2, v0, . . . , vN−1

• Since ξN−1 is independent of uN−2, the condi-
tional expectation of ξ′N−1PN−1ξN−1 satisfies

E{ξ′N−1PN−1ξN−1 | IN−2, uN−2}

= E{ξ′N−1PN−1ξN−1 | IN−2}

and is independent of uN−2.

• So minimization in the DP algorithm yields

u∗ ∗
N−2 = µN−2(IN−2) = LN−2 E{xN−2 | IN−2}
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FINAL RESULT

• Continuing similarly (using also the quality of
estimation lemma)

µ∗
k(Ik) = LkE{xk | Ik},

where Lk is the same as for perfect state info:

Lk = −(Rk +B′ ′
kKk+1Bk)

−1BkKk+1Ak,

with Kk generated using the Riccati equation:

K ′
N = QN , Kk = AkKk+1Ak − Pk +Qk,

Pk = A′
kK

′
k+1Bk(Rk +BkK

′
k+ Bk)

−1
1 BkKk+1Ak

xk + 1 = Akxk + Bkuk + wk

Lk

uk

wk

xk
zk = Ckxk + vk

Delay

Estimator
E{xk | Ik}

uk  - 1

zk

vk

zkuk
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SEPARATION INTERPRETATION

• The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation E{xk | Ik}.

(b) An actuator, which multiplies E{xk | Ik} by
the gain matrix Lk and applies the control
input uk = LkE{xk | Ik}.

• Generically the estimate x̂ of a random vector x
given some information (random vector) I, which
minimizes the mean squared error

Ex{‖x− x̂‖2 | I} = ‖x‖2 − 2E{x | I}x̂+ ‖x̂‖2

is E{x | I} (set to zero the derivative with respect
to x̂ of the above quadratic form).

• The estimator portion of the optimal controller
is optimal for the problem of estimating the state
xk assuming the control is not subject to choice.

• The actuator portion is optimal for the control
problem assuming perfect state information.
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STEADY STATE/IMPLEMENTATION ASPECTS

• As N → ∞, the solution of the Riccati equation
converges to a steady state and Lk → L.

• If x0, wk, and vk are Gaussian, E{xk | Ik} is
a linear function of Ik and is generated by a nice
recursive algorithm, the Kalman filter.

• The Kalman filter involves also a Riccati equa-
tion, so for N → ∞, and a stationary system, it
also has a steady-state structure.

• Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

• For nonGaussian uncertainty, computing E{xk | Ik}
maybe very difficult, so a suboptimal solution is
typically used.

• Most common suboptimal controller: Replace
E{xk | Ik} by the estimate produced by the Kalman
filter (act as if x0, wk, and vk are Gaussian).

• It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of Ik.

69



6.231 DYNAMIC PROGRAMMING

LECTURE 7

LECTURE OUTLINE

• DP for imperfect state info

• Sufficient statistics

• Conditional state distribution as a sufficient
statistic

• Finite-state systems

• Examples
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REVIEW: IMPERFECT STATE INFO PROBLEM

• Instead of knowing xk, we receive observations

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 0

• Ik: information vector available at time k:

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1

• Optimization over policies π = {µ0, µ1, . . . , µN−1},
where µk(Ik) ∈ Uk, for all Ik and k.

• Find a policy π that minimizes
{

N−1

Jπ = E gN (xN ) +
∑

gk xk, µk(Ik), wk
x ,w ,v0 k k

k=0,...,N−1 k=0

}

( )

subject to the equations

xk+1 = fk
(

xk, µk(Ik), wk

)

, k ≥ 0,

z0 = h0(x0, v0), zk = hk

(

xk, µk−1(Ik−1), vk
)

, k ≥ 1
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DP ALGORITHM

• DP algorithm:

Jk(Ik) = min
u ∈Uk k

[

E gk(xk, uk, wk)
x ,w , zk k k+1

{

+ Jk+1(Ik, zk+1, uk) | Ik, uk

]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

}

JN−1(IN−1) = min E gN−1(xN−1, uN−1, wN−1)
uN−1∈UN−1

[

xN−1, wN−1

{

+ gN
(

fN−1(xN−1, uN−1, wN−1)
)

| IN−1, uN−1

]

}

• The optimal cost J∗ is given by

J∗ = E
z0

{

J0(z0)
}

.
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SUFFICIENT STATISTICS

• Suppose there is a function Sk(Ik) such that the
min in the right-hand side of the DP algorithm can
be written in terms of some function Hk as

min Hk
u ∈Uk k

(

Sk(Ik), uk

)

• Such a function Sk is called a sufficient statistic.

• An optimal policy obtained by the preceding
minimization can be written as

µ∗
k(Ik) = µk

(

Sk(Ik)
)

,

where µk is an appropriate function.

• Example of a sufficient statistic: Sk(Ik) = Ik

• Another important sufficient statistic

Sk(Ik) = Px |I ,
k k

assuming that vk is characterized by a probability
distribution Pvk

(· | xk−1, uk−1, wk−1)
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DP ALGORITHM IN TERMS OF PX |IK K

• Filtering Equation: Px |Ik k
is generated recur-

sively by a dynamic system (estimator) of the form

Px |I = Φk Px |I , uk, zk+1k+1 k+1 k k

for a suitable function Φ

(

k

)

• DP algorithm can be written as

Jk(Px |I ) = min
[

E
{

gk(xk, uk, wk)k k u ∈Uk k x ,w ,zk k k+1

+ Jk+1

(

Φk(Px |I , uk, zk+1) | Ik, ukk k

• It is the DP algorithm for a new pro

)

blem wh

}

o

]

se
state is Px |Ik k

(also called belief state)

uk xk

Delay

Estimator

uk  - 1

uk  - 1

vk

zk

zk

wk

φk  - 1

Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk)

System Measurement

P x
k
| I
k

µ
k
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EXAMPLE: A SEARCH PROBLEM

• At each period, decide to search or not search
a site that may contain a treasure.

• If we search and a treasure is present, we find
it with prob. β and remove it from the site.

• Treasure’s worth: V . Cost of search: C

• States: treasure present & treasure not present

• Each search can be viewed as an observation of
the state

• Denote

pk : prob. of treasure present at the start of time k

with p0 given.

• pk evolves at time k according to the equation

p

p



k if not search,

k+1 =



0 if search and find treasure,


p (1−β)k
p (1−β)+1−p

if search and no treasure.
k k

This is the filtering equation.

75



SEARCH PROBLEM (CONTINUED)

• DP algorithm

Jk(pk) = max
[

0, −C + pkβV

+ (1− pkβ)
p

Jk+1

(

k(1− β)
,

pk(1− β) + 1− pk

)

]

with JN (pN ) = 0.

• Can be shown by induction that the functions
Jk satisfy

=
Jk(pk)



 0 if pk ≤ C



βV
,

> 0 if pk > C
βV

.

• Furthermore, it is optimal to search at period
k if and only if

pkβV ≥ C

(expected reward from the next search ≥ the cost
of the search - a myopic rule)
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FINITE-STATE SYSTEMS - POMDP

• Suppose the system is a finite-state Markov
chain, with states 1, . . . , n.

• Then the conditional probability distribution
Px |Ik k

is an n-vector

(

P (xk = 1 | Ik), . . . , P (xk = n | Ik)
)

• The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

• When the control and observation spaces are
also finite sets the problem is called a POMDP
(Partially Observed Markov Decision Problem).

• For POMDP it turns out that the cost-to-go
functions Jk in the DP algorithm are piecewise
linear and concave (Exercise 5.7)

• Useful in practice both for exact and approxi-
mate computation.
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INSTRUCTION EXAMPLE I

• Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

• Possible decisions: T : Terminate the instruc-
tion, or T : Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

• Possible test outcomes: R: Student gives a cor-
rect answer, or R: Student gives an incorrect an-
swer.

• Probabilistic structure

L L R

rt

1 1

1 - r1 - t
L RL

• Cost of instruction: I per period

• Cost of terminating instruction: 0 if student
has learned the item, and C > 0 if not.
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INSTRUCTION EXAMPLE II

• Let pk: prob. student has learned the item given
the test results so far

pk = P (xk = L | z0, z1, . . . , zk).

• Filtering equation: Using Bayes’ rule

pk+1 = Φ(pk, zk+1)

=

{

1−(1−t)(1−p )k
1−(1−t)(1−r)(1−pk)

if zk+1 = R,

0 if zk+1 = R.

• DP algorithm:

Jk(pk) = min

[

(1− pk)C, I + E
zk+1

{

Jk+1

(

Φ(pk, zk+1)
)}

]

starting with

JN−1(pN−1) = min
[

(1−pN−1)C, I+(1−t)(1−pN−1)C
]

.
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INSTRUCTION EXAMPLE III

• Write the DP algorithm as

Jk(pk) = min
[

(1− pk)C, I +Ak(pk)

w

]

,

here

Ak(pk) = P (zk+1 = R | Ik)Jk+1

(

Φ(pk, R)

+ P (zk+1 =

)

R | Ik)Jk+1

(

Φ(pk, R)

• Can show by induction that Ak(p) are piece

)

wise
linear, concave, monotonically decreasing, with

Ak−1(p) ≤ Ak(p) ≤ Ak+1(p), for all p ∈ [0, 1].

(The cost-to-go at knowledge prob. p increases as
we come closer to the end of horizon.)

0 p

C

I

I + AN - 1(p)

I + AN - 2(p)

I + AN - 3(p)

1a N - 1 a N - 3a N - 2 1 -
I

C
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• Suboptimal control

• Cost approximation methods: Classification

• Certainty equivalent control: An example

• Limited lookahead policies

• Performance bounds

• Problem approximation approach

• Parametric cost-to-go approximation
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PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

− Intractability of imperfect state information
problems

• The curse of modeling

− Mathematical models

− Computer/simulation models

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system
is controlled – need for on-line replanning
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COST-TO-GO FUNCTION APPROXIMATION

• Use a policy computed from the DP equation
where the optimal cost-to-go function Jk+1 is re-
placed by an approximation J̃k+1. (Sometimes E gk
is also replaced by an approximation.)

{ }

• Apply µk(xk), which attains the minimum in

˜min E
{

gk(xk, uk, wk) + Jk+1

(

fk(xk, uk, wk)
u ∈U (x )k k k

• There are several ways to compute J̃

)

}

k+1:

− Off-line approximation: The entire function
J̃k+1 is computed for every k, before the con-
trol process begins.

− On-line approximation: Only the values J̃k+1(xk+1)
at the relevant next states xk+1 are com-
puted and used to compute uk just after the
current state xk becomes known.

− Simulation-based methods: These are off-
line and on-line methods that share the com-
mon characteristic that they are based on
Monte-Carlo simulation. Some of these meth-
ods are suitable for are suitable for very large
problems.
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CERTAINTY EQUIVALENT CONTROL (CEC)

• Idea: Replace the stochastic problem with a
deterministic problem

• At each time k, the future uncertain quantities
are fixed at some “typical” values

• On-line implementation for a perfect state info
problem. At each time k:

(1) Fix the wi, i ≥ k, at some wi. Solve the
deterministic problem:

N−1

minimize gN (xN ) +
∑

gi
i=k

(

xi, ui, wi

where xk is known, and

)

ui ∈ Ui, xi+1 = fi
(

xi, ui, wi .

(2) Use the first control in the opti

)

mal control
sequence found.

• Equivalently, we apply µ̄k(xk) that minimizes

gk
(

xk, uk, wk

)

+ J̃k+1

(

fk(xk, uk, wk)

where J̃k+1 is the optimal cost of the corr

)

espond-
ing deterministic problem.
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EQUIVALENT OFF-LINE IMPLEMENTATION

• Let
{

µd
0(x0), . . . , µ

d
N−1(xN−1) be an optimal con-

troller obtained from the DP a
terministic problem

}

lgorithm for the de-

N−1

minimize gN (xN ) +
∑

gk

k=0

(

xk, µk(xk), wk

subject to x

)

k+1 = fk
(

xk, µk(xk), wk , µk(xk) ∈ Uk

• The CEC applies at time k th

)

e control input
µd
k(xk).

• In an imperfect info version, xk is replaced by
an estimate xk(Ik).
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PARTIALLY STOCHASTIC CEC

• Instead of fixing all future disturbances to their
typical values, fix only some, and treat the rest as
stochastic.

• Important special case: Treat an imperfect state
information problem as one of perfect state infor-
mation, using an estimate xk(Ik) of xk as if it were
exact.

• Multiaccess communication example: Consider
controlling the slotted Aloha system (Example 5.1.1
in the text) by optimally choosing the probabil-
ity of transmission of waiting packets. This is a
hard problem of imperfect state info, whose per-
fect state info version is easy.

• Natural partially stochastic CEC:

1
µ̃k(Ik) = min

[

1,
xk(Ik)

]

,

where xk(Ik) is an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which is Ik).
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GENERAL COST-TO-GO APPROXIMATION

• One-step lookahead (1SL) policy: At each k
and state xk, use the control µk(xk) that

min E
{

˜gk(xk, uk, wk) + Jk+1

(

fk(xk, uk, wk)
u ∈U (x )k k k

)}

,

where
˜− JN = gN .

− J̃k+1: approximation to true cost-to-go Jk+1

• Two-step lookahead policy: At each k and
xk, use the control µ̃k(xk) attaining the minimum
above, where the function J̃k+1 is obtained using a
1SL approximation (solve a 2-step DP problem).

• If J̃k+1 is readily available and the minimiza-
tion above is not too hard, the 1SL policy is im-
plementable on-line.

• Sometimes one also replaces Uk(xk) above with
a subset of “most promising controls” Uk(xk).

• As the length of lookahead increases, the re-
quired computation quickly explodes.
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PERFORMANCE BOUNDS FOR 1SL

• Let Jk(xk) be the cost-to-go from (xk, k) of the
1SL policy, based on functions J̃k.

• Assume that for all (xk, k), we have

ˆ ˜Jk(xk) ≤ Jk(xk), (*)

where ĴN = gN and for all k,

Ĵk(xk) = min E gk(xk, uk, wk)
u ∈U (x )k k k

{

+ J̃k+1 fk(xk, uk, wk) ,

[so Ĵk(xk) is computed along w

(

ith

)}

µk(xk)]. Then

ˆJk(xk) ≤ Jk(xk), for all (xk, k).

• Important application: When J̃k is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

• The bound can be extended to the case where
there is a δk in the RHS of (*). Then

Jk(xk) ≤ J̃k(xk) + δk + · · ·+ δN−1
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COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par-
ticularly when Uk(xk) is not a discrete set]. Con-
nection with stochastic programming (2-stage DP)
methods (see text).

• The choice of the approximating functions J̃k

is critical, and is calculated in a variety of ways.

• Some approaches:

(a) Problem Approximation: Approximate the
optimal cost-to-go with some cost derived
from a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Ap-
proximate the optimal cost-to-go with a func-
tion of a suitable parametric form, whose pa-
rameters are tuned by some heuristic or sys-
tematic scheme (Neuro-Dynamic Program-
ming)

(c) Rollout Approach: Approximate the opti-
mal cost-to-go with the cost of some subop-
timal policy, which is calculated either ana-
lytically or by simulation

89



PROBLEM APPROXIMATION

• Many (problem-dependent) possibilities

− Replace uncertain quantities by nominal val-
ues, or simplify the calculation of expected
values by limited simulation

− Simplify difficult constraints or dynamics

• Enforced decomposition example: Route m ve-
hicles that move over a graph. Each node has a
“value.” First vehicle that passes through the node
collects its value. Want to max the total collected
value, subject to initial and final time constraints
(plus time windows and other constraints).

• Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

• 1SL scheme: At time k and state xk (position
of vehicles and “collected value nodes”), consider
all possible kth moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time
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PARAMETRIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a para-
metric class J̃(x, r) where x is the current state
and r = (r1, . . . , rm) is a vector of “tunable” scalars
(weights).

• By adjusting the weights, one can change the
“shape” of the approximation J̃ so that it is rea-
sonably close to the true optimal cost-to-go func-
tion.

• Two key issues:

− The choice of parametric class J̃(x, r) (the
approximation architecture).

− Method for tuning the weights (“training”
the architecture).

• Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

• Sometimes a simulation-based algorithm is used,
particularly when there is no mathematical model
of the system.

• We will look in detail at these issues after a few
lectures.

91



APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(x, r) on r]

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

• Linear feature-based architecture: φ = (φ1, . . . , φm)

m

J̃(x, r) = φ(x)′r =
∑

φj(x)rj
j=1

i Feature Extraction Mapping Feature Vector
Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

i) Linear Cost

i) Linear Cost
State x x Feature Vector φ(x) ) Approximator φ(x)′r

• Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture

• Anything sensible can be used as features. Some-
times the state space is partitioned, and “local”
features are introduced for each subset of the par-
tition (they are 0 outside the subset)
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AN EXAMPLE - COMPUTER CHESS

• Chess programs use a feature-based position
evaluator that assigns a score to each move/position

Feature
Extraction

Weighting
of Features

Features:
Material balance,
Mobility,
Safety, etc Score

Position Evaluator

• Many context-dependent special features.

• Most often the weighting of features is linear
but multistep lookahead is involved.

• Most often the training is done “manually,” by
trial and error.
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ANOTHER EXAMPLE - AGGREGATION

• Main elements (in a finite-state context):

− Introduce “aggregate” states S1, . . . , Sm, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states (using so
called “aggregation and disaggregation prob-
abilities”)

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of method (in-
cluding simulation-based) ... more on this
later.

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of each
original problem state as a linear combina-
tion of the optimal aggregate state costs

• This is a linear feature-based architecture (the
optimal aggregate state costs are the features)

• Hard aggregation example: Aggregate states
Sj are a partition of original system states (each
original state belongs to one and only one Sj).
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AN EXAMPLE: REPRESENTATIVE SUBSETS

• The aggregate states Sj are disjoint “represen-
tative” subsets of original system states

y3

1

x 1

2

}

}

4

5

6
7

2

• Common case: Each Sj is a group of states with
“similar characteristics”

• Compute a “cost” rj for each aggregate state
Sj (using some method)

• Approximate the optimal cost of each original
system state x with m

φxjrjj=1

• For each x, the φ

∑

xj , j = 1, . . . ,m, are the “ag-
gregation probabilities” ... roughly the degrees of
membership of state x in the aggregate states Sj

• Each φxj is prespecified and can be viewed as
the jth feature of state x

y3

1

x 1

2

}

}

4

5

6
7

2

y3 Original State Space

Aggregate States/Subsets
0 1 2 49

x S

φx1

1 φx2

x S1 1 S2

2 S3

}

S4

}

4 S5

5 S6

6 S7
7 S8

2 φx6
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• Rollout algorithms

• Policy improvement property

• Discrete deterministic problems

• Approximations of rollout algorithms

• Model Predictive Control (MPC)

• Discretization of continuous time

• Discretization of continuous space

• Other suboptimal approaches
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ROLLOUT ALGORITHMS

• One-step lookahead policy: At each k and state
xk, use the control µk(xk) that

˜min E
{

gk(xk, uk, wk) + Jk+1 fk(xk, uk, wk) ,
u ∈U (x )k k k

where

( )}

− J̃N = gN .
˜− Jk+1: approximation to true cost-to-go Jk+1

• Rollout algorithm: When J̃k is the cost-to-go of
some heuristic policy (called the base policy)

• Policy improvement property (to be shown):
The rollout algorithm achieves no worse (and usu-
ally much better) cost than the base heuristic start-
ing from the same state.

• Main difficulty: Calculating J̃k(xk) may be com-
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case.
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EXAMPLE: THE QUIZ PROBLEM

• A person is given N questions; answering cor-
rectly question i has probability pi, reward vi.
Quiz terminates at the first incorrect answer.

• Problem: Choose the ordering of questions so
as to maximize the total expected reward.

• Assuming no other constraints, it is optimal to
use the index policy: Answer questions in decreas-
ing order of pivi/(1− pi).

• With minor changes in the problem, the index
policy need not be optimal. Examples:

− A limit (< N) on the maximum number of
questions that can be answered.

− Time windows, sequence-dependent rewards,
precedence constraints.

• Rollout with the index policy as base policy:
Convenient because at a given state (subset of
questions already answered), the index policy and
its expected reward can be easily calculated.

• Very effective for solving the quiz problem and
important generalizations in scheduling (see Bert-
sekas and Castanon, J. of Heuristics, Vol. 5, 1999).
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COST IMPROVEMENT PROPERTY

• Let

Jk(xk): Cost-to-go of the rollout policy

Hk(xk): Cost-to-go of the base policy

• We claim that Jk(xk) ≤ Hk(xk) for all xk, k

• Proof by induction: We have JN (xN ) = HN (xN )
for all xN . Assume that

Jk+1(xk+1) ≤ Hk+1(xk+1), ∀ xk+1.

Let µk(xk) and µk(xk) be the controls applied by
rollout and heuristic at xk. Then, for all xk

Jk(xk) = E
{

gk
(

xk, µk(xk), wk

)

+ Jk+1

(

fk
(

xk, µk(xk), wk

≤ E

))}

{

gk
(

xk, µk(xk), wk

)

+Hk+1

(

fk
(

xk, µk(xk), wk

≤ E
{

gk
(

xk, µk(xk), wk +Hk+1 fk xk, µk(xk), wk

))}

= Hk(xk)

) ( ( ))}

− Induction hypothesis ==> 1st inequality

− Min selection of µk(xk) ==> 2nd inequality

− Definition of Hk, µk ==> last equality
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DISCRETE DETERMINISTIC PROBLEMS

• Any discrete optimization problem can be repre-
sented sequentially by breaking down the decision
process into stages.

• A tree/shortest path representation. The leaves
of the tree correspond to the feasible solutions.

• Example: Traveling salesman problem. Find a
minimum cost tour through N cities.

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Origin Node sA

Traveling salesman problem with four cities A, B, C, D

• Complete partial solutions, one stage at a time

• May apply rollout with any heuristic that can
complete a partial solution

• No costly stochastic simulation needed
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EXAMPLE: THE BREAKTHROUGH PROBLEM

root

• Given a binary tree with N stages.

• Each arc is free or is blocked (crossed out)

• Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

• Base heuristic (greedy): Follow the right branch
if free; else follow the left branch if free.

• This is a rare rollout instance that admits a
detailed analysis.

• For large N and given prob. of free branch:
the rollout algorithm requires O(N) times more
computation, but has O(N) times larger prob. of
finding a free path than the greedy algorithm.
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DET. EXAMPLE: ONE-DIMENSIONAL WALK

• A person takes either a unit step to the left or
a unit step to the right. Minimize the cost g(i) of
the point i where he will end up after N steps.

g(i)

iNN - 2-N 0

(N,0)(N,-N) (N,N)

i
_

i
_

(0,0)

• Base heuristic: Always go to the right. Rollout
finds the rightmost local minimum.

• Alternative base heuristic: Compare always go
to the right and always go the left. Choose the
best of the two. Rollout finds a global minimum.
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A ROLLOUT ISSUE FOR DISCRETE PROBLEMS

• The base heuristic need not constitute a policy
in the DP sense.

• Reason: Depending on its starting point, the
base heuristic may not apply the same control at
the same state.

• As a result the cost improvement property may
be lost (except if the base heuristic has a property
called sequential consistency; see the text for a
formal definition).

• The cost improvement property is restored in
two ways:

− The base heuristic has a property called se-
quential improvement which guarantees cost
reduction at each step (see the text for a for-
mal definition).

− A variant of the rollout algorithm, called for-
tified rollout, is used, which enforces cost
improvement. Roughly speaking the “best”
solution found so far is maintained, and it
is followed whenever at any time the stan-
dard version of the algorithm tries to follow
a “worse” solution (see the text).
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ROLLING HORIZON WITH ROLLOUT

• We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

• Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

• Example: N-stage stopping problem where the
stopping cost is 0, the continuation cost is either
−ǫ or 1, where 0 < ǫ << 1, and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is −mǫ.

• Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of ℓ ≤ m steps.

• It will continue up to the first m− ℓ+ 1 stages,
thus compiling a cost of −(m− ℓ+1)ǫ. The rollout
performance improves as l becomes shorter!

• Limited vision may work to our advantage!
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MODEL PREDICTIVE CONTROL (MPC)

• Special case of rollout for linear deterministic
systems (similar extensions to nonlinear/stochastic)

− System: xk+1 = Axk +Buk

− Quadratic cost per stage: x′
kQxk + u′

kRuk

− Constraints: xk ∈ X, uk ∈ U(xk)

• Assumption: For any x0 ∈ X there is a feasible
state-control sequence that brings the system to 0
in m steps, i.e., xm = 0

• MPC at state xk solves an m-step optimal con-
trol problem with constraint xk+m = 0, i.e., finds
a sequence ūk, . . . , ūk+m−1 that minimizes

m−1

x′
k+ℓQx ′

k+ℓ + uk+ℓRuk+ℓ

ℓ=0

subject to

∑

xk+m

(

= 0

)

• Then applies the first control ūk (and repeats
at the next state xk+1)

• MPC is rollout with heuristic derived from the
corresponding m−1-step optimal control problem

• Key Property of MPC: Since the heuristic is sta-
ble, the rollout is also stable (suggested by policy
improvement property; see the text).
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DISCRETIZATION

• If the time, and/or state space, and/or control
space are continuous, they must be discretized.

• Consistency issue, i.e., as the discretization be-
comes finer, the cost-to-go functions of the dis-
cretized problem should converge to those of the
original problem.

• Pitfall with discretizing continuous time: The
control constraint set may change a lot as we pass
to the discrete-time approximation.

• Example: Consider the system ẋ(t) = u(t), with
control constraint u(t) ∈ {−1, 1}. The reachable
states after time δ are x(t + δ) = x(t) + u, with
u ∈ [−δ, δ].

• Compare it with the reachable states after we
discretize the system naively: x(t+δ) = x(t)+δu(t),
with u(t) ∈ {−1, 1}.

• “Convexification effect” of continuous time: a
discrete control constraint set in continuous-time
differential systems, is equivalent to a continuous
control constraint set when the system is looked
at discrete times.
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SPACE DISCRETIZATION

• Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.

• Difficulty: f(x, u, w) ∈/ S for x ∈ S.

• We define an approximation to the original
problem, with state space S, as follows:

• Express each x ∈ S as a convex combination of
states in S, i.e.,

x =

x

∑

∈i

φi(x)xi where φi(x) ≥ 0,

S

∑

φi(x) = 1

i

• Define a “reduced” dynamic system with state
space S, whereby from each xi ∈ S we move to
x = f(xi, u, w) according to the system equation
of the original problem, and then move to xj ∈ S
with probabilities φj(x).

• Define similarly the corresponding cost per stage
of the transitions of the reduced system.

• Note application to finite-state POMDP (dis-
cretization of the simplex of the belief states).
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SPACE DISCRETIZATION/AGGREGATION

• Let Jk(xi) be the optimal cost-to-go of the “re-
duced” problem from each state xi ∈ S and time
k onward.

• Approximate the optimal cost-to-go of any x ∈ S
for the original problem by

J̃k(x) =

x

∑

∈i S

φi(x)Jk(xi),

and use one-step-lookahead based on J̃k.

• The coefficients φi(x) can be viewed as features
in an aggregation scheme.

• Important question: Consistency, i.e., as the
number of states in S increases, J̃k(x) should con-
verge to the optimal cost-to-go of the original prob.

• Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

• Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients φi(x)
admit a meaningful interpretation that quantifies
the degree of association of x with xi (a form of
aggregation).
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OTHER SUBOPTIMAL APPROACHES

• Minimize the DP equation error (Fitted Value
Iteration): Approximate Jk(xk) with J̃k(xk, rk), where
rk is a parameter vector, chosen to minimize some
form of error in the DP equations

− Can be done sequentially going backwards
in time (approximate Jk using an approxi-
mation of Jk+1, starting with J̃N = gN).

• Direct approximation of control policies: For a
subset of states xi, i = 1, . . . ,m, find

µ̂ i
k(x ) = arg min i

E g
iu ∈U (x )k

{

(x , uk, wk)
k

+ J̃ i
k+1

(

fk(x , uk, wk), rk+1

Then find µ̃k(xk, sk), where sk is a vector of p

)

a

}

-
rameters obtained by solving the problem

m

min
∑

‖µ̂ (xi
k )− µ̃k(x

i, s)‖2
s

i=1

• Approximation in policy space: Do not bother
with cost-to-go approximations. Parametrize the
policies as µ̃k(xk, sk), and minimize the cost func-
tion of the problem over the parameters sk (ran-
dom search is a possibility). 109



6.231 DYNAMIC PROGRAMMING

LECTURE 10

LECTURE OUTLINE

• Infinite horizon problems

• Stochastic shortest path (SSP) problems

• Bellman’s equation

• Dynamic programming – value iteration

• Discounted problems as special case of SSP
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TYPES OF INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− Stationary system and cost (except for dis-
counting).

• Total cost problems: Minimize
N−1

Jπ(x0) = lim E

{

∑

αkg
(

xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

}

)

(if the lim exists - otherwise lim sup).

− Stochastic shortest path (SSP) problems (α =
1, and a termination state)

− Discounted problems (α < 1, bounded g)

− Undiscounted, and discounted problems with
unbounded g

• Average cost problems

1
lim

N→∞

N

E
N wk

k=0,1,...

{

−1
∑

g xk, µk(xk), wk

k=0

}

( )

• Infinite horizon characteristics: Challenging anal-
ysis, elegance of solutions and algorithms (station-
ary optimal policies are likely)
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PREVIEW OF INFINITE HORIZON RESULTS

• Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

• For example, let α = 1 and JN (x) denote the
optimal cost of the N-stage problem, generated
after N DP iterations, starting from some J0

Jk+1(x) = min E
{

g(x, u, w) + Jk f(x, u, w) , ∀ x
u∈U(x) w

• Typical results for total cost p

(

roblems:

)}

− Convergence of value iteration to J∗:

J∗(x) = min Jπ(x) = lim JN (x), ∀ x
π N→∞

− Bellman’s equation holds for all x:

J∗(x) = min x ∗
E
{

g( , u, w) + J f(x, u, w)
u∈U(x) w

− Optimality condition: If µ(x) m

(

inimizes

)

i

}

n
Bellman’s Eq., {µ, µ, . . .} is optimal.

• Bellman’s Eq. holds for all deterministic prob-
lems and “almost all” stochastic problems.

• Other results: True for SSP and discounted;
exceptions for other problems.
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“EASY” AND “DIFFICULT” PROBLEMS

• Easy problems (Chapter 7, Vol. I of text)

− All of them are finite-state, finite-control

− Bellman’s equation has unique solution

− Optimal policies obtained from Bellman Eq.

− Value and policy iteration algorithms apply

• Somewhat complicated problems

− Infinite state, discounted, bounded g (con-
tractive structure)

− Finite-state SSP with “nearly” contractive
structure

− Bellman’s equation has unique solution, value
and policy iteration work

• Difficult problems (w/ additional structure)

− Infinite state, g ≥ 0 or g ≤ 0 (for all x, u, w)

− Infinite state deterministic problems

− SSP without contractive structure

• Hugely large and/or model-free problems

− Big state space and/or simulation model

− Approximate DP methods

• Measure theoretic formulations (not in this course)
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STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij(u)

− Control constraints u ∈ U(i) (finite set)

− Cost of policy π = {µ0, µ1, . . .} is

{

N−1

Jπ(i) = lim E
N→∞

∑

g

k=0

(

xk, µk(xk)
)

∣

∣

x0 = i

}

− Optimal policy if Jπ(i) = J∗(i) for

∣

all i.

− Special notation: For stationary policies π =
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption (termination inevitable): There ex-
ists integer m such that for all policies π:

ρπ = max P{xm 6= t | x0 = i, π} < 1
i=1,...,n

• Note: We have ρ = maxπ ρπ < 1, since ρπ de-
pends only on the first m components of π.

• Shortest path examples: Acyclic (assumption is
satisfied); nonacyclic (assumption is not satisfied)
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FINITENESS OF POLICY COST FUNCTIONS

• View
ρ = max ρπ < 1

π

as an upper bound on the non-termination prob.
during 1st m steps, regardless of policy used

• For any π and any initial state i

P{x2m 6= t | x0 = i, π} = P{x2m 6= t | xm 6= t, x0 = i, π}

× P{xm 6= t | x0 = i, π} ≤ ρ2

and similarly

P{xkm 6= t | x0 = i, π} ≤ ρk, i = 1, . . . , n

• So E{Cost between times km and (k + 1)m− 1 }

≤ mρk max g(i, u)
i=1,...,n

and u∈U(i)

∣

∣ ∣

∣

∞
∣ m
∣Jπ(i)

∣

∣ ≤
∑

mρk max g(i, u) =
i=1,...,n

k=0 u∈U(i)

∣

∣ ∣

∣

1− ρ
max

i=1,...,n
u∈U(i)

∣

∣g(i, u)
∣

∣
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MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by value iteration,

Jk+1(i) = min
u∈U(i)

[

n

g(i, u) +
∑

pij(u)Jk(j)

j=1

]

, ∀ i

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

n

J∗(i) = min g(i, u) + p ∗
ij(u)J (j) , ∀ i

u∈U(i)

[

∑

j=1

]

J∗(t) = 0

• A stationary policy µ is optimal if and only
if for every state i, µ(i) attains the minimum in
Bellman’s equation.

• Key proof idea: The “tail” of the cost series,

∞
∑

E
{

g
(

xk, µk(xk)

k=mK

)}

vanishes as K increases to ∞.
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OUTLINE OF PROOF THAT JN → J∗

• Assume for simplicity that J0(i) = 0 for all i.
For any K ≥ 1, write the cost of any policy π as

mK−1 ∞

Jπ(x0) =
∑

E

k=0

{

g
(

xk, µk(xk)

mK−1

)}

+
∑

E
{

g
(

xk, µk(xk)

k=mK

∞

)}

≤
∑

E
{

g
(

xk, µk(xk) +

k=0

)}

k

∑

kρ mmax |g(i, u)|
i,u

=K

Take the minimum of both sides over π to obtain

K

J∗ ρ
(x0) ≤ JmK(x0) + mmax |g(i, u)|.

1− ρ i,u

Similarly, we have

ρK
JmK(x0)− mmax |g(i, u)| ≤ J∗(x0).

1− ρ i,u

It follows that limK→∞ JmK(x ∗
0) = J (x0).

• JmK(x0) and JmK+k(x0) converge to the same
limit for k < m (since k extra steps far into the
future don’t matter), so JN (x0) → J∗(x0).

• Similarly, J0 6= 0 does not matter.
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EXAMPLE

• Minimizing the E{Time to Termination}: Let

g(i, u) = 1, ∀ i = 1, . . . , n, u ∈ U(i)

• Under our assumptions, the costs J∗(i) uniquely
solve Bellman’s equation, which has the form

n

J∗(i) = min 1 + pij(u)J
∗(j) , i = 1, . . . , n

u∈U(i)

[

j=1

]

∑

• In the special case where there is only one con-
trol at each state, J∗(i) is the mean first passage
time from i to t. These times, denoted mi, are the
unique solution of the classical equations

n

mi = 1 +
∑

pijmj , i = 1, . . . , n,

j=1

which are seen to be a form of Bellman’s equation
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6.231 DYNAMIC PROGRAMMING
 

LECTURE 11
 

LECTURE OUTLINE
 

•	 Review of stochastic shortest path problems 

•	 Computational methods for SSP 

− Value iteration 

− Policy iteration 

− Linear programming 

• Computational methods for discounted prob
lems 
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STOCHASTIC SHORTEST PATH PROBLEMS
 

• Assume finite-state system: States 1, . . . , n and 
special cost-free termination state t 

− Transition probabilities pij(u) 

− Control constraints u ∈ U(i) (finite set) 

− Cost of policy π = {µ0, µ1, . . .} is 

  

N−1 
 

 

( )

 

Jπ(i) = lim E g xk, µk(xk)  x0 = i
N→∞ 

k=0 

− Optimal policy if Jπ(i) = J ∗ (i) for all i. 

− Special notation: For stationary policies π = 
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i). 

• Assumption (Termination inevitable): There ex
ists integer m such that for every policy and initial 
state, there is positive probability that the termi
nation state will be reached after no more that m 
stages; for all π, we have 

ρπ = max  t | x0 = i, π} < 1P{xm = 
i=1,...,n 
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MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by value iteration

n

Jk+1(i) = min g
u∈U(i)

[

(i, u) +
∑

pij(u)Jk(j) , ∀ i

j=1

]

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

n

J∗(i) = min i
u∈U i)

[

g( , u) +
(

]

∑

pij(u)J
∗(j) , ∀ i

j=1

• For a stationary policy µ, Jµ(i), i = 1, . . . , n,
are the unique solution of the linear system of n
equations

n

Jµ(i) = g
(

i, µ(i)
)

+
∑

pij µ(i) Jµ(j), ∀ i = 1, . . . , n

j=1

•

( )

A stationary policy µ is optimal if and only
if for every state i, µ(i) attains the minimum in
Bellman’s equation.
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BELLMAN’S EQ. FOR A SINGLE POLICY
 

• Consider a stationary policy µ 

• Jµ(i), i = 1, . . . , n, are the unique solution of the 
linear system of n equations 

( ) ( )

Jµ(i) = g i, µ(i) + pij µ(i) Jµ(j), ∀ i = 1, . . . , n 

• The equation provides a way to compute Jµ(i), 
i = 1, . . . , n, but the computation is substantial for 
large n [O(n 3)] 

• For large n, value iteration may be preferable. 
(Typical case of a large linear system of equations, 
where an iterative method may be better than a 
direct solution method.) 

• For VERY large n, exact methods cannot be 
applied, and approximations are needed. (We will 
discuss these later.) 

n
∑

j=1
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POLICY ITERATION

• It generates a sequence µ1, µ2, . . . of stationary
policies, starting with any stationary policy µ0.

• At the typical iteration, given µk, we perform
a policy evaluation step, that computes the J kµ

(i)

as the solution of the (linear) system of equations
n

J(i) = g
(

i, µk(i) + pij µk(i) J(j), i = 1, . . . , n,

j=1

in the n unkno

)

wn

∑

s J(1)

(

, . . . , J

)

(n). We then per-
form a policy improvement step,

n

µk+1(i) = arg min

[

g(i, u) +
∑

pij(u)J kµ
(j)

u∈U(i)
j=1

]

, ∀ i

• Terminate when J
µk

(i) = J
µk+1 (i) ∀ i. Then

J kµ +1 = J∗ and µk+1 is optimal, since

n

J kµ +1(i) = g(i, µk+1(i)) +
∑

pij(µ
k+1(i))J kµ +1(j)

j=1

n

= min

[

g(i, u) +
∑

pij(u)J k+1µ
(j)

u∈U(i)
j=1

]
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JUSTIFICATION OF POLICY ITERATION

• We can show that J kµ (i) ≥ J kµ +1(i) for all i, k

• Fix k and consider the sequence generated by
n

JN+1(i) = g
(

i, µk+1(i)
)

+
∑

pij µk+1(i) JN (j)

j=1

where J0(i) = J kµ
(i). We have

( )

n

J (i) = g
(

i, µk(i)
)

+
∑

p
(

µk
0 ij (i)

j=1

)

J0(j)

n

≥ g
(

i, µk+1(i)
)

+
∑

pij J

j=

(

µk+1(i)

1

)

0(j) = J1(i)

• Using the monotonicity property of DP,

J0(i) ≥ J1(i) ≥ · · · ≥ JN (i) ≥ JN+1(i) ≥ · · · , ∀ i

Since JN (i) → J kµ +1(i) as N → ∞, we obtain pol-
icy improvement, i.e.

J kµ
(i) = J0(i) ≥ J kµ +1(i) ∀ i, k

• A policy cannot be repeated (there are finitely
many stationary policies), so the algorithm termi-
nates with an optimal policy
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LINEAR PROGRAMMING

• We claim that J∗ is the “largest” J that satisfies
the constraint

n

J(i) ≤ g(i, u) +
∑

pij(u)J(j), (1)

j=1

for all i = 1, . . . , n and u ∈ U(i).

• Proof: If we use value iteration to generate a
sequence of vectors Jk = Jk(1), . . . , Jk(n) starting
with a J0 that satisfies t

(

he constraint, i.e

)

.,

n

J0(i) ≤ min
∈U(i)

[

g(i, u) +
u

]

∑

pij(u)J0(j) , ∀ i

j=1

then, Jk(i) ≤ Jk+1(i) for all k and i (monotonicity
property of DP) and Jk → J∗, so that J ∗

0(i) ≤ J (i)
for all i.

• So J∗ = J∗(1), . . . , J∗(n) is the solution of the
linear progr

(

am of maximizin

)

g
∑n

J(i)
i=1

subject to
the constraint (1).
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=

=0

2)J(2) 

( )

= J∗(1), J∗(2)

J(2) 

J∗ 

J(1) = g(1, u1) + p11(u1)J(1) + p12(u1)J(2) 

J(1) = g(1, u

J(2) = g(2, u1) + p21(u1)J(1) + p22(u1)J(2) 

J(2) = g(2, u2) + p21(u2)J(1) + p22(u

2) + p11(u2)J(1) + p12(u2)J(2) 

= J(1) 

• Drawback: For large n the dimension of this pro
gram is very large. Furthermore, the number of 
constraints is equal to the number of state-control 
pairs. 

LINEAR PROGRAMMING (CONTINUED)

• Obtain J∗ by Max
∑n

J(i)
i=1

subject to

n

J(i) ≤ g(i, u)+
∑

pij(u)J(j), i = 1, . . . , n, u ∈ U(i)

j=1
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DISCOUNTED PROBLEMS 

• Assume a discount factor α < 1. 

• Conversion to an SSP problem. 

• kth stage cost is the same for both problems

• Value iteration converges to J∗ for all initial J0:

n

Jk+1(i) = min g(i, u) + α
u∈U(i)

[ ]

∗

∑

pij(u)Jk(j) , ∀ i

j=1

• J is the unique solution of Bellman’s equation:

J∗(i) = min

[

n

g(i, u) + α
u∈U(i)

∑

pij(u)J
∗(j)

j=1

]

, ∀ i

• Policy iteration terminates with an optimal pol-
icy, and linear programming works.
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� 

DISCOUNTED PROBLEM EXAMPLE
 

•	 A manufacturer at each time: 

− Receives an order with prob. p and no order 
with prob. 1− p. 

− May process all unfilled orders at cost K > 
0, or process no order at all. The cost per 
unfilled order at each time is c > 0. 

− Maximum number of orders that can remain 
unfilled is n. 

− Find a processing policy that minimizes the 
α-discounted cost per stage. 

− State: Number of unfilled orders at the start 
of a period (i = 0, 1, . . . , n). 

•	 Bellman’s Eq.: 

[

J ∗ (i) = min K + α(1− p)J ∗ (0) + αpJ ∗ (1), 

ci	 + α(1− p)J ∗ (i) + αpJ ∗ (i+ 1) , 

for the states i = 0, 1, . . . , n − 1, and 

J ∗ (n) = K + α(1− p)J ∗ (0) + αpJ ∗ (1) 

for state n. 

• Analysis: Argue that J ∗ (i) is mon. increasing in 
i, to show that the optimal policy is a threshold 
policy. 128
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LECTURE OUTLINE

• Average cost per stage problems

• Connection with stochastic shortest path prob-
lems

• Bellman’s equation

• Value iteration

• Policy iteration
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AVERAGE COST PER STAGE PROBLEM

• Assume a stationary system with finite number
of states and controls.

• Minimize over policies π = {µ0, µ1, ...}

1
Jπ(x0) = lim

N→∞

N−1

E g xk, µk(xk), wk
N wk

k=0,1,...

{

∑

k=0

}

( )

• Important characteristics (not shared by other
types of infinite horizon problems).

− For any fixed T , the cost incurred up to time
T does not matter (only the state that we are
at time T matters)

− If all states “communicate” the optimal cost
is independent of initial state [if we can go
from i to j in finite expected time, we must
have J∗(i) ≤ J∗(j)]. So J∗(i) ≡ λ∗ for all i.

− Because “communication” issues are so im-
portant, the methodology relies heavily on
Markov chain theory.

− The theory depends a lot on whether the
chains corresponding to policies have a single
or multiple recurrent classes. We will focus
on the simplest version, using SSP theory.
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CONNECTION WITH SSP

• Assumption: State n is special, in that for all
initial states and all policies, n will be visited in-
finitely often (with probability 1).

• Then we expect that J∗(i) ≡ some λ∗

• Divide the sequence of generated states into
cycles marked by successive visits to n.

• Let’s focus on a single cycle: It can be viewed
as a state trajectory of an SSP problem with n as
the termination state.

• Let the cost at i of the SSP be g(i, u)− λ∗

• We will argue (informally) that

Av. Cost Probl. ≡ A Min Cost Cycle Probl. ≡ SSP Probl.
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CONNECTION WITH SSP (CONTINUED)

• Consider a minimum cycle cost problem: Find
a stationary policy µ that minimizes the expected
cost per transition within a cycle

Cnn(µ)
,

Nnn(µ)

where for a fixed µ,

Cnn(µ) : E{cost from n up to the first return to n}

Nnn(µ) : E{time from n up to the first return to n}

• Intuitively, Cnn(µ)/Nnn(µ) = average cost of
µ, and optimal cycle cost = λ∗, so

Cnn(µ)−N ∗
nn(µ)λ ≥ 0,

with equality if µ is optimal.

• Consider SSP with stage costs g(i, u)−λ∗. The
cost of µ starting from n is Cnn(µ) − Nnn(µ)λ∗,
so the optimal/min cycle µ is also optimal for the
SSP.

• Also: Optimal SSP cost starting from n = 0.
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BELLMAN’S EQUATION

• Let h∗(i) the optimal cost of this SSP problem
when starting at the nontermination states i =
1, . . . , n. Then h∗(1), . . . , h∗(n) solve uniquely the
corresponding Bellman’s equation

n−1

h∗(i) = min g(i, u) λ∗ + p ∗
ij(u)h (j) , i

u∈U(i)



 −
∑

j=1



 ∀

• If µ∗ is an optimal stationary policy for the SSP
problem, we have

h∗(n) = Cnn(µ∗)−N ∗ ∗
nn(µ )λ = 0

• Combining these equations, we have

n

λ∗+h∗(i) = min



g(i, u) + ,
u∈U(i)

∑

pij(u)h∗(j)
j=1



 ∀ i

h∗(n) = 0

• If µ∗(i) attains the min for each i, µ∗ is optimal.

• There is also Bellman Eq. for a single policy µ.
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MORE ON THE CONNECTION WITH SSP

• Interpretation of h∗(i) as a relative or differen-
tial cost: It is the minimum of

E{cost to reach n from i for the first time}
− E{cost if the stage cost were λ∗ and not g(i, u)}

• Algorithms: We don’t know λ∗, so we can’t
solve the average cost problem as an SSP problem.
But similar value and policy iteration algorithms
are possible, and will be given shortly.

• Example: A manufacturer at each time

− Receives an order with prob. p and no order
with prob. 1− p.

− May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is c > 0.

− Maximum number of orders that can remain
unfilled is n.

− Find a processing policy that minimizes the
total expected cost per stage.
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EXAMPLE (CONTINUED)

• State = number of unfilled orders. State 0 is
the special state for the SSP formulation.

• Bellman’s equation: For states i = 0, 1, . . . , n−1

λ∗ + h∗(i) = min
[

K + (1− p)h∗(0) + ph∗(1),

ci+ (1− p)h∗(i) + ph∗(i+ 1) ,

and for state n

]

λ∗ + h∗(n) = K + (1− p)h∗(0) + ph∗(1)

Also h∗(0) = 0.

• Optimal policy: Process i unfilled orders if

K+(1−p)h∗(0)+ph∗(1) ≤ ci+(1−p)h∗(i)+ph∗(i+1)

• Intuitively, h∗(i) is monotonically nondecreas-
ing with i (interpret h∗(i) as optimal costs-to-go
for the associate SSP problem). So a threshold
policy is optimal: process the orders if their num-
ber exceeds some threshold integer m∗.
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VALUE ITERATION

• Natural VI method: Generate optimal k-stage
costs by DP algorithm starting with any J0:

n

Jk+1(i) = min



g(i, u) +
∑

pij(u)Jk(j)
u∈U(i)

j=1



 , ∀ i

• Convergence: limk→∞ Jk(i)/k = λ∗ for all i.

• Proof outline: Let J∗
k be so generated start-

ing from the opt. differential cost, i.e., the initial
condition J∗ = h∗

0 . Then, by induction,

J∗(i) = kλ∗ ∗
k + h (i), ∀i, ∀ k.

On the other hand,

∣

∣Jk(i)− J∗
k (i)

∣

∣ ≤ max
∣

∣J0(j) ,
,

− h∗(j)
j=1,... n

∣

∀ i

since Jk(i) and J∗

∣

k (i) are optimal costs for two
k-stage problems that differ only in the terminal
cost functions, which are J0 and h∗.
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RELATIVE VALUE ITERATION

• The VI method just described has two draw-
backs:

− Since typically some components of Jk di-
verge to∞ or−∞, calculating limk→∞ Jk(i)/k
is numerically cumbersome.

− The method will not compute a correspond-
ing differential cost vector h∗.

• We can bypass both difficulties by subtracting
a constant from all components of the vector Jk,
so that the difference, call it hk, remains bounded.

• Relative VI algorithm: Pick any state s, and
iterate according to

n

hk+1(i) = min



g(i, u) +
∑

pij(u)hk(j)
u∈U(i)

j=1





− min



n

g(s, u) +
∑

psj(u)hk(j)
u∈U(s)

j=1



 , ∀ i

• Convergence: We can show hk → h∗ (under an
extra assumption; see Vol. II).
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POLICY ITERATION

• At iteration k, we have a stationary µk.

• Policy evaluation: Compute λk and hk(i) of µk,
using the n+ 1 equations hk(n) = 0 and

n

λk + hk(i) = g
(

i, µk(i)
)

+
∑

pij
(

µk(i)
j=1

)

hk(j), ∀ i

• Policy improvement: (For the λk-SSP) Find

n

µk+1(i) = arg min



g(i, u) +
∑

p k
ij(u)h (j)

u∈U(i)
j=1



 , ∀ i

• If λk+1 = λk and hk+1(i) = hk(i) for all i, stop;
otherwise, repeat with µk+1 replacing µk.

• Result: For each k, we either have λk+1 < λk

or we have policy improvement for the λk-SSP:

λk+1 = λk, hk+1(i) ≤ hk(i), i = 1, . . . , n.

The algorithm terminates with an optimal policy.
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6.231 DYNAMIC PROGRAMMING

LECTURE 13

LECTURE OUTLINE

• Control of continuous-time Markov chains –
Semi-Markov problems

• Problem formulation – Equivalence to discrete-
time problems

• Discounted problems

• Average cost problems
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CONTINUOUS-TIME MARKOV CHAINS

• Stationary system with finite number of states
and controls

• State transitions occur at discrete times

• Control applied at these discrete times and stays
constant between transitions

• Time between transitions is random

• Cost accumulates in continuous time (may also
be incurred at the time of transition)

• Example: Admission control in a system with
restricted capacity (e.g., a communication link)

− Customer arrivals: a Poisson process

− Customers entering the system, depart after
exponentially distributed time

− Upon arrival we must decide whether to ad-
mit or to block a customer

− There is a cost for blocking a customer

− For each customer that is in the system, there
is a customer-dependent reward per unit time

− Minimize time-discounted or average cost
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PROBLEM FORMULATION

• x(t) and u(t): State and control at time t

• tk: Time of kth transition (t0 = 0)

• xk = x(tk); x(t) = xk for tk ≤ t < tk+1.

• uk = u(tk); u(t) = uk for tk ≤ t < tk+1.

• No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qij(τ, u) = P{tk+1−tk ≤ τ, xk+1 = j | xk = i, uk = u}

• Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{xk+1 = j | xk = i, uk = u} = lim Qij(τ, u)
τ→∞

(2) The Cumulative Distribution Function (CDF)
of τ given i, j, u is (assuming pij(u) > 0)

Qij(τ, u)
P{tk+1−tk ≤ τ | xk = i, xk+1 = j, uk = u} =

pij(u)

Thus, Qij(τ, u) can be viewed as a “scaled CDF”
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EXPONENTIAL TRANSITION DISTRIBUTIONS

• Important example of transition distributions:

Qij(τ, u) = pij(u)
(

1− e−νi(u)τ
)

,

where pij(u) are transition probabilities, and νi(u)
is called the transition rate at state i.

• Interpretation: If the system is in state i and
control u is applied

− the next state will be j with probability pij(u)

− the time between the transition to state i
and the transition to the next state j is ex-
ponentially distributed with parameter νi(u)
(independently of j):

P{transition time interval > τ | i, u} = e−νi(u)τ

• The exponential distribution is memoryless.
This implies that for a given policy, the system
is a continuous-time Markov chain (the future de-
pends on the past through the current state).

• Without the memoryless property, the Markov
property holds only at the times of transition.
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COST STRUCTURES

• There is cost g(i, u) per unit time, i.e.

g(i, u)dt = the cost incurred in time dt

• There may be an extra “instantaneous” cost
ĝ(i, u) at the time of a transition (let’s ignore this
for the moment)

• Total discounted cost of π = µ0, µ1, . . . start-
ing from state i (with discount

{
factor β >

}
0)

N
1

li

∫ t

m E

{

−1
∑ k+

e−βtg xk, µk(xk) dt x0 = i
N→∞

tk=0 k

( )

∣

}

∣

∣

• Average cost per unit time

lim
N→∞

1
N−1 tk+1

E g xk, µk(xk) dt x0 = i
E{tN}

{

∑

∫

tk=0 k

( )

∣

}

∣

∣

• We will see that both problems have equivalent
discrete-time versions.
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DISCOUNTED CASE - COST CALCULATION

• For a policy π = {µ0, µ1, . . .}, write

Jπ(i) = E{1st transition cost}+E{e−βτJπ1(j) | i, µ0(i)}

τ
where E{1st transition cost} = E

{∫

e−βtg(i, µ0(i))dt0
and Jπ1(j) is the cost-to-go of π1 = {µ1, µ2, . . .}

}

• We calculate the two costs in the RHS. The
E{1st transition cost}, if u is applied at state i, is

G(i, u) = Ej

{

Eτ{1st transition cost | j}

n

}

∑

∞ τ
dQ−βt ij(τ, u)

= pij(u) e g(i, u)dt
0 0j=1

∫ (∫ )

pij(u)

n

= g(i, u)
∑

j=1

∫ ∞
1− e−βτ

0
β

dQij(τ, u)

• Thus the E{1st transition cost} is

n ∞
1− e−βτ

G
(

i, µ0(i)
)

= g
(

i, µ0(i)
)

∑

j=1

∫

0
β

dQij

(

τ, µ0(i)
)

(The summation term can be viewed as a “dis-
counted length of the transition interval t1 − t0”.)
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COST CALCULATION (CONTINUED)

• Also the expected (discounted) cost from the
next state j is

E
{

e−βτJπ1(j) | i, µ0(i)

= E
{

E{e−βτ
j | i, µ0(

}

i), j}Jπ1(j)
n

| i, µ0(i)

∑

(∫ ∞ dQij(τ, µ0(i))
= p µ0(i ) e−βτ

ij( )

}

0j=1

J
pij(µ0(i))

)

π1(j)

n

=
∑

mij

j=1

(

µ0(i)
)

Jπ1(j)

where mij(u) is given by

∞ ∞

mij(u) =

∫

−βτe dQij(τ, u)

(

<

∫

dQij(τ, u) = pij(u)
0 0

and can be viewed as the “effective discount fac-

)

tor” [the analog of αpij(u) in discrete-time case].

• So Jπ(i) can be written as
n

Jπ(i) = G
(

i, µ0(i)
)

+
∑

mij

(

µ0(i)
)

Jπ1(j)
j=1

i.e., the (continuous-time discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.
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COST CALCULATION (CONTINUED)

• Also the expected (discounted) cost from the
next state j is

E
{

e−βτJπ1(j) | i, µ0(i)

= E
{

E{e−βτ
j | i, µ0(

}

i), j}Jπ1(j)
n

| i, µ0(i)

∑

(∫ ∞ dQij(τ, µ0(i))
= p µ0(i ) e−βτ

ij( )

}

0j=1

J
pij(µ0(i))

)

π1(j)

n

=
∑

mij

j=1

(

µ0(i)
)

Jπ1(j)

where mij(u) is given by

∞

mij(u) =

∫ ∞
−βτe dQij(τ, u) d

0

(

<

∫

Qij(τ, u) = pij(u)
0

)

and can be viewed as the “effective discount fac-
tor” [the analog of αpij(u) in discrete-time case].

• So Jπ(i) can be written as
n

Jπ(i) = G
(

i, µ0(i)
)

+
∑

mij

(

µ0(i)
)

Jπ1(j)
j=1

i.e., the (continuous-time discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.
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EQUIVALENCE TO AN SSP

• Similar to the discrete-time case, introduce an
“equivalent” stochastic shortest path problem with
an artificial termination state t

• Under control u, from state i the system moves
to state j with probability mij(u) and to the ter-

n
mination state t with probability 1−

∑

j=1 mij(u)

• Bellman’s equation: For i = 1, . . . , n,



n

J∗(i) = min G(i, u) +
u∈U(i)

∑

m ∗
ij(u)J (j)

j=1





• Analogs of value iteration, policy iteration, and
linear programming.

• If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost ĝ(i, u),
Bellman’s equation becomes



n

J∗(i) = min ĝ(i, u) +G(i, u) +
u∈U(i)

∑

mij(u)J∗(j)
j=1
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MANUFACTURER’S EXAMPLE REVISITED

• A manufacturer receives orders with interarrival
times uniformly distributed in [0, τmax].

• He may process all unfilled orders at costK > 0,
or process none. The cost per unit time of an
unfilled order is c. Max number of unfilled orders
is n.

• The nonzero transition distributions are

τ
Qi1(τ,Fill) = Qi(i+1)(τ,Not Fill) = min

[

1,
τmax

]

• The one-stage expected cost G is

G(i,Fill) = 0, G(i,Not Fill) = γ c i,

where

n

γ =
∑ τ

j 1

∫ ∞ 1− e−β

0=
β

dQij(τ, u) =

∫ τmax

0

1− e−βτ

dτ
βτmax

• There is an “instantaneous” cost

ĝ(i,Fill) = K, ĝ(i,Not Fill) = 0
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MANUFACTURER’S EXAMPLE CONTINUED

• The “effective discount factors” mij(u) in Bell-
man’s Equation are

mi1(Fill) = mi(i+1)(Not Fill) = α,

where

α =

∫ ∞ τmax τ

e−βτ e−β

dQij(τ, u) =
0

∫

0
τmax

dτ =
1− e−βτmax

βτmax

• Bellman’s equation has the form

J∗(i) = min
[

K+αJ∗(1), γci+αJ∗(i+1)
]

, i = 1, 2, . . .

• As in the discrete-time case, we can conclude
that there exists an optimal threshold i∗:

fill the orders <==> their number i exceeds i∗
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AVERAGE COST

• Minimize limN→∞
1

E{tN}E
{

∫ tN
0

g
(

x(t), u(t)
)

dt
}

assuming there is a special state that is “recurrent
under all policies”

• Total expected cost of a transition

G(i, u) = g(i, u)τ i(u),

where τ i(u): Expected transition time.

• We apply the SSP argument used for the discrete-
time case.

− Divide trajectory into cycles marked by suc-
cessive visits to n.

− The cost at (i, u) is G(i, u)− λ∗τ i(u), where
λ∗ is the optimal expected cost per unit time.

− Each cycle is viewed as a state trajectory of
a corresponding SSP problem with the ter-
mination state being essentially n.

• So Bellman’s Eq. for the average cost problem:

h∗(i) = min
u∈U(i)



G(i, u)− λ∗τ i(u) +

n
∑

j=1

pij(u)h∗(j)
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MANUFACTURER EXAMPLE/AVERAGE COST

• The expected transition times are

τ i(Fill) = τ i(Not Fill) =
τmax

2

the expected transition cost is

c i τmax
G(i,Fill) = 0, G(i,Not Fill) =

2

and there is also the “instantaneous” cost

ĝ(i,Fill) = K, ĝ(i,Not Fill) = 0

• Bellman’s equation:

x
h∗(i) = min

[ τ
K − ma

λ∗

2
+ h∗(1),

ci
τmax

2
− λ∗

τmax
+ h∗(i+ 1)

2

]

• Again it can be shown that a threshold policy
is optimal.
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6.231 DYNAMIC PROGRAMMING

LECTURE 14

LECTURE OUTLINE

• We start a ten-lecture sequence on advanced
infinite horizon DP and approximation methods

• We allow infinite state space, so the stochastic
shortest path framework cannot be used any more

• Results are rigorous assuming a finite or count-
able disturbance space

− This includes deterministic problems with
arbitrary state space, and countable state
Markov chains

− Otherwise the mathematics of measure the-
ory make analysis difficult, although the fi-
nal results are essentially the same as for fi-
nite disturbance space

• We use Vol. II of the textbook, starting with
discounted problems (Ch. 1)

• The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state)
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DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,...

{

k

∑

=0

}

( )

with α < 1, and for some M , we have

|g(x, u, w)| ≤ M, ∀ (x, u, w)

• We have

∣

∣Jπ(x0)
∣ M
∣ ≤ M +αM +α2M + · · · = ,

1− α
∀ x0

• The “tail” of the cost Jπ(x0) diminishes to 0

• The limit defining Jπ(x0) exists
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WE ADOPT “SHORTHAND” NOTATION

• Compact pointwise notation for functions:

− If for two functions J and J ′ we have J(x) =
J ′(x) for all x, we write J = J ′

− If for two functions J and J ′ we have J(x) ≤
J ′(x) for all x, we write J ≤ J ′

− For a sequence {Jk} with Jk(x) → J(x) for
all x, we write Jk → J ; also J∗ = minπ Jπ

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E
{

g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

( )}

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
{

g
(

x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

• For finite-state problem

)

s:

( )}

TµJ = gµ + αPµJ, TJ = minTµJ
µ
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“SHORTHAND” COMPOSITION NOTATION

• Composition notation: T 2J is defined by (T 2J)(x) =
(T (TJ))(x) for all x (similar for T kJ)

• For any policy π = {µ0, µ1, . . .} and function J :

− Tµ0J is the cost function of π for the one-
stage problem with terminal cost function
αJ

− Tµ0Tµ1J (i.e., Tµ0 applied to Tµ1J) is the
cost function of π for the two-stage problem
with terminal cost α2J

− Tµ0Tµ1 · · ·TµN−1J is the cost function of π
for the N -stage problem with terminal cost
αNJ

• For any function J :

− TJ is the optimal cost function of the one-
stage problem with terminal cost function
αJ

− T 2J (i.e., T applied to TJ) is the optimal
cost function of the two-stage problem with
terminal cost α2J

− TNJ is the optimal cost function of the N -
stage problem with terminal cost αNJ
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“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim (Tµ0
Tµ1

· · · kTµk
J0)(x), Jµ(x) = lim (TµJ0)(x)

k→∞ k→∞

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J and all
x,

J∗(x) = lim (T kJ)(x)
k→∞

• Policy iteration: Given µk:

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk
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SOME KEY PROPERTIES

• Monotonicity property: For any functions J and
J ′ such that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

Also

J ≤ TJ ⇒ T kJ ≤ T k+1J, ∀ k

• Constant Shift property: For any J , any scalar
r, and any µ

(

T (J + re)
)

(x) = (TJ)(x) + αr, ∀ x,

(

Tµ(J + re)
)

(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1] (holds for
most DP models).

• A third important property that holds for some
(but not all) DP models is that T and Tµ are con-
traction mappings (more on this later).
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CONVERGENCE OF VALUE ITERATION

• If J0 ≡ 0,

J∗(x) = lim (TNJ0)(x), for all x
N→∞

Proof: For any initial state x0, and policy π =
{µ0, µ1, . . .},

∞

Jπ(x0) = E

{

∑

αkg
(

xk, µk(xk), wk

k=0

}

)

= E

{

N−1
∑

αkg
(

xk, µk(xk), wk

k=0

}

)

+ E

{

∞
∑

αkg
(

xk, µk(xk), wk

k=N

}

)

from which

αNM
Jπ(x0)−

1− α
≤ (Tµ0 · · ·TµN−1

J0)(x0) ≤ Jπ(x0)+
αNM

,
1− α

where M ≥ |g(x, u, w)|. Take the min over π of
both sides. Q.E.D.
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BELLMAN’S EQUATION

• The optimal cost function J∗ satisfies Bellman’s
Eq., i.e. J∗ = TJ∗.

Proof: For all x and N ,

αNM
J∗(x)−

1− α
≤ (TNJ0)(x) ≤ J∗(x) +

αNM
,

1− α

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|.
• Apply T to this relation and use Monotonicity
and Constant Shift,

αN+1M
(TJ∗)(x)− (

1− α
≤ TN+1J0)(x)

αN+1M≤ (TJ∗)(x) +
1− α

• Take limit as N → ∞ and use the fact

lim (TN+1J0)(x) = J∗(x)
N→∞

to obtain J∗ = TJ∗. Q.E.D.
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THE CONTRACTION PROPERTY

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
∣

∣(TJ)(x)− (TJ ′)(x)
x

∣

≤ αmax
x

∣

J(x)− J ′(x)
∣

,

max
∣

∣(TµJ)(x) ′

∣ ∣

x
−(TµJ )(x

∣

) ≤ αmax J(x) J ′(x) .
x

−

Proof: Denote c = maxx∈

∣

∣

S J(x)

∣

−

∣

J ′(x) . Then

∣

∣

J(x)

∣

∣

− c ≤ J ′(x) ≤ J(x) + c,

∣

∀

∣

x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αc, ∀ x.

Similar for Tµ. Q.E.D.
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IMPLICATIONS OF CONTRACTION PROPERTY

• We can strengthen our earlier result:

• Bellman’s equation J = TJ has a unique solu-
tion, namely J∗, and for any bounded J , we have

lim (T kJ)(x) = J∗(x),
k→∞

∀ x

Proof: Use

max
∣

∣(T kJ)(x)− J∗(x)
∣

∣ = max
∣

∣(T kJ)(x) T
x

− ( kJ∗)(x)
x

J

∣

≤ αk max
x

∣

(x)− J∗(x)

∣

∣

• Special Case: For each stationa

∣

ry µ, J

∣

µ is the
unique solution of J = TµJ and

lim (T k
µJ)(x) = Jµ(x),

k→∞
∀ x,

for any bounded J .

• Convergence rate: For all k,

max
∣

∣(T kJ)(x)− J∗(x)
x

∣

∣ ≤ αk max
x

∣

∣J(x)− J∗(x)
∣

∣
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NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

TJ∗ = TµJ∗.

Proof: If TJ∗ = TµJ∗, then using Bellman’s equa-
tion (J∗ = TJ∗), we have

J∗ = T J∗
µ ,

so by uniqueness of the fixed point of Tµ, we obtain
J∗ = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,
we have J∗ = Jµ, so

J∗ = TµJ∗.

Combining this with Bellman’s equation (J∗ =
TJ∗), we obtain TJ∗ = TµJ∗. Q.E.D.
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COMPUTATIONAL METHODS - AN OVERVIEW

• Typically must work with a finite-state system.
Possibly an approximation of the original system.

• Value iteration and variants

− Gauss-Seidel and asynchronous versions

• Policy iteration and variants

− Combination with (possibly asynchronous)
value iteration

− “Optimistic” policy iteration

• Linear programming

n

maximize
∑

J(i)
i=1

n

subject to J(i) ≤ g(i, u) + α
∑

pij(u)J(j),
j=1

∀ (i, u)

• Versions with subspace approximation: Use in
place of J(i) a low-dim. basis function representa-
tion, with state features φm(i), m = 1, . . . , s

s

J̃(i, r) = rmφm(i)
m=1

and modify the basic m

∑

ethods appropriately.
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USING Q-FACTORS I

• Let the states be i = 1, . . . , n. We can write
Bellman’s equation as

J∗(i) = min Q∗(i, u) i = 1, . . . , n,
u∈U(i)

where

n

Q∗(i, u) =
∑

pij(u)
(

g(i, u, j) + αJ∗(j)
j=1

)

for all (i, u)

• Q∗(i, u) is called the optimal Q-factor of (i, u)

• Q-factors have optimal cost interpretation in
an “augmented” problem whose states are i and
(i, u), u ∈ U(i) - the optimal cost vector is (J∗, Q∗)

• The Bellman Eq. is J∗ = TJ∗, Q∗ = FQ∗ where

n

(FQ∗)(i, u) =
∑

pij(u)

(

g(i, u, j) + α min Q∗(j, v)
v∈U(j)

j=1

)

• It has a unique solution.
164



USING Q-FACTORS II

• We can equivalently write the VI method as

Jk+1(i) = min Qk+1(i, u), i = 1, . . . , n,
u∈U(i)

where Qk+1 is generated for all i and u ∈ U(i) by

n

Qk+1(i, u) =
∑

pij(u)

(

g(i, u, j) + α min Qk(j, v)
v∈U(j)

j=1

)

or Jk+1 = TJk, Qk+1 = FQk.

• Equal amount of computation ... just more
storage.

• Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

µ∗(i) = min Q∗(i, u)
u∈U(i)

• Once Q∗(i, u) are known, the model [g and
pij(u)] is not needed. Model-free operation.

• Stochastic/sampling methods can be used to
calculate (approximations of) Q∗(i, u) [not J∗(i)]
with a simulator of the system.
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6.231 DYNAMIC PROGRAMMING

LECTURE 15

LECTURE OUTLINE

• Review of basic theory of discounted problems

• Monotonicity and contraction properties

• Contraction mappings in DP

• Discounted problems: Countable state space
with unbounded costs

• Generalized discounted DP

• An introduction to abstract DP
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DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim E

{

N−1
∑

αkg
(

xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

}

)

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E ,
u∈U(x)

{

g(x, u w) + αJ
w

(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x
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“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim (Tµ0
Tµ1

· · · kTµk
J0)(x), Jµ(x) = lim (TµJ0)(x)

k→∞ k→∞

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J and all
x:

J∗(x) = lim (T kJ)(x)
k→∞

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk
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MAJOR PROPERTIES

• Monotonicity property: For any functions J and
J ′ on the state space X such that J(x) ≤ J ′(x)
for all x ∈ X, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x ∈ X,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X.

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
∣

∣(TJ)(x)− (TJ ′)(x)
x

∣

≤ αmax
x

′)

∣

∣

∣J(x)− J ′(x)
∣

,

max
∣

∣(TµJ)(x)−(TµJ (x) αmax J(x) J ′(x)

∣

.
x

∣

≤
x

∣

−
∣

• Shorthand writing of th

∣

e contrac

∣

tion property

∣

‖TJ−TJ ′‖ ≤ α‖J−J ′‖, ‖T ′ ′
µJ−TµJ ‖ ≤ α‖J−J ‖,

where for any bounded function J , we denote by
‖J‖ the sup-norm

‖J‖ = max
x∈X

∣

∣J(x)
∣

∣.
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CONTRACTION MAPPINGS

• Given a real vector space Y with a norm ‖ · ‖
(see text for definitions).

• A function F : Y 7→ Y is said to be a contraction
mapping if for some ρ ∈ (0, 1), we have

‖Fy − Fz‖ ≤ ρ‖y − z‖, for all y, z ∈ Y.

ρ is called the modulus of contraction of F .

• Linear case, Y = ℜn: Fy = Ay + b is a con-
traction (for some norm ‖ · ‖) if and only if all
eigenvalues of A are strictly within the unit circle.

• For m > 1, we say that F is an m-stage con-

traction if Fm is a contraction.

• Important example: Let X be a set (e.g., state
space in DP), v : X 7→ ℜ be a positive-valued
function. Let B(X) be the set of all functions
J : X 7→ ℜ such that J(s)/v(s) is bounded over s.

• The weighted sup-norm on B(X):

‖J‖ = max
|J(s)|

s∈X v(s)
.

• Important special case: The discounted prob-
lem mappings T and Tµ [for v(s) ≡ 1, ρ = α].
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A DP-LIKE CONTRACTION MAPPING

• Let X = {1, 2, . . .}, and let F : B(X) 7→ B(X)
be a linear mapping of the form

(FJ)(i) = b(i) + a(i, j)J(j), i
j

∑

∈X

∀

where b(i) and a(i, j) are some scalars. Then F is
a contraction with modulus ρ if

∑

j∈X |a(i, j)| v(j)
v(i)

≤ ρ, ∀ i

[Think of the special case where a(i, j) are the
transition probs. of a policy].

• Let F : B(X) 7→ B(X) be the mapping

(FJ)(i) = min(FµJ)(i), i
µ∈M

∀

whereM is parameter set, and for each µ ∈ M , Fµ

is a contraction from B(X) to B(X) with modulus
ρ. Then F is a contraction with modulus ρ.

171



CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If
F : B(X) 7→ B(X) is a contraction with modulus
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X)
such that

J∗ = FJ∗.

Furthermore, if J is any function in B(X), then
{F kJ} converges to J∗ and we have

‖F kJ − J∗‖ ≤ ρk‖J − J∗‖, k = 1, 2, . . . .

• Similar result if F is an m-stage contraction
mapping.

• This is a special case of a general result for
contraction mappings F : Y 7→ Y over normed
vector spaces Y that are complete: every sequence
{yk} that is Cauchy (satisfies ‖ym − yn‖ → 0 as
m,n → ∞) converges.

• The space B(X) is complete [see the text (Sec-
tion 1.5) for a proof].
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GENERAL FORMS OF DISCOUNTED DP

• Monotonicity assumption: If J, J ′ ∈ R(X) and
J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• Contraction assumption:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X).

− For some α ∈ (0, 1) and all J, J ′ ∈ B(X), H
satisfies

∣

∣H(x, u, J)−H(x, u, J ′)
∣

∣ ≤ αmax
∣

∣J(y) )
y

−J ′(y
∈X

∣

for all x

∣

∈ X and u ∈ U(x).

• We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions (with identical proofs!)

• With just the monotonicity assumption (as in
shortest path problem) we can still show various
forms of the basic results under appropriate as-
sumptions (like in the SSP problem)
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EXAMPLES

• Discounted problems

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)
)}

• Discounted Semi-Markov Problems

n

H(x, u, J) = G(x, u) +
∑

mxy(u)J(y)
y=1

where mxy are “discounted” transition probabili-
ties, defined by the transition distributions

• Deterministic Shortest Path Problems

(
)

{

a J
H(x, u, J = xu + u) if u 6= t,

axt if u = t

where t is the destination

• Minimax Problems

H(x, u, J) = max
[

g(x, u, w)+αJ
w∈W (x,u)

(

f(x, u, w)
)]
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RESULTS USING CONTRACTION

• The mappings Tµ and T are sup-norm contrac-
tion mappings with modulus α over B(X), and
have unique fixed points in B(X), denoted Jµ and
J∗, respectively (cf. Bellman’s equation). Proof :
From contraction assumption and fixed point Th.

• For any J ∈ B(X) and µ ∈ M,

lim T k
µJ = Jµ, lim T kJ = J∗

k→∞ k→∞

(cf. convergence of value iteration). Proof : From
contraction property of Tµ and T .

• We have TµJ∗ = TJ∗ if and only if Jµ = J∗

(cf. optimality condition). Proof : TµJ∗ = TJ∗,
then T ∗

µJ = J∗, implying J∗ = Jµ. Conversely,
if Jµ = J∗, then TµJ∗ = TµJµ = Jµ = J∗ = TJ∗.

• Useful bound for Jµ: For all J ∈ B(X), µ ∈ M

‖Jµ − J
‖T‖ ≤ µJ − J‖

1− α

Proof: Take limit as k → ∞ in the relation

k k

‖T k
µJ−J‖ ≤

∑

T
ℓ=1

‖ ℓ
µJ−T ℓ−1

µ J‖ ≤ ‖TµJ−J‖
∑

αℓ−1

ℓ=1
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RESULTS USING MON. AND CONTRACTION I

• Existence of a nearly optimal policy: For every
ǫ > 0, there exists µǫ ∈ M such that

J∗(x) ≤ Jµǫ(x) ≤ J∗(x) + ǫv(x), ∀ x ∈ X

Proof: For all µ ∈ M, we have J∗ = TJ∗ ≤ T J∗
µ .

By monotonicity, J∗ ≤ T k+1
µ J∗ ≤ T k

µJ∗ for all k.
Taking limit as k → ∞, we obtain J∗ ≤ Jµ.

Also, choose µǫ ∈ M such that for all x ∈ X,

‖TµǫJ∗−J∗‖ =
∥

∥(TµǫJ∗)(x)−(TJ∗)(x)
∥

∥ ≤ ǫ(1−α)

From the earlier error bound, we have

‖Jµ
‖− ∗

‖T‖ ≤ µJ∗ − J∗

J ,
1− α

∀ µ ∈ M

Combining the preceding two relations,

∣

∣Jµǫ(x)− J∗(x)
∣

∣

v(x)
≤ ǫ(1− α)

1− α
= ǫ, ∀ x ∈ X

• Optimality of J∗ over stationary policies:

J∗(x) = min Jµ(x),
µ∈M

∀ x ∈ X

Proof: Take ǫ ↓ 0 in the preceding result.
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RESULTS USING MON. AND CONTRACTION II

• Nonstationary policies: Consider the set Π of
all sequences π = {µ0, µ1, . . .} with µk ∈ M for
all k, and define for any J ∈ B(X)

Jπ(x) = lim sup(Tµ0Tµ1 · · ·Tµk
J)(x), x

k→∞
∀ ∈ X,

(the choice of J does not matter because of the
contraction property).

• Optimality of J∗ over nonstationary policies:

J∗(x) = min Jπ(x),
π∈Π

∀ x ∈ X

Proof: Use our earlier existence result to show
that for any ǫ > 0, there is µǫ such that
∗

‖Jµǫ −
J ‖ ≤ ǫ(1− α). We have

J∗(x) = min Jµ(x) ≥ min Jπ(x)
µ∈M π∈Π

Also
T kJ ≤ Tµ0 · · ·Tµk−1J

Take limit as k → ∞ to obtain J ≤ Jπ for all
π ∈ Π.
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6.231 DYNAMIC PROGRAMMING

LECTURE 16

LECTURE OUTLINE

• Review of computational theory of discounted
problems

• Value iteration (VI), policy iteration (PI)

• Optimistic PI

• Computational methods for generalized dis-
counted DP

• Asynchronous algorithms
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DISCOUNTED PROBLEMS

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Bounded g. Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E

{

αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

}

∑

( )

• Shorthand notation for DP mappings (n-state
Markov chain case)

(TJ)(x) = min E g(x, u, w)+αJ f(x, u, w) ,
u∈U(x)

∀ x

TJ is the optimal c

{

ost function for

(

the one-st

)

a

}

ge
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
{

g(x, µ(x), w)+αJ f(x, µ(x), w) , ∀ x

Note: Tµ is linear [in short TµJ =

(

Pµ(gµ + αJ

)

)

}

].
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“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions (with J0 ≡ 0)

Jπ = lim Tµ0Tµ1 · · ·Tµk
J0, Jµ = lim T k

µJ0
k→∞ k→∞

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Contraction: ‖TJ1 − TJ2‖ ≤ α‖J1 − J2‖
• Value iteration: For any (bounded) J

J∗ = lim T kJ
k→∞

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk
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INTERPRETATION OF VI AND PI

J J∗ = TJ∗

0 Prob. = 1

J J∗ = TJ∗

0 Prob. = 1

∗ TJ

Prob. = 1 Prob. =

∗ TJ

Prob. = 1 Prob. =

1 J J

TJ 45 Degree Line

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

J Jµ1 = Tµ1Jµ1

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

TJ Tµ1J J

Policy Improvement Exact Policy Evaluation (Exact if

J0

J0

J0

J0

= TJ0

= TJ0

= TJ0

Do not Replace Set S

= T 2J0

Do not Replace Set S

= T 2J0

n Value Iterations
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VI AND PI METHODS FOR Q-LEARNING

• We can write Bellman’s equation as

J∗(i) = min Q∗(i, u) i = 1, . . . , n,
u∈U(i)

where Q∗ is the vector of optimal Q-factors

n

Q∗(i, u) =
∑

p ∗
ij(u)

j=

(

g(i, u, j) + αJ (j)
1

)

• VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs.

• They require equal amount of computation ...
they just need more storage.

• For example, we can write the VI method as

Jk+1(i) = min Qk+1(i, u), i = 1, . . . , n,
u∈U(i)

where Qk+1 is generated for all i and u ∈ U(i) by

n

Qk+1(i, u) =
∑

pij(u)

(

g(i, u, j) + α min Qk(j, v)
v∈U(j)

j=1

)
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APPROXIMATE PI

• Suppose that the policy evaluation is approxi-
mate, according to,

max |Jk(x) Jµk(x) δ, k = 0, 1, . . .
x

− | ≤

and policy improvement is approximate, according
to,

max |(Tµk+1Jk)(x) (TJk)(x) ǫ, k = 0, 1, . . .
x

− | ≤

where δ and ǫ are some positive scalars.

• Error Bound: The sequence {µk} generated by
approximate policy iteration satisfies

( ) ǫ+ 2αδ
lim supmax Jµk(x)
k→∞

− J∗(x)
x∈S

≤
(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.
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OPTIMISTIC PI

• This is PI, where policy evaluation is carried
out by a finite number of VI

• Shorthand definition: For some integers mk

m
TµkJk = TJk, J k

k+1 = T
µk Jk, k = 0, 1, . . .

− If mk ≡ 1 it becomes VI

− If mk = ∞ it becomes PI

− For intermediate values of mk, it is generally
more efficient than either VI or PI

TJ = minµ TµJ

J J∗ = TJ∗

0 Prob. = 1

1 J J

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

J0

J0

= TJ0

J Jµ0 = Tµ0Jµ0

= TJ0 = Tµ0J0 J1 = T 2

µ0J0

Tµ0J

Approx. Policy Evaluation 184



EXTENSIONS TO GENERALIZED DISC. DP

• All the preceding VI and PI methods extend to
generalized/abstract discounted DP.

• Summary: For a mapping H : X×U×R(X) 7→
ℜ, consider

(TJ)(x) = min H(x, u, J), x
u∈U(x)

∀ ∈ X.

(TµJ)(x) = H x, µ(x), J , ∀ x ∈ X.

• We want to find

(

J∗ such th

)

at

J∗(x) = min H(x, u, J∗), x
u∈U(x)

∀ ∈ X

and a µ∗ such that T ∗ ∗
µ∗J = TJ .

• Discounted, Discounted Semi-Markov, Minimax

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)

n

)}

H(x, u, J) = G(x, u) +
∑

mxy(u)J(y)
y=1

H(x, u, J) = max
[

g(x, u, w)+αJ ,
w∈W (x, )

(

f(x u,w)
u

)]
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ASSUMPTIONS AND RESULTS

• Monotonicity assumption: If J, J ′ ∈ R(X) and
J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• Contraction assumption:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X).

− For some α ∈ (0, 1) and all J, J ′ ∈ B(X), H
satisfies

∣

∣H(x, u, J)−H(x, u, J ′)
∣

≤ αmax
y∈X

∣

J(y)−J ′(y)
∣

for all x X

∣ ∣

∣

∈ and u ∈ U(x).

• Standard algorithmic results extend:

− Generalized VI converges to J∗, the unique
fixed point of T

− Generalized PI and optimistic PI generate
{µk} such that

lim ‖J J∗
µk− ‖ = 0, lim

k→∞ k→∞
‖Jk−J∗‖ = 0

• Analytical Approach: Start with a problem,
match it with an H , invoke the general results.
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ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

− Faster convergence

− Parallel and distributed computation

− Simulation-based implementations

• General framework: Partition X into disjoint
nonempty subsets X1, . . . , Xm, and use separate
processor ℓ updating J(x) for x ∈ Xℓ.

• Let J be partitioned as J = (J1, . . . , Jm), where
Jℓ is the restriction of J on the set Xℓ.

• Synchronous algorithm: Processor ℓ updates J
for the states x ∈ Xℓ at all times t,

J t+1
ℓ (x) = T (J t

1, . . . , J
t
m)(x), x ∈ Xℓ, ℓ = 1, . . . ,m

• Asynchronous algorithm: Processor ℓ updates
J for the states x ∈ Xℓ only at a subset of times
Rℓ,

{
( τℓ1(t) τ (t)

t+1 T J1 , . . . , J ℓm (x) if t ,Jℓ (x) = m

)

∈ Rℓ

J t
ℓ(x) if t ∈/ Rℓ

where t− τℓj(t) are communication “delays”
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ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, a
separate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

• Asynchronous VI: Change any one component
of J t at time t, the one that corresponds to xt:

t+1 T J t(1), . . . , J t(n) (ℓ) if ℓ = xt,
J (ℓ) =

{

J t

(

(ℓ)

)

if ℓ
6
= xt,

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method

• More generally, the components used at time t
are delayed by t− τℓj(t)

• Flexible in terms of timing and “location” of
the iterations

• We can show that J t → J∗ under assumptions
typically satisfied in DP
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ASYNCHRONOUS CONV. THEOREM I

• Assume that for all ℓ, j = 1, . . . ,m, the set of
times Rℓ is infinite and limt→∞ τℓj(t) = ∞
• Proposition: Let T have a unique fixed point J∗,
and assume that there is a sequence of nonempty
subsets

{

S(k)
}

⊂ R(X) with S(k + 1) ⊂ S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition: Ev-
ery sequence {Jk} with Jk ∈ S(k) for each
k, converges pointwise to J∗. Moreover, we
have

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1, . . . .

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · · × Sm(k),

where Sℓ(k) is a set of real-valued functions
on Xℓ, ℓ = 1, . . . ,m.

Then for every J ∈ S(0), the sequence {J t} gen-
erated by the asynchronous algorithm converges
pointwise to J∗.
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ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:

(0)
) + 1)

∗

(0)

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)

(0)

S(k)
)

S(k + 1)

+ 1)

J∗ ∗

J = (J1, J2)

J1 Iterations

Iterations

J2 Iteration

Key: “Independent” component-wise improvement.
An asynchronous component iteration from any J
in S(k) moves into the corresponding component
portion of S(k + 1) permanently!

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

(0) S2(0)
TJ

(0)
) + 1)

∗

Iterations
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PRINCIPAL DP APPLICATIONS

• The assumptions of the asynchronous conver-
gence theorem are satisfied in two principal cases:

− When T is a (weighted) sup-norm contrac-
tion.

− When T is monotone and the Bellman equa-
tion J = TJ has a unique solution.

• The theorem can be applied also to convergence
of asynchronous optimistic PI for:

− Discounted problems (Section 2.6.2 of the
text).

− SSP problems (Section 3.5 of the text).

• There are variants of the theorem that can be
applied in the presence of special structure.

• Asynchronous convergence ideas also underlie
stochastic VI algorithms like Q-learning.
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6.231 DYNAMIC PROGRAMMING

LECTURE 17

LECTURE OUTLINE

• Undiscounted problems

• Stochastic shortest path problems (SSP)

• Proper and improper policies

• Analysis and computational methods for SSP

• Pathologies of SSP

• SSP under weak conditions
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UNDISCOUNTED PROBLEMS

• System: xk+1 = f(xk, uk, wk)

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim sup E g xk, µk(xk), wk
wN→∞ k

k=0,1,...

{

k

∑

=0

}

( )

Note that Jπ(x0) and J∗(x0) can be +∞ or −∞
• Shorthand notation for DP mappings

(TJ)(x) = min E
{

g(x, u, w) + J
u∈U(x) w

(TµJ)(x) = E g x, µ(x), w + J f

(

f(x, u, w) , ∀ x

{ (

(x, µ(x), w

)

)

}

, ∀ x
w

• T and Tµ need not be

)

contr

(

actions in ge

)

n

}

eral,
but their monotonicity is helpful (see Ch. 4, Vol.
II of text for an analysis).

• SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

− They share features of both.

− Some nice theory is recovered thanks to the
termination state, and special conditions. 193



SSP THEORY SUMMARY I

• As before, we have a cost-free term. state t, a
finite number of states 1, . . . , n, and finite number
of controls.

• Mappings T and Tµ (modified to account for
termination state t). For all i = 1, . . . , n:

n

(TµJ)(i) = g
(

i, µ(i)
)

+
∑

pij µ(i) J(j),
j=1



n

( )

(TJ)(i) = min g(i, u) +
∑

pij(u)J(j) ,
u∈U(i)

j=1



or TµJ = gµ + PµJ and TJ = minµ[gµ + Pµ



J ].

• Definition: A stationary policy µ is called proper,
if under µ, from every state i, there is a positive
probability path that leads to t.

• Important fact: (To be shown) If µ is proper,
Tµ is contraction w. r. t. some weighted sup-norm

1
max

i

1
(

vi
| TµJ)(i)−(TµJ ′)(i)| ≤ ρµ max

i
i

v
|J(i) (

i
−J ′ )|

• T is similarly a contraction if all µ are proper
(the case discussed in the text, Ch. 7, Vol. I).
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SSP THEORY SUMMARY II

• The theory can be pushed one step further.
Instead of all policies being proper, assume that:

(a) There exists at least one proper policy

(b) For each improper µ, Jµ(i) = ∞ for some i

• Example: Deterministic shortest path problem
with a single destination t.

− States <=> nodes; Controls <=> arcs

− Termination state <=> the destination

− Assumption (a) <=> every node is con-
nected to the destination

− Assumption (b) <=> all cycle costs > 0

• Note that T is not necessarily a contraction.

• The theory in summary is as follows:

− J∗ is the unique solution of Bellman’s Eq.

− µ∗ is optimal if and only if T ∗J∗ ∗
µ = TJ

− VI converges: T kJ → J∗ for all J ∈ ℜn

− PI terminates with an optimal policy, if started
with a proper policy
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SSP ANALYSIS I

• For a proper policy µ, Jµ is the unique fixed
point of Tµ, and T k

µJ → Jµ for all J (holds by the
theory of Vol. I, Section 7.2)

• Key Fact: A µ satisfying J ≥ TµJ for some
J ∈ ℜn must be proper - true because

k−1

J ≥ T k
µJ = P k

µJ +
∑

Pm
µ gµ

m=0

since Jµ =
∑∞

m=0 P
m
µ gµ and some component of

the term on the right blows up as k → ∞ if µ is
improper (by our assumptions).

• Consequence: T can have at most one fixed
point within ℜn.

Proof: If J and J ′ are two fixed points, select µ
and µ′ such that J = TJ = TµJ and J ′ = TJ ′ =
Tµ′J ′. By preceding assertion, µ and µ′ must be
proper, and J = Jµ and J ′ = Jµ′ . Also

J = T kJ ≤ T k ′′
µ′J → Jµ = J

Similarly, J ′ ≤ J , so J = J ′.
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SSP ANALYSIS II

• We first show that T has a fixed point, and also
that PI converges to it.

• Use PI. Generate a sequence of proper policies
{µk} starting from a proper policy µ0.

• µ1 is proper and Jµ0 ≥ Jµ1 since

Jµ0 = Tµ0J k
µ0 ≥ TJµ0 = Tµ1Jµ0 ≥ T

µ1Jµ0 ≥ Jµ1

• Thus {Jµk} is nonincreasing, some policy µ̄ is
repeated and Jµ̄ = TJµ̄. So Jµ̄ is fixed point of T .

• Next show that T kJ → Jµ̄ for all J , i.e., VI
converges to the same limit as PI. (Sketch: True
if J = Jµ̄, argue using the properness of µ̄ to show
that the terminal cost difference J − Jµ̄ does not
matter.)

• To show Jµ̄ = J∗, for any π = {µ0, µ1, . . .}

Tµ0 · · ·Tµk−1J0 ≥ T kJ0,

where J0 ≡ 0. Take lim sup as k → ∞, to obtain
Jπ ≥ Jµ̄, so µ̄ is optimal and Jµ̄ = J∗.
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SSP ANALYSIS III

• Contraction Property: If all policies are proper
(cf. Section 7.1, Vol. I), Tµ and T are contractions
with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
inal, but the transition costs are all equal to −1.

ˆLet J be the corresponding optimal cost vector.
For all µ,

n n

Ĵ(i) = −1+ min
∑

pij(u)Ĵ(j) ≤ −1+ )
u∈U(i)

j=

∑

pij µ(i) Ĵ(j

1 j=1

( )

ˆFor vi = −J(i), we have vi ≥ 1, and for all µ,

n
∑

pij
(

µ(i)
)

vj ≤ vi − 1 ≤ ρ vi, i = 1, . . . , n,
j=1

where
vi 1

ρ = max
−

i=1,...,n
< 1.

vi

This implies Tµ and T are contractions of modu-
lus ρ for norm ‖J‖ = maxi=1,...,n |J(i)|/vi (by the
results of earlier lectures). 198



SSP ALGORITHMS

• All the basic algorithms have counterparts un-
der our assumptions; see the text (Ch. 3, Vol. II)

• “Easy” case: All policies proper, in which case
the mappings T and Tµ are contractions

• Even with improper (infinite cost) policies all
basic algorithms have satisfactory counterparts

− VI and PI

− Optimistic PI

− Asynchronous VI

− Asynchronous PI

− Q-learning analogs

• ** THE BOUNDARY OF NICE THEORY **

• Serious complications arise under any one of the
following:

− There is no proper policy

− There is improper policy with finite cost ∀ i

− The state space is infinite and/or the control
space is infinite [infinite but compact U(i)
can be dealt with]
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PATHOLOGIES I: DETERM. SHORTEST PATHS

a 2 1 2 b

• Two policies, one proper (apply u), one im-
proper (apply u′)

• Bellman’s equation is

J(1) = min
[

J(1), b]

Set of solutions is (−∞, b].

• Case b > 0, J∗ = 0: VI does not converge to
J∗ except if started from J∗. PI may get stuck
starting from the inferior proper policy

• Case b < 0, J∗ = b: VI converges to J∗ if
started above J∗, but not if started below J∗. PI
can oscillate (if started with u′ it generates u, and
if started with u it can generate u′)

a 2 1 2 b

t b

t b c

1 t

t b Destination

t b c u′, Cost 0

u, Cost b
a 2 1 2 b
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PATHOLOGIES II: BLACKMAILER’S DILEMMA

• Two states, state 1 and the termination state t.

• At state 1, choose u ∈ (0, 1] (the blackmail
amount demanded) at a cost −u, and move to t
with prob. u2, or stay in 1 with prob. 1− u2.

• Every stationary policy is proper, but the con-
trol set in not finite (also not compact).

• For any stationary µ with µ(1) = u, we have

Jµ(1) = −u+ (1− u2)Jµ(1)

from which Jµ(1) = − 1
u

• Thus J∗(1) = −∞, and there is no optimal
stationary policy.

• A nonstationary policy is optimal: demand
µk(1) = γ/(k + 1) at time k, with γ ∈ (0, 1/2).

− Blackmailer requests diminishing amounts over
time, which add to ∞.

− The probability of the victim’s refusal dimin-
ishes at a much faster rate, so the probabil-
ity that the victim stays forever compliant is
strictly positive.
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SSP UNDER WEAK CONDITIONS I

• Assume there exists a proper policy, and J∗ is
real-valued. Let

Ĵ(i) = min Jµ(i), i = 1, . . . , n
µ:proper

ˆ ˆNote that we may have J =6 J∗ [i.e., J(i) 6= J∗(i)
for some i].

• ˆIt can be shown that J is the unique solution
ˆof Bellman’s equation within the set {J | J ≥ J}

• ˆ ˆAlso VI converges to J starting from any J ≥ J

• The analysis is based on the δ-perturbed prob-
lem: adding a small δ > 0 to g. Then:

− All improper policies have infinite cost for
some states in the δ-perturbed problem

− All proper policies have an additional O(δ)
cost for all states

− The optimal cost J∗
δ of the δ-perturbed prob-
ˆlem converges to J as δ ↓ 0

• There is also a PI method that generates a
ˆsequence {µk} with Jµk → J . Uses sequence δk ↓

0, and policy evaluation based on the δk-perturbed
problems with δk ↓ 0.
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SSP UNDER WEAK CONDITIONS II

• J∗ need not be a solution of Bellman’s equation!
Also Jµ for an improper policy µ.

Cost 0

Destination

2

1

3

4

5

Cost 0

Cost 1

Cost 1 Cost −1

Cost −1 Cost 2Cost −2

6

7

Prob. p Prob. 1− p

t

)

t b

0 1 3 4 5

0 2 3 4 5

0 1 2 4 5

0 1 2 3 5

0 1 2 3 4

u Cost

1

1 u Cost 1

u Cost 1Cost 0 CostCost 0 Cost 2 Cost

0 1 2 3 4 5 7

0 1 2 3 4 5 6

p

1 2 b

• For p = 1/2, we have

Jµ(1) = 0, Jµ(2) = Jµ(5) = 1, Jµ(3) = Jµ(7) = 0, Jµ(4) = Jµ(6) = 2,

Bellman Eq. at state 1, J (1) = 1
µ Jµ(2)+Jµ(5) ,2

is violated.

( )

• References: Bertsekas, D. P., and Yu, H., 2015.
“Stochastic Shortest Path Problems Under Weak
Conditions,” Report LIDS-2909; Math. of OR, to
appear. Also the on-line updated Ch. 4 of the
text.
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6.231 DYNAMIC PROGRAMMING

LECTURE 18

LECTURE OUTLINE

• Undiscounted total cost problems

• Positive and negative cost problems

• Deterministic optimal cost problems

• Adaptive (linear quadratic) DP

• Affine monotonic and risk sensitive problems

Reference:

Updated Chapter 4 of Vol. II of the text:

Noncontractive Total Cost Problems

On-line at:

http://web.mit.edu/dimitrib/www/dpchapter.html

Check for most recent version
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CONTRACTIVE/SEMICONTRACTIVE PROBLEMS

• Infinite horizon total cost DP theory divides in

− “Easy” problems where the results one ex-
pects hold (uniqueness of solution of Bell-
man Eq., convergence of PI and VI, etc)

− “Difficult” problems where one of more of
these results do not hold

• “Easy” problems are characterized by the pres-
ence of strong contraction properties in the asso-
ciated algorithmic maps T and Tµ

• A typical example of an “easy” problem is dis-
counted problems with bounded cost per stage
(Chs. 1 and 2 of Voll. II) and some with unbounded
cost per stage (Section 1.5 of Voll. II)

• Another is semicontractive problems, where Tµ

is a contraction for some µ but is not for other
µ, and assumptions are imposed that exclude the
“ill-behaved” µ from optimality

• A typical example is SSP where the improper
policies are assumed to have infinite cost for some
initial states (Chapter 3 of Vol. II)

• In this lecture we go into “difficult” problems
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UNDISCOUNTED TOTAL COST PROBLEMS

• Beyond problems with strong contraction prop-
erties. One or more of the following hold:

− No termination state assumed

− Infinite state and control spaces

− Either no discounting, or discounting and
unbounded cost per stage

− Risk-sensitivity/exotic cost functions (e.g.,
SSP problems with exponentiated cost)

• Important classes of problems

− SSP under weak conditions (e.g., the previ-
ous lecture)

− Positive cost problems (control/regulation,
robotics, inventory control)

− Negative cost problems (maximization of pos-
itive rewards - investment, gambling, finance)

− Deterministic positive cost problems - Adap-
tive DP

− A variety of infinite-state problems in queue-
ing, optimal stopping, etc

− Affine monotonic and risk-sensitive problems
(a generalization of SSP)
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POS. AND NEG. COST - FORMULATION

• System xk+1 = f(xk, uk, wk) and cost

{

N−1

J (x ) = lim E
∑

αk
π 0 g xk, µk(xk), wk

N→∞ wk
k=0,1,... k=0

}

( )

Discount factor α ∈ (0, 1], but g may be unbounded

• Case P: g(x, u, w) ≥ 0 for all (x, u, w)

• Case N: g(x, u, w) ≤ 0 for all (x, u, w)

• Summary of analytical results:

− Many of the strong results for discounted
and SSP problems fail

− Analysis more complex; need to allow for Jπ
and J* to take values +∞ (under P) or −∞
(under N)

− However, J* is a solution of Bellman’s Eq.
(typically nonunique)

− Opt. conditions: µ is optimal if and only if
TµJ* = TJ* (P) or if TµJµ = TJµ (N)
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SUMMARY OF ALGORITHMIC RESULTS

• Neither VI nor PI are guaranteed to work

• Behavior of VI

− P: T kJ → J* for all J with 0 ≤ J ≤ J*, if
U(x) is finite (or compact plus more condi-
tions - see the text)

− N: T kJ → J* for all J with J* ≤ J ≤ 0

• Behavior of PI

− P: Jµk is monotonically nonincreasing but
may get stuck at a nonoptimal policy

− N: Jµk may oscillate (but an optimistic form
of PI converges to J* - see the text)

• These anomalies may be mitigated to a greater
or lesser extent by exploiting special structure, e.g.

− Presence of a termination state

− Proper/improper policy structure in SSP

• Finite-state problems under P can be trans-
formed to equivalent SSP problems by merging
(with a simple algorithm) all states x with J*(x) =
0 into a termination state. They can then be
solved using the powerful SSP methodology (see
updated Ch. 4, Section 4.1.4)
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EXAMPLE FROM THE PREVIOUS LECTURE

• This is essentially a shortest path example with
termination state t

Bellman Eq.
Solutions

Bellman Eq.
Solutions

Jµ′ = (0, 0)Jµ′ = J* = (0, 0)

Jµ = (b, 0) Jµ = J* = (b, 0)J(1) J(1)

J(t) J(t)

1 t

u′, Cost 0

u, Cost b

Cost 0

a 2 1 2 b

t b c

2

t)
Case P Case N

VI fails starting from VI fails starting from
J(1) = 0, J(t) = 0 J(1) < J∗(1), J(t) = 0
PI stops at µ PI oscilllates between and ′µ µ

Case N ) Case P

Solutions
Bellman Eq.

Solutions
Bellman Eq.

0)

0) 0)0) 0)

(1) Case P Case N (1) Case P Case N

µ

!

• Bellman Equation:

J(1) = min
[

J(1), b+ J(t)], J(t) = J(t)
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DETERM. OPT. CONTROL - FORMULATION

• System: xk+1 = f(xk, uk), arbitrary state and
control spaces X and U

• Cost positivity: 0 ≤ g(x, u), ∀ x ∈ X, u ∈ U(x)

• No discounting:

N−1

Jπ(x0) = lim
N→∞

k

∑

g
=0

(

xk, µk(xk)
)

• “Goal set of states” X0

− All x ∈ X0 are cost-free and absorbing

• A shortest path-type problem, but with possibly
infinite number of states

• A common formulation of control/regulation
and planning/robotics problems

• Example: Linear system, quadratic cost (possi-
bly with state and control constraints), X0 = {0}
or X0 is a small set around 0

• Strong analytical and computational results
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DETERM. OPT. CONTROL - ANALYSIS

• Bellman’s Eq. holds (for not only this problem,
but also all deterministic total cost problems)

J*(x) = min
{

g(x, u)+J*

u∈U(x)

(

f(x, u)
)}

, ∀ x ∈ X

• Definition: A policy π terminates starting from
x if the state sequence {xk} generated starting
from x0 = x and using π reaches X0 in finite time,

¯i.e., satisfies xk̄ ∈ X0 for some index k

• Assumptions: The cost structure is such that

− J*(x) > 0, ∀ x ∈/ X0 (termination incentive)

− For every x with J*(x) < ∞ and every ǫ > 0,
there exists a policy π that terminates start-
ing from x and satisfies Jπ(x) ≤ J*(x) + ǫ.

• Uniqueness of solution of Bellman’s Eq.: J* is
the unique solution within the set

J =
{

J | 0 ≤ J(x) ≤ ∞, ∀ x ∈ X, J(x) = 0, ∀ x ∈ X0

}

• Counterexamples: Earlier SP problem. Also
linear quadratic problems where the Riccati equa-
tion has two solutions (observability not satisfied).
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DET. OPT. CONTROL - VI/PI CONVERGENCE

• The sequence {T kJ} generated by VI starting
from a J ∈ J with J ≥ J* converges to J*

• If in addition U(x) is finite (or compact plus
more conditions - see the text), the sequence {T kJ}
generated by VI starting from any function J ∈ J
converges to J*

• A sequence {Jµk} generated by PI satisfies
J (x) ↓ J*
µk (x) for all x ∈ X

• PI counterexample: The earlier SP example

• Optimistic PI algorithm: Generates pairs {Jk, µk}
as follows: Given Jk, we generate µk according to

µk(x) = arg min g(x, u)+Jk f(x, u) , x X
u∈U(x)

{

1 V

(

∈

and obtain Jk+1 with mk ≥ Is using

)}

µk:

mk−1

Jk+1(x0) = Jk(xmk
)+
∑

g
t=0

(

xt, µk(xt)
)

, x0 ∈ X

If J0 ∈ J and J0 ≥ TJ0, we have Jk ↓ J*.

• Rollout with terminating heuristic (e.g., MPC).
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LINEAR-QUADRATIC ADAPTIVE CONTROL

• System: xk+1 = Axk+Buk, xk ∈ ℜn, uk ∈ ℜm

• Cost
∞

:
∑

k=0(x
′
kQxk + u′

kRuk), Q ≥ 0, R > 0

• Optimal policy is linear: µ∗(x) = Lx

• The Q-factor of each linear policy µ is quadratic:

Qµ(x, u) = (x′ u′ )Kµ

(

x
( )

u

)

∗

• We will consider A and B unknown

• We use as basis functions all the quadratic func-
tions involving state and control components

xixj , uiuj , xiuj , ∀ i, j

These form the “rows” φ(x, u)′ of a matrix Φ

• The Q-factor Qµ of a linear policy µ can be
exactly represented within the subspace spanned
by the basis functions:

Qµ(x, u) = φ(x, u)′rµ

where rµ consists of the components of Kµ in (*)

• Key point: Compute rµ by simulation of µ (Q-
factor evaluation by simulation, in a PI scheme)
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PI FOR LINEAR-QUADRATIC PROBLEM

• Policy evaluation: rµ is found (exactly) by least
squares minimization

∣

′
m

∑ 2

in
∣

k, u
′ ′ ′

∣
φ(x k) r −

(

xkQxk + ukRuk + φ
(

xk+1, µ(xk+1)
r

(x ,u )k

)

r

k

)

∣

where (xk, uk, xk+1) are “enough” samples gener-

∣

∣

ated by the system or a simulator of the system.

• Policy improvement:

µ(x) ∈ argmin
u

(

φ(x, u)′rµ
)

• Knowledge of A and B is not required

• If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

• The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive DP

• This field deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time
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FINITE-STATE AFFINE MONOTONIC PROBLEMS

• Generalization of positive cost finite-state stochas-
tic total cost problems where:

− In place of a transition prob. matrix Pµ, we
have a general matrix Aµ ≥ 0

− In place of 0 terminal cost function, we have
¯a more general terminal cost function J ≥ 0

• Mappings

TµJ = bµ +AµJ, (TJ)(i) = min (TµJ)(i)
µ∈M

• Cost function of π = {µ0, µ1, . . .}

Jπ(i) = lim sup (Tµ0 · · · ¯TµN−1J)(i), i = 1, . . . , n
N→∞

• Special case: An SSP with an exponential risk-
sensitive cost, where for all i and u ∈ U(i)

Aij(u) = pij(u)eg(i,u,j), b(i, u) = pit(u)eg(i,u,t)

• Interpretation:

{ (length of path of π starting from i)Jπ(i) = E e }
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AFFINE MONOTONIC PROBLEMS: ANALYSIS

• The analysis follows the lines of analysis of SSP

• Key notion (generalizes the notion of a proper
policy in SSP): A policy µ is stable if Ak

µ → 0; else
it is called unstable

• We have

N−1

TN
µ J = AN

µ J+
∑

Ak
µbµ, ∀ J ∈ ℜn, N = 1, 2, . . . ,

k=0

• For a stable policy µ, we have for all J ∈ ℜn

∞

Jµ = lim supTN
µ J = lim sup A A

N→∞ N→∞
k

∑

k
µbµ = (I µ)−1bµ

=0

−

• Consider the following assumptions:

(1) There exists at least one stable policy

(2) For every unstable policy µ, at least one com-
∞

ponent of
∑

k=0 A
k
µbµ is equal to ∞

• Under (1) and (2) the strong SSP analytical
and algorithmic theory generalizes

• Under just (1) the weak SSP theory generalizes.
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6.231 DYNAMIC PROGRAMMING

LECTURE 19

LECTURE OUTLINE

• We begin a lecture series on approximate DP.

• Reading: Chapters 6 and 7, Vol. 2 of the text.

• Today we discuss some general issues about
approximation and simulation

• We classify/overview the main approaches:

− Approximation in policy space (policy para-
metrization, gradient methods, random search)

− Approximation in value space (approximate
PI, approximate VI, Q-Learning, Bellman
error approach, approximate LP)

− Rollout/Simulation-based single policy iter-
ation (will not discuss this further)

− Approximation in value space using problem
approximation (simplification - forms of ag-
gregation - limited lookahead) - will not dis-
cuss much
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GENERAL ORIENTATION TO ADP

• ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.

• Other names for ADP are:

− “reinforcement learning” (RL)

− “neuro-dynamic programming” (NDP)

• We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

• Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.

• There are many approaches:

− Problem approximation and 1-step lookahead

− Simulation-based approaches (we will focus
on these)

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in policy space

− Approximation in value space
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WHY DO WE USE SIMULATION?

• One reason: Computational complexity advan-
tage in computing expected values and sums/inner
products involving a very large number of terms

− n
Speeds up linear algebra: Any sum ii=1 a
can be written as an expected value

∑

n n
∑

i
ai =

i=1

∑ a
ξi

i=1
ξi

= Eξ

{

ai
,

ξi

}

where ξ is any prob. distribution over {1, . . . , n}
− It is approximated by generating many sam-

ples {i1, . . . , ik} from {1, . . . , n}, according
to ξ, and Monte Carlo averaging:

n
∑

i
ai = Eξ

i 1

{

a

=
ξi

}

≈ 1

k

k
∑

t=1

ait
ξit

− Choice of ξ makes a difference. Importance
sampling methodology.

• Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.
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APPROXIMATION IN POLICY SPACE

• A brief discussion; we will return to it later.

• Use parametrization µ(i; r) of policies with a
vector r = (r1, . . . , rs). Examples:

− Polynomial, e.g., µ(i; r) = r 2
1 + r2 · i+ r3 · i

− Multi-warehouse inventory system: µ(i; r) is
threshold policy with thresholds r = (r1, . . . , rs)

• Optimize the cost over r. For example:

− Each value of r defines a stationary policy,
˜with cost starting at state i denoted by J(i; r).

− Let (p1, . . . , pn) be some probability distri-
bution over the states, and minimize over r

n
∑

˜piJ(i; r)
i=1

− Use a random search, gradient, or other method

• A special case: The parameterization of the
policies is indirect, through a cost approximation

ˆarchitecture J , i.e.,
n

µ(i; r) ∈ ˆarg min pij(u) g(i, u, j) + αJ(j; r)
u∈U(i)

∑

j=1

( )
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APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r) where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights

• ˜Use J in place of J∗ or Jµ in various algorithms
and computations (VI, PI, LP)

• Role of r: By adjusting r we can change the
˜“shape” of J so that it is “close” to J∗ or Jµ

• Two key issues:

− ˜The choice of parametric class J(i; r) (the
approximation architecture)

− Method for tuning the weights (“training”
the architecture)

• Success depends strongly on how these issues
are handled ... also on insight about the problem

• A simulator may be used, particularly when
there is no mathematical model of the system

• We will focus on simulation, but this is not the
only possibility

• We may also use parametric approximation for
Q-factors

221



APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
˜nonlinear dependence of J(i; r) on r]

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

• Computer chess example:

− Think of board position as state and move
as control

− Uses a feature-based position evaluator that
assigns a score (or approximate Q-factor) to
each position/move

Feature
Extraction

Weighting
of Features

Features:
Material balance,
Mobility,
Safety, etc Score

Position Evaluator

• Relatively few special features and weights, and
multistep lookahead
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LINEAR APPROXIMATION ARCHITECTURES

• Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

• Then the approximation may be quite accurate
without a complicated architecture. (Extreme ex-
ample: The ideal feature is the true cost function)

• With well-chosen features, we can use a linear
architecture:

s

J̃(i; r) = φ(i)′r, ∀ ˜i or J(r) = Φr =
∑

Φjrj
j=1

Φ: the matrix whose rows are φ(i)′, i = 1, . . . , n,
Φj is the jth column of Φ

Feature Extraction Mapping Feature Vector

Approximator
i Mapping Feature Vector

Approximator ( )Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}
spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, domain spe-
cific, etc

State i Feature Extraction Mapping Feature Vector

Approximator
i Feature Extraction Mapping Feature Vector

Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r
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ILLUSTRATIONS: POLYNOMIAL TYPE

• Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be i =
(i1, . . . , iq) (i.e., have q “dimensions”) and define

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q

Linear approximation architecture:

q q q

J̃(i; r) = r0 +
∑

rkik +
∑∑

rkmikim,
k=1 k=1m=k

where r has components r0, rk, and rkm.

• Interpolation: A subset I of special/representative
states is selected, and the parameter vector r has
one component ri per state i ∈ I. The approxi-
mating function is

J̃(i; r) = ri, i ∈ I,

J̃(i; r) = interpolation using the values at i ∈ I, i ∈/ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.
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A DOMAIN SPECIFIC EXAMPLE

• Tetris game (used as testbed in competitions)

......

TERMINATION

• J∗(i): optimal score starting from position i

• Number of states > 2200 (for 10× 20 board)

• Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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APPROX. PI - OPTION TO APPROX. Jµ OR Qµ

• Use simulation to approximate the cost Jµ of
the current policy µ

• Generate “improved” policy µ by minimizing in
(approx.) Bellman equation

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Altenatively approximate the Q-factors of µ

• A survey reference: D. P. Bertsekas, “Approx-
imate Policy Iteration: A Survey and Some New
Methods,” J. of Control Theory and Appl., Vol.
9, 2011, pp. 310-335.
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DIRECTLY APPROXIMATING J∗ OR Q∗

• Approximation of the optimal cost function J∗

directly (without PI)

− Q-Learning: Use a simulation algorithm to
approximate the Q-factors

n

Q∗(i, u) = g(i, u) + α pij(u)J∗(j);
j=1

and the optimal costs

∑

J∗(i) = min Q∗(i, u)
u∈U(i)

− Bellman Error approach: Find r to

˜minEi
r

{

(

J(i; r)− ˜(TJ)(i; r)
)2
}

where Ei{·} is taken with respect to some
distribution over the states

− Approximate Linear Programming (we will
not discuss here)

• Q-learning can also be used with approxima-
tions

• Q-learning and Bellman error approach can also
be used for policy evaluation
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DIRECT POLICY EVALUATION

• Can be combined with regular and optimistic
policy iteration

• ˜Find r that minimizes ‖Jµ − J(·, r)‖2ξ , i.e.,
n
∑ 2

ξi
(

Jµ(i)− J̃(i, r) , ξi: some pos. weights
i=1

• Nonlinear architec

)

tures may be used

• The linear architecture case: Amounts to pro-
jection of Jµ onto the approximation subspace

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Direct Method: Projection of cost vector

( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Solution by linear least squares methods
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POLICY EVALUATION BY SIMULATION

• Projection by Monte Carlo Simulation: Com-
pute the projection ΠJµ of Jµ on subspace S =
{Φr | r ∈ ℜs}, with respect to a weighted Eu-
clidean norm ‖ · ‖ξ
• Equivalently, find Φr∗, where

n

‖ − ‖
∑

(

− 2
r∗ = arg min Φr J 2

µ ξiξ = arg min Jµ(i) φ(i)′r
r∈ℜs r∈ℜs

i=1
• Setting to 0 the gradient at r∗,

)

r∗ =

( −1n n
∑

ξiφ(i)φ(i)′

i=1

)

∑

ξiφ(i)Jµ(i)
i=1

• Generate samples (i1, Jµ(i1)), . . . , (ik, Jµ(ik))
using distribution ξ

{ }

• Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

r̂k =

( −1
k k
∑

φ(it)φ(it)′ φ(it)Jµ(it)
t=1

)

∑

t=1

• Equivalent least squares alternative calculation:

k
2

r̂ ′
k = arg min

r∈ℜs

∑

φ(it) r
t=1

(

− Jµ(it)
)
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INDIRECT POLICY EVALUATION

• An example: Solve the projected equation Φr =
ΠTµ(Φr) where Π is projection w/ respect to a
suitable weighted Euclidean norm (Galerkin ap-
prox.

Subspace S = {Φr | r ∈ ℜs}

Set

=

0

Subspace S = {Φr | r ∈ ℜs}

Set

=

0

Direct Method: Projection of cost vector

Jµ

Π

µ

ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected

form of Bellman’s equation

Projection onIndirect Method: Solving a projected

form of Bellman’s equation

Direct Method: Projection of

cost vector

( ) ( ) ( )Direct Method: Projection of

cost vector Jµ

• Solution methods that use simulation (to man-
age the calculation of Π)

− TD(λ): Stochastic iterative algorithm for solv-
ing Φr = ΠTµ(Φr)

− LSTD(λ): Solves a simulation-based approx-
imation w/ a standard solver

− LSPE(λ): A simulation-based form of pro-
jected value iteration; essentially

Φrk+1 = ΠTµ(Φrk) + simulation noise
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BELLMAN EQUATION ERROR METHODS

• Another example of indirect approximate policy
evaluation:

min
r

‖Φr − Tµ(Φr)‖2ξ (∗)
where ‖ · ‖ξ is Euclidean norm, weighted with re-
spect to some distribution ξ

• It is closely related to the projected equation ap-
proach (with a special choice of projection norm)

• Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

− Generating many random samples of states
ik using the distribution ξ

− Generating many samples of transitions (ik, jk)
using the policy µ

− Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

− Solve the Monte-Carlo approximation of the
optimality condition

• Issues for indirect methods: How to generate
the samples? How to calculate r∗ efficiently?
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ANOTHER INDIRECT METHOD: AGGREGATION

• An example: Group similar states together into
“aggregate states” x1, . . . , xs; assign a common
cost ri to each group xi. A linear architecture
called hard aggregation.

1

2 3 4 5 6 7 8 91

2

3 4 5 6 7 8 91 2

3

4 5 6 7 8 9

1 2 3

4

5 6 7 8 91 2 3 4

5

6 7 8 91 2 3 4 5

6

7 8 9

1 2 3 4 5 6

7

8 91 2 3 4 5 6 7

8

91 2 3 4 5 6 7 8

9

1 2 3 4 5 6 7 8 9

x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• Solve an “aggregate” DP problem to obtain
r = (r1, . . . , rs).

• More general/mathematical view: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ)

• Compare with projected equation Φr = ΠTµ(Φr).
Note: ΦD is a projection in some interesting cases
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AGGREGATION AS PROBLEM APPROXIMATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Aggregation can be viewed as a systematic ap-
proach for problem approx. Main elements:

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach
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THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max |J̃(i, rk)− Jµk(i)
i

| ≤ δ, k = 0, 1, . . .

• If policy improvement is also approximate,

| k+1
˜ − ˜max (Tµ J)(i, rk) (TJ)(i, rk)

i
| ≤ ǫ, k = 0, 1, . . .

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

lim supmax
ik→∞

(

(
) ǫ+ 2αδ

Jµk(i)− J∗ i) ≤
(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

• Oscillations are quite unpredictable.

− Bad examples of oscillations are known.

− In practice oscillations between policies is
probably not the major concern.

− In aggregation case, there are no oscillations
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THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under µ

• Cost-to-go estimates of underrepresented states
may be highly inaccurate

• This seriously impacts the improved policy µ

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

• Some remedies:

− Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

− Occasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy µ

− Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).

235



APPROXIMATING Q-FACTORS

• ˜Given J(i; r), policy improvement requires a
model [knowledge of pij(u) for all u ∈ U(i)]

• Model-free alternative: Approximate Q-factors

n

Q̃(i, u; r) ≈
∑

pij(u)
(

g(i, u, j) + αJµ(j)
j=1

)

and use for policy improvement the minimization

˜µ(i) ∈ arg min Q(i, u; r)
u∈U(i)

• ˜r is an adjustable parameter vector andQ(i, u; r)
is a parametric architecture, such as

s

Q̃(i, u; r) =
m

∑

rmφm(i, u)
=1

• We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

• Use the Markov chain with states (i, u), so
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to
other (j, u′)

• Major concern: Acutely diminished exploration
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STOCHASTIC ALGORITHMS: GENERALITIES

• Consider solution of a linear equation x = b +
Ax by using m simulation samples b + wk and
A+Wk, k = 1, . . . ,m, where wk,Wk are random,
e.g., “simulation noise”

• Think of x = b + Ax as approximate policy
evaluation (projected or aggregation equations)

• Stoch. approx. (SA) approach: For k = 1, . . . ,m

xk+1 = (1− γk)xk + γk
(

(b+ wk) + (A+Wk)xk

• Monte Carlo estimation (MCE) approach: Form

)

Monte Carlo estimates of b and A

1
bm =

m

m
k

∑ 1
(b+ wk), Am =

=1

m
∑

(A+Wk)
m

k=1

Then solve x = bm +Amx by matrix inversion

xm = (1−Am)−1bm

or iteratively

• TD(λ) and Q-learning are SA methods

• LSTD(λ) and LSPE(λ) are MCE methods
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6.231 DYNAMIC PROGRAMMING

LECTURE 20

LECTURE OUTLINE

• Discounted problems - Approximation on sub-
space {Φr | r ∈ ℜs}
• Approximate (fitted) VI

• Approximate PI

• The projected equation

• Contraction properties - Error bounds

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods
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REVIEW: APPROXIMATION IN VALUE SPACE

• Finite-spaces discounted problems: Defined by
mappings Tµ and T (TJ = minµ TµJ).

• Exact methods:

− VI: Jk+1 = TJk

− PI: Jµk = TµkJµk , Tµk+1Jµk = TJµk

− LP: minJ c′J subject to J ≤ TJ

• Approximate versions: Plug-in subspace ap-
proximation with Φr in place of J

− VI: Φrk+1 ≈ TΦrk

− PI: Φrk ≈ TµkΦrk, Tµk+1Φrk = TΦrk

− LP: minr c′Φr subject to Φr ≤ TΦr

• Approx. onto subspace S = {Φr | r ∈ ℜs}
is often done by projection with respect to some
(weighted) Euclidean norm.

• Another possibility is aggregation. Here:

− The rows of Φ are probability distributions

− Φr ≈ Jµ or Φr ≈ J*, with r the solution of
an “aggregate Bellman equation” r = DTµ(Φr)
or r = DT (Φr), where the rows of D are
probability distributions
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APPROXIMATE (FITTED) VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
˜k = 1, 2, . . ., with Jk(i; rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• Approximate (Fitted) Value Iteration: A se-
˜ ˜ ˜quential “fit” to produce Jk+1 from Jk, i.e., Jk+1

˜ ˜ ˜
≈

TJk or (for a single policy µ) Jk+1 ≈ TµJk

• ˜After a large enough numberN of steps, JN (i; rN )
is used as approximation to J∗(i)

• Possibly use (approximate) projection Π with
respect to some projection norm,

J̃k+1 ≈ ˜ΠTJk
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WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖ξ =

√

√

√

√

n
∑

ξi
i=1

(

J(i)
)2
,

where ξ = (ξ1, . . . , ξn) is a positive distribution
(ξi > 0 for all i).

• Let Π denote the projection operation onto

S = {Φr | r ∈ ℜs}

with respect to this norm, i.e., for any J ∈ ℜn,

ΠJ = Φr∗

where
r∗ = arg min

r∈ℜs
‖Φr − J‖2ξ

• Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(i) according to ξ and solving

k
∑

(

−
)2

min φ(it)′r J(it)
r∈ℜs

t=1
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FITTED VI - NAIVE IMPLEMENTATION

• Select/sample a “small” subset Ik of represen-
tative states

• For each i ∈ ˜Ik, given Jk, compute

n

˜ ˜(TJk)(i) = min
∑

pij(u)
(

g(i, u, j) + αJk(j; r)
u∈U(i)

j=1

)

• ˜“Fit” the function Jk+1(i; rk+1) to the “small”
˜set of values (TJk)(i), i ∈ Ik (for example use

some form of approximate projection)

• “Model-free” implementation by simulation

• Error Bound: If the fit is uniformly accurate
within δ > 0, i.e.,

˜max |J̃k+1(i)− TJk(i)
i

| ≤ δ,

then

δ˜lim sup max
(

J (i, r )− J∗
k k (i)

i=1,...,nk→∞

)

≤
1− α

• But there is a potential serious problem!
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AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2
∗ ∗

→ 2

− Transition costs ≡ 0, so J (1) = J (2) = 0.

• Consider (exact) fitted VI scheme that approx-
imates cost functions within S =

{

(r, 2r) | r ∈ ℜ
}

′with a weighted least squares fit; here Φ = ( 1, 2 )

• ˜ ˜Given Jk = (rk, 2rk), we find Jk+1 = (rk+1, 2rk+1),
where J̃k+1 = Πξ(T J̃k), with weights ξ = (ξ1, ξ2):

2 2
rk+1 = argmin

[

ξ1
(

˜ ˜r (
r

−(TJk)(1) +ξ2 2r− TJk)(2)
]

• With straightforward calcula

)

tion

( )

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β (e.g., ξ1 = ξ2 = 1), the sequence
{rk} ˜diverges and so does {Jk}.
• Difficulty is that T is a contraction, but ΠξT
(= least squares fit composed with T ) is not.
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NORM MISMATCH PROBLEM

• For fitted VI to converge, we need ΠξT to be a
contraction; T being a contraction is not enough

• We need a ξ such that T is a contraction w. r.
to the weighted Euclidean norm ‖ · ‖ξ
• Then ΠξT is a contraction w. r. to ‖ · ‖ξ
• We will come back to this issue, and show how
to choose ξ so that ΠξTµ is a contraction for a
given µ
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APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical µ: Linear cost function
˜approximation Jµ(r) = Φr, where Φ is full rank

n×smatrix with columns the basis functions, and
ith row denoted φ(i)′.

• Policy “improvement” to generate µ:
n

µ(i) = arg min
∑

p ′
ij(u)

u∈U(i)
j=

(

g(i, u, j) + αφ(j) r
1

)

• Error Bound (same as approximate VI): If

max |J̃µk(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .
i

the sequence {µk} satisfies

( ) 2αδ
lim supmax Jµ (i)

ik→∞
− J∗

k (i) ≤
(1− α)2
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APPROXIMATE POLICY EVALUATION

• Consider approximate evaluation of Jµ, the cost
of the current policy µ by using simulation.

− Direct policy evaluation - generate cost sam-
ples by simulation, and optimization by least
squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector

( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Recall that projection can be implemented by
simulation and least squares
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PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

˜with the projected equation solution Jµ(r)
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KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, with steady-state prob. vector ξ, so that

ξj = lim
N→∞

1
N
∑

P (ik = j 0

k=1

| i = i) > 0
N

Note that ξj is the long-term frequency of state j.

• Proposition: (Norm Matching Property) As-
sume that the projection Π is with respect to ‖·‖ξ,
where ξ = (ξ1, . . . , ξn) is the steady-state proba-
bility vector. Then:

(a) ΠTµ is contraction of modulus α with re-
spect to ‖ · ‖ξ.

(b) The unique fixed point Φr∗ of ΠTµ satisfies

1‖Jµ − Φr∗‖ξ ≤ √
1− α2

‖Jµ −ΠJµ‖ξ
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PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖ξ. For all J ∈
ℜn, Φr ∈ S, the Pythagorean Theorem holds:

‖J − Φr‖2ξ = ‖J −ΠJ‖2ξ + ‖ΠJ − Φr‖2ξ

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ − ¯ΠJ‖ξ ≤ ‖J − J̄‖ ¯
ξ, for all J, J ∈ ℜn.

To see this, note that

∥

∥Π(J − 2
J)
∥

∥

ξ
≤
∥

∥Π(J − J)
∥

∥

2

ξ
+
∥

∥(I −Π)(J − J)
∥

∥

2

ξ

= ‖J − J‖2ξ
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PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ℜn,

where ξ is the steady-state prob. vector.
Proof: For all z ∈ ℜn

2
n



n n n

‖Pz‖2 =
∑

ξi
∑

pijzj ≤
∑

ξi
∑

p 2
ijξ zj

i=1 j=1 i=1 j=1

n n n

=
∑

j=1

∑

ξ 2
ipijz2j = ξ zj = z 2

j ξ .
i=1

∑

j=1

‖ ‖

The inequality follows from the convexity of the
quadratic function, and the next to last equality

n
follows from the defining property i=1 ξipij = ξj

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ

∑

, we have

‖ΠT J−ΠT J̄‖ ≤ ‖T J−T J̄ J̄µ µ ξ µ µ ‖ξ = α‖P (J− )‖ξ ≤ α‖J−J̄‖ξ

¯for all J, J ∈ ℜn. Hence ΠTµ is a contraction of
modulus α.
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PROOF OF ERROR BOUND

• Let Φr∗ be the fixed point of ΠT . We have

1‖Jµ − Φr∗‖ξ ≤ √
1− α2

‖Jµ −ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2ξ = ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠJµ − 2
Φr∗

∥

∥

ξ

‖ − ‖
∥

− 2
= Jµ ΠJ 2

µ ξ +
∥ΠTJ ΠT (Φr∗µ )

‖

∥

ξ

≤ ‖Jµ −ΠJ 2
µ‖2ξ + α Jµ − Φr∗‖2ξ ,

∥

where

− The first equality uses the Pythagorean The-
orem

− The second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.
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MATRIX FORM OF PROJECTED EQUATION

• The solution Φr∗ satisfies the orthogonality con-
dition: The error

Φr∗ − (g + αPΦr∗)

is “orthogonal” to the subspace spanned by the
columns of Φ.

• This is written as

Φ′Ξ
(

Φr∗ − (g + αPΦr∗) = 0,

where Ξ is the diagonal matrix w

)

ith the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• Equivalently, Cr∗ = d, where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg

but computing C and d is HARD (high-dimensional
inner products). 252



SOLUTION OF PROJECTED EQUATION

• Solve Cr∗ = d by matrix inversion: r∗ = C−1d

• Alternative: Projected Value Iteration (PVI)

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ because ΠT is a contraction.

• PVI can be written as:

2
rk+1 = arg min Φr

∈ℜs
− (g + αPΦrk) ξr

By setting to 0 the gr

∥

∥

adient with respect

∥

∥

to r,

Φ′Ξ
(

Φrk+1 − (g + αPΦrk)
)

= 0,

which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projection
on S
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SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck ≈ C, dk ≈ d

• Approximate matrix inversion r∗ = C−1d by

r̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) method.

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is
approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
Gk ≈ (Φ′ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua-
tion) method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).
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SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating each transition (it, it+1), we
compute the row φ(i )′t of Φ and the cost compo-
nent g(it, it+1).

• We form

dk =
1

k
∑

φ(it) ( ′g it, it+1) ≈
∑

ξipijφ(i)g(i, j) = Φ Ξg = d
k + 1

t=0 i,j

1
Ck =

k
∑

φ(it)
(

φ(it)−αφ(it+1)
)′

≈ Φ′Ξ(I−αP )Φ = C
k + 1

t=0

Also in the case of LSPE

1
Gk =

k

φ(i )′ Φ′
t)φ(it ΞΦ

k + 1

∑

t=0

≈

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)

255



OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op-
timistic methods often do)

• Very complex behavior (see the subsequent dis-
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C matrix is
ill-conditioned

• LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)
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6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

• Review of approximate policy iteration

• Projected equation methods for policy evalua-
tion

• Issues related to simulation-based implementa-
tion

• Multistep projected equation methods

• Bias-variance tradeoff

• Exploration-enhanced implementations

• Oscillations
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REVIEW: PROJECTED BELLMAN EQUATION

• For a fixed policy µ to be evaluated, consider
the corresponding mapping T :

n

(TJ)(i) =
∑

pij
i=1

(

g(i, j)+αJ(j)
)

, i = 1, . . . , n,

or more compactly, TJ = g + αPJ

• Approximate Bellman’s equation J = TJ by
Φr = ΠT (Φr) or the matrix form/orthogonality
condition Cr∗ = d, where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg.

S: Subspace spanned by basis functions

T(Φr)

0

Φr = ΠT(Φr)

Projection
on S

Indirect method: Solving a projected 
form of Bellmanʼs equation
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PROJECTED EQUATION METHODS

• Matrix inversion: r∗ = C−1d

• Iterative Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ if ΠT is a contraction. True if Π is
projection w.r.t. steady-state distribution norm.

• Simulation-Based Implementations: Generate
k+1 simulated transitions sequence {i0, i1, . . . , ik
and approximations C

}
k ≈ C and dk ≈ d:

1
Ck =

k
∑

φ(it)
( ′
φ(i ′

t)−αφ(it+1)
)

≈ Φ Ξ(I−αP )Φ
k + 1

t=0

1
dk =

k

(
k + 1

∑

φ(it)g it, it+1)
t=0

≈ Φ′Ξg

• LSTD: r̂k = C−1
k dk

• LSPE: rk+1 = rk −Gk(Ckrk − dk) where

Gk ≈ G = (Φ′ΞΦ)−1

Converges to r∗ if ΠT is contraction.
259



ISSUES FOR PROJECTED EQUATIONS

• Implementation of simulation-based solution of
projected equation Φr ≈ Jµ, where Ckr = dk and

C ≈ Φ′ ′
k Ξ(I − αP )Φ, dk ≈ Φ Ξg

• Low-dimensional linear algebra needed for the
simulation-based approximations Ck and dk (of
order s; the number of basis functions).

• Very large number of samples needed to solve
reliably nearly singular projected equations.

• Special methods for nearly singular equations
by simulation exist; see Section 7.3 of the text.

• Optimistic (few sample) methods are more vul-
nerable to simulation error

• Norm mismatch/sampling distribution issue

• The problem of bias: Projected equation solu-
tion 6= ΠJµ, the “closest” approximation of Jµ

• Everything said so far relates to policy evalua-
tion. How about the effect of approximations on
policy improvement?

• We will next address some of these issues
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MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J , where for λ ∈ [0, 1),

∞

T (λ) = (1− λ) λℓT ℓ+1

ℓ=0

Geometrically weighted sum

∑

of powers of T .

• T ℓ is a contraction with mod. αℓ, w. r. to
weighted Euclidean norm ‖ · ‖ξ, where ξ is the
steady-state probability vector of the Markov chain.

• Hence T (λ) is a contraction with modulus

∞
α(1 λ)

αλ = (1− λ)
∑

αℓ+1λℓ =
−

ℓ=0
1− αλ

Note αλ → 0 as λ → 1 - affects norm mismatch

• T ℓ and T (λ) have the same fixed point Jµ and

1‖Jµ − Φr∗λ‖ξ ≤ √ Π
1

‖Jµ− α2
λ

− Jµ‖ξ

where Φr∗λ is the fixed point of ΠT (λ).

• Φr∗λ depends on λ.
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BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ ℜs} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)

• From ‖Jµ − Φrλ,µ‖ξ ≤ 1
√ µ

1
‖J

− 2α
λ

− ΠJµ‖ξ
error bound

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
quality of approximation) improves:

limΦrλ,µ = ΠJµ
λ↑1

• But the simulation noise in approximating
∞

T (λ) = (1− λ)
∑

λℓT ℓ+1

ℓ=0

increases

• Choice of λ is usually based on trial and error
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MULTISTEP PROJECTED EQ. METHODS

• The multistep projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

C(λ) = Φ′Ξ
(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ),

with
∞ ∞

P (λ) = (1− λ)
∑

αℓλℓP ℓ+1, g(λ) =
∑

αℓλℓP ℓg
ℓ=0 ℓ=0

• (λ) −1 (λ)
The LSTD(λ) method is

(

Ck

)

dk , where
(λ) (λ)

Ck and dk are simulation-based approximations
of C(λ) and d(λ).

• The LSPE(λ) method is

rk+1 = rk − (λ)
γGk Ck rk − (λ)

dk

whereGk is a simulation-b

(

ased approx. to

)

(Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].
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MORE ON MULTISTEP METHODS

• (λ) (λ)
The simulation process to obtain Ck and dk

is similar to the case λ = 0 (single simulation tra-
jectory i0, i1, . . ., more complex formulas)

(λ) 1
Ck =

k k
′

φ(i ) t
t αm−tλm− φ(im) αφ(im+1)

k + 1

∑

t=0 m

∑

=t

(

−
)

(λ) 1
dk =

k k
∑

φ(i t m
t) αm− λ −tgi

k + 1 m

t=0 m=t

• In the context of approx

∑

imate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:

− ↑ (λ) (λ)
As λ 1, Ck and dk contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of rλ,µ

− The error bound Jµ Φrλ,µ ξ becomes smaller

− As λ ↑ 1, ΠT (λ)

‖ − ‖
becomes a contraction for

arbitrary projection norm
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APPROXIMATE PI ISSUES - EXPLORATION

• 1st major issue: exploration. Common remedy
is the off-policy approach: Replace P of current
policy with

P = (I −B)P +BQ,

where B is a diagonal matrix with βi ∈ [0, 1] on
the diagonal, and Q is another transition matrix.

• Then LSTD and LSPE formulas must be modi-
fied ... otherwise the policy associated with P (not
P ) is evaluated (see the textbook, Section 6.4).

• Alternatives: Geometric and free-form sampling

• Both of these use multiple short simulated tra-
jectories, with random restart state, chosen to en-
hance exploration (see the text)

• Geometric sampling uses trajectories with geo-
metrically distributed number of transitions with
parameter λ ∈ [0, 1). It implements LSTD(λ) and
LSPE(λ) with exploration.

• Free-form sampling uses trajectories with more
generally distributed number of transitions. It im-
plements method for approximation of the solu-
tion of a generalized multistep Bellman equation.
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APPROXIMATE PI ISSUES - OSCILLATIONS

• Define for each policy µ

Rµ =
{

r | Tµ(Φr) = T (Φr)

• These sets form the greedy partitio

}

n of the pa-
rameter r-space

Rµ =
{

r | Tµ(Φr) = T (Φr)
}

Rµ

{

µ Rµ′

{

′ Rµ′′

′′ Rµ′′′

{ }

For a policy µ, Rµ is the set of all r such that

policy improvement based on Φr produces µ

• Oscillations of nonoptimistic approx.: rµ is gen-
erated by an evaluation method so that Φrµ ≈ Jµ

rµk

k rµk+1

+1 rµk+2

+2 rµk+3

Rµk

Rµk+1

Rµk+2

+2 Rµk+3
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MORE ON OSCILLATIONS/CHATTERING

• For optimistic PI a different picture holds

rµ1

1 rµ2

2 rµ3

Rµ1

Rµ2

2 Rµ3

• Oscillations are less violent, but the “limit”
point is meaningless!

• Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,
J ≤ J ′ does not imply ΠJ ≤ ΠJ ′.

• If approximate PI uses policy evaluation

Φr = (WTµ)(Φr)

with W a monotone operator, the generated poli-
cies converge (to an approximately optimal limit).

• The operator W used in the aggregation ap-
proach has this monotonicity property.
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6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

• Aggregation as an approximation methodology

• Aggregate problem

• Examples of aggregation

• Simulation-based aggregation

• Q-Learning
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PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem. The sim-
plification is often ad-hoc/problem dependent.

• Aggregation is a systematic approach for prob-
lem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of value or pol-
icy iteration method (including simulation-
based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.
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AGGREGATION/DISAGGREGATION PROBS

• The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• For each original system state j and aggregate
state y, the aggregation probability φjy

− The “degree of membership of j in the ag-
gregate state y.”

− In hard aggregation, φjy = 1 if state j be-
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− The “degree of i being representative of x.”

− In hard aggregation, one possibility is all
states i that belongs to aggregate state/subset
x have equal dxi. 270



AGGREGATE PROBLEM

• The transition probability from aggregate state
x to aggregate state y under control u

n n
∑

ˆp̂xy(u) =
∑

dxi pij(u)φjy, or P (u) = DP (u)Φ
i=1 j=1

where the rows of D and Φ are the disaggr. and
aggr. probs.

• The aggregate expected transition cost is

n n

ĝ(x, u) =
∑

dxi
∑

pij(u)g(i, u, j), or ĝ = DPg
i=1 j=1

• The optimal cost function of the aggregate prob-
ˆlem, denoted R, is

ˆ ˆR(x) = min

[

ĝ(x, u) + α
∑

p̂xy(u)R(y) ,
u∈U

y

]

∀ x

ˆ ˆ ˆor R = minu[ĝ + αPR] - Bellman’s equation for
the aggregate problem.

• The optimal cost J∗ of the original problem is
˜ ˆapproximated using interpolation, J∗ ≈ J = ΦR:

J̃(j) =
∑

ˆφjyR(y),
y

∀ j
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EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs: φjy = 1 if j belongs to
aggregate state y.

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• Disaggregation probs: There are many possi-
bilities, e.g., all states i within aggregate state x
have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• Soft aggregation (provides “soft boundaries”
between aggregate states).
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EXAMPLE II: FEATURE-BASED AGGREGATION

• If we know good features, it makes sense to
group together states that have “similar features”

• Essentially discretize the features and assign a
weight to each discretization point

Special States Aggregate States Features
)

Special States Aggregate States FeaturesSpecial States Aggregate States Features

Feature Extraction Mapping Feature Vector
Feature Extraction Mapping Feature Vector

• A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

• Hard aggregation architecture based on features
is more powerful (nonlinear/piecewise constant in
the features, rather than linear)

• ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture
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EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state. Then “interpolate”

x j

x j1 j2

j2 j3

x j1

j3 y1 1 y2

2 y3

y3 Original State Space

Representative/Aggregate States

• Disaggregation probs. are dxi = 1 if i is equal
to representative state x.

• Aggregation probs. associate original system
states with convex combinations of rep. states

j ∼
y

∑

φjyy
∈A

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in-
cluding belief space of POMDP
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EXAMPLE IV: REPRESENTATIVE FEATURES

• Choose a collection of “representative” subsets
of original system states, and associate each one
of them with an aggregate state

y3 Original State Space

Aggregate States/Subsets
0 1 2 49

Sx1

Small cost

Sx2

Small cost

Sx3

ij j

ij j

Aggregate States/Subsets
0 1 2 49 i

pij

φ

pij

φ

φjx1

φjx2

φjx3

• Common case: Sx is a group of states with
“similar features”

• Hard aggregation is special case: ∪xSx = {1, . . . , n}
• Aggregation with representative states is special
case: Sx consists of just one state

• With rep. features, aggregation approach is a
special case of projected equation approach with
“seminorm” projection. So the TD methods and
multistage Bellman Eq. methodology apply
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APPROXIMATE PI BY AGGREGATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Consider approximate PI for the original prob-
lem, with evaluation done using the aggregate prob-
lem (other possibilities exist - see the text)

• ˜Evaluation of policy µ: J = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states corresponding to µ). May use simulation.

• Similar form to the projected equation ΦR =
ΠTµ(ΦR) (ΦD in place of Π).

• Advantages: It has no problem with exploration
or with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions. 276



Q-LEARNING I

• Q-learning has two motivations:

− Dealing with multiple policies simultaneously

− Using a model-free approach [no need to know
pij(u), only be able to simulate them]

• The Q-factors are defined by

n

Q∗(i, u) =
∑

pij(u)
(

g(i, u, j) +αJ∗(j)
)

, ∀ (i, u)
j=1

• Since J∗ = TJ∗, we have J∗(i) = min ∗
u∈U(i) Q (i, u)

so the Q factors solve the equation

n

Q∗(i, u) =
∑

p (u)

(

g(i, u, j) + α min Q∗ ′
ij (j, u )

u′∈U(j)
j=1

)

• Q∗(i, u) can be shown to be the unique solu-
tion of this equation. Reason: This is Bellman’s
equation for a system whose states are the original
states 1, . . . , n, together with all the pairs (i, u).

• Value iteration: For all (i, u)
n

Q(i, u) :=
∑

p ′
ij(u) g(i, u, j) + α min Q(j, u )

u′∈U(j)
j=1

( )
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Q-LEARNING II

• Use some randomization to generate sequence
of pairs (ik, uk) [all pairs (i, u) are chosen infinitely
often]. For each k, select jk according to pikj(uk).

• Q-learning algorithm: updates Q(ik, uk) by

Q(ik, uk) := 1− γk(ik, uk) Q(ik, uk)

+ γk(ik, uk

(

)

)

(

g(ik, uk, jk) + α min Q(jk, u′)
u′∈U(jk)

)

• Stepsize γk(ik, uk) must converge to 0 at proper
rate (e.g., like 1/k).

• Important mathematical point: In the Q-factor
version of Bellman’s equation the order of expec-
tation and minimization is reversed relative to the
ordinary cost version of Bellman’s equation:

n

J∗(i) = min
∑

pij(u)
(

g(i, u, j) + αJ∗(j)
u∈U(i)

j=1

)

• Q-learning can be shown to converge to true/exact
Q-factors (sophisticated stoch. approximation proof).

• Major drawback: Large number of pairs (i, u) -
no function approximation is used.

278



Q-FACTOR APPROXIMATIONS

• Basis function approximation for Q-factors:

Q̃(i, u, r) = φ(i, u)′r

• We can use approximate policy iteration and
LSPE/LSTD/TD for policy evaluation (exploration
issue is acute).

• Optimistic policy iteration methods are fre-
quently used on a heuristic basis.

• Example (very optimistic). At iteration k, given
rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using the
transition probabilities pikj(uk).

(2) Generate control uk+1 from

˜uk+1 = arg min Q(ik+1, u, rk)
u∈U(ik+1)

(3) Update the parameter vector via

rk+1 = rk − (LSPE or TD-like correction)

• Unclear validity. Solid basis for aggregation
case, and for case of optimal stopping (see text).
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6.231 DYNAMIC PROGRAMMING

LECTURE 23

LECTURE OUTLINE

• Additional topics in ADP

• Stochastic shortest path problems

• Average cost problems

• Generalizations

• Basis function adaptation

• Gradient-based approximation in policy space

• An overview
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REVIEW: PROJECTED BELLMAN EQUATION

• Policy Evaluation: Bellman’s equation J = TJ
is approximated the projected equation

Φr = ΠT (Φr)

which can be solved by a simulation-based meth-
ods, e.g., LSPE(λ), LSTD(λ), or TD(λ). Aggre-
gation is another approach - simpler in some ways.

S: Subspace spanned by basis functions

T(Φr)

0

Φr = ΠT(Φr)

Projection
on S

Indirect method: Solving a projected 
form of Bellmanʼs equation

• These ideas apply to other (linear) Bellman
equations, e.g., for SSP and average cost.

• Important Issue: Construct simulation frame-
work where ΠT [or ΠT (λ)] is a contraction.
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STOCHASTIC SHORTEST PATHS

• Introduce approximation subspace

S = {Φr | r ∈ ℜs}

and for a given proper policy, Bellman’s equation
and its projected version

J = TJ = g + PJ, Φr = ΠT (Φr)

Also its λ-version
∞

Φr = ΠT (λ)(Φr), T (λ) = (1− λ)
∑

λtT t+1

t=0

• Question: What should be the norm of projec-
tion? How to implement it by simulation?

• Speculation based on discounted case: It should
be a weighted Euclidean norm with weight vector
ξ = (ξ1, . . . , ξn), where ξi should be some type of
long-term occupancy probability of state i (which
can be generated by simulation).

• But what does “long-term occupancy probabil-
ity of a state” mean in the SSP context?

• How do we generate infinite length trajectories
given that termination occurs with prob. 1?
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SIMULATION FOR SSP

• We envision simulation of trajectories up to
termination, followed by restart at state i with
some fixed probabilities q0(i) > 0.

• Then the “long-term occupancy probability of
a state” of i is proportional to

∞

q(i) =
∑

qt(i), i = 1, . . . , n,
t=0

where

qt(i) = P (it = i), i = 1, . . . , n, t = 0, 1, . . .

• We use the projection norm

‖J‖q =

√

√

√

√

n
∑

q(i)
i=1

(

J(i)
)2

[Note that 0 < q(i) < ∞, but q is not a prob.
distribution.]

• We can show that ΠT (λ) is a contraction with
respect to ‖ · ‖q (see the next slide).

• LSTD(λ), LSPE(λ), and TD(λ) are possible.
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CONTRACTION PROPERTY FOR SSP

• We have q =
∑∞

=0 qtt so
∞ ∞

q′P =
∑

q′tP =
t=0

∑

q′ ′
t = q′ q0

t=1

−
or

n
∑

q(i)pij = q(j) q
i=1

− 0(j), ∀ j

• To verify that ΠT is a contraction, we show
that there exists β < 1 such that ‖Pz 2

q

n

‖ ≤ β‖z‖2q
for all z ∈ ℜ .

• For all z ∈ ℜn, we have

2
n n n n

‖Pz‖2 =
∑

q(i)





∑

p z



 ≤
∑

q(i)
∑

p z2q ij j ij j

i=1 j=1 i=1 j=1

n n n

=
∑

z2j
∑

q(i)pij =
∑

(

q(j) j
j=1 i=1 j 1

− q0( )
=

)

z2j

= ‖z‖2q − ‖z‖2q0 ≤ β‖z‖2q

where
q )

β = 1− 0(j
min
j q(j)
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AVERAGE COST PROBLEMS

• Consider a single policy to be evaluated, with
single recurrent class, no transient states, and steady-
state probability vector ξ = (ξ1, . . . , ξn).

• The average cost, denoted by η, is

1
η = lim

N→∞
x

N

{

N−1

E g k, xk+1

k=0

}

∑

ati n

(

is J = FJ

)

• Bellman’s equ

∣

∣

∣

x0 = i , ∀ i

o with

FJ = g − ηe+ PJ

where e is the unit vector e = (1, . . . , 1).

• The projected equation and its λ-version are

Φr = ΠF (Φr), Φr = ΠF (λ)(Φr)

• A problem here is that F is not a contraction
with respect to any norm (since e = Pe).

• ΠF (λ) is a contraction w. r. to ‖ · ‖ξ assuming
that e does not belong to S and λ > 0 (the case
λ = 0 is exceptional, but can be handled); see the
text. LSTD(λ), LSPE(λ), and TD(λ) are possible.
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GENERALIZATION/UNIFICATION

• Consider approx. solution of x = T (x), where

T (x) = Ax+ b, A is n× n, b ∈ ℜn

by solving the projected equation y = ΠT (y),
where Π is projection on a subspace of basis func-
tions (with respect to some Euclidean norm).

• We can generalize from DP to the case where
A is arbitrary, subject only to

I −ΠA : invertible

Also can deal with case where I − ΠA is (nearly)
singular (iterative methods, see the text).

• Benefits of generalization:

− Unification/higher perspective for projected
equation (and aggregation) methods in ap-
proximate DP

− An extension to a broad new area of appli-
cations, based on an approx. DP perspective

• Challenge: Dealing with less structure

− Lack of contraction

− Absence of a Markov chain 286



GENERALIZED PROJECTED EQUATION

• Let Π be projection with respect to

‖x‖ξ =

√

√

√

√

n
∑

ξix2
i

i=1

where ξ ∈ ℜn is a probability distribution with
positive components.

• If r∗ is the solution of the projected equation,
we have Φr∗ = Π(AΦr∗ + b) or

2
n n

r∗ = arg min ξ



∑

φ(i)′r −
∑

a φ(j)′ ∗
i ij r bi

r∈ℜs

i=1 j=1

−





where φ(i)′ denotes the ith row of the matrix Φ.

• Optimality condition/equivalent form:

′
n n n
∑

ξiφ(i)



φ(i)−
∑

aijφ(j)



 r∗ =
∑

ξiφ(i)bi
i=1 j=1 i=1

• The two expected values can be approximated
by simulation 287



SIMULATION MECHANISM

i0 i1

j0 j1

ik ik+1

jk jk+1

. . . . . .

Column Sampling
According to P

Row Sampling According to ξ (Ma
Column Sampling According to

Ro
i0
Row

i1
w Sam

0

amp

j1
plin

ik
ling Accordi

+1

Accordi
jk

According

+1

ng to
+1

ng to Ac
= ( ) Φ Πg Mar

• Row sampling: Generate sequence {i0, i1, . . .}
according to ξ, i.e., relative frequency of each row
i is ξi

• Column sampling: Generate (i0, j0), (i1, j1), . . .
according to some transition pr

{

obability matrix P
with

}

pij > 0 if aij 6= 0,

i.e., for each i, the relative frequency of (i, j) is pij
(connection to importance sampling)

• Row sampling may be done using a Markov
chain with transition matrix Q (unrelated to P )

• Row sampling may also be done without a
Markov chain - just sample rows according to some
known distribution ξ (e.g., a uniform)
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ROW AND COLUMN SAMPLING

Column Sampling

According to(May Use Marko
Markov Chainov Chain

P ∼ |A|

i0 i1

j0 j1

ik ik+1

jk jk+1

. . . . . .

Row Sampling According to ξ (Ma
Column Sampling According toξ (May Use Markov Chain Q)

to Markov Chain P ∼ |A|

Ac
= ( ) Φ Πg Mar
(Φ ) Subspaceto

Subspace Projection
k

ain
jection on

Ro
i0
Row

i1
w Sam

0

amp

j1
plin

ik
ling Accordi

+1

Accordi
jk

According

+1

ng to
+1

ng to

• Row sampling ∼ State Sequence Generation in
DP. Affects:

− The projection norm.

− Whether ΠA is a contraction.

• Column sampling ∼ Transition Sequence Gen-
eration in DP.

− Can be totally unrelated to row sampling.
Affects the sampling/simulation error.

− “Matching” P with |A| is beneficial (has an
effect like in importance sampling).

• Independent row and column sampling allows
exploration at will! Resolves the exploration prob-
lem that is critical in approximate policy iteration.
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LSTD-LIKE METHOD

• Optimality condition/equivalent form of pro-
jected equation

′
n n n
∑

ξ ∗
iφ(i)



φ(i)−
∑

aijφ(j)



 r =
∑

ξiφ(i)bi
i=1 j=1 i=1

• The two expected values are approximated by
row and column sampling (batch 0 → t).

• We solve the linear equation

t

k

∑

φ(ik)
=0

(

a
φ(i )− ikjk

k φ(jk)
pikjk

)′ t

rt =
∑

φ(ik)bik
k=0

• We have rt → r∗, regardless of ΠA being a con-
traction (by law of large numbers; see next slide).

• Issues of singularity or near-singularity of I−ΠA
may be important; see the text.

• An LSPE-like method is also possible, but re-
quires that ΠA is a contraction.

• n
Under the assumption j=1 |aij | ≤ 1 for all i,

there are conditions that g

∑

uarantee contraction of
ΠA; see the text.
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JUSTIFICATION W/ LAW OF LARGE NUMBERS

• We will match terms in the exact optimality
condition and the simulation-based version.

• ˆLet ξti be the relative frequency of i in row
sampling up to time t.

• We have

1
t n n

(
+ 1

∑

ˆφ(ik)φ i ξtk)′ =
t

∑

′ ′
iφ(i)φ(i)

k=0 =1

≈
∑

ξiφ(i)φ(i)
i i=1

1
t n n
∑

ˆφ(i )b t
k ik =

∑

ξiφ(i)bit+ 1
k=0 i=1

≈
∑

ξiφ(i)bi
i=1

• Let p̂tij be the relative frequency of (i, j) in
column sampling up to time t.

1
t

t+ 1
k

∑aikjk

=0

φ(ik)φ(jk)′
pikjk

n n
∑

ˆ
∑ aij

= ξti p̂tij
i=1 j=1

φ(i)φ(j)′
pij

n n

≈
∑

ξ ′
i

i=1

∑

aijφ(i)φ(j)
j=1
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BASIS FUNCTION ADAPTATION I

• An important issue in ADP is how to select
basis functions.

• A possible approach is to introduce basis func-
tions parametrized by a vector θ, and optimize
over θ, i.e., solve a problem of the form

˜min F J(θ)
θ∈Θ

˜where J(θ) approximates

(

a co

)

st vector J on the
subspace spanned by the basis functions.

• One example is

˜ ˜F J(θ) =
i∈I

|J(i)− J(θ)(i)|2,

where I is

(

a sub

)

set o

∑

f states, and J(i), i ∈ I, are
the costs of the policy at these states calculated
directly by simulation.

• Another example is

F
(

˜ 2
J(θ

)

=
∥

∥ ˜ ˜) J(θ)− T J(θ) ,

˜where J(θ) is the solution of a p

(

rojec

)

t

∥

∥

ed equation.
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BASIS FUNCTION ADAPTATION II

• Some optimization algorithm may be used to
˜minimize F
(

J(θ)
)

over θ.

• A challenge here is that the algorithm should
use low-dimensional calculations.

• One possibility is to use a form of random search
(the cross-entropy method); see the paper by Men-
ache, Mannor, and Shimkin (Annals of Oper. Res.,
Vol. 134, 2005)

• Another possibility is to use a gradient method.
For this it is necessary to estimate the partial

˜derivatives of J(θ) with respect to the components
of θ.

• It turns out that by differentiating the pro-
jected equation, these partial derivatives can be
calculated using low-dimensional operations. See
the references in the text.

293



APPROXIMATION IN POLICY SPACE I

• Consider an average cost problem, where the
problem data are parametrized by a vector r, i.e.,
a cost vector g(r), transition probability matrix
P (r). Let η(r) be the (scalar) average cost per
stage, satisfying Bellman’s equation

η(r)e+ h(r) = g(r) + P (r)h(r)

where h(r) is the differential cost vector.
• Consider minimizing η(r) over r. Other than
random search, we can try to solve the problem
by a policy gradient method:

rk+1 = rk − γk∇η(rk)

• Approximate calculation of ∇η(rk): If ∆η, ∆g,
∆P are the changes in η, g, P due to a small change
∆r from a given r, we have

∆η = ξ′(∆g +∆Ph),

where ξ is the steady-state probability distribu-
tion/vector corresponding to P (r), and all the quan-
tities above are evaluated at r.
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APPROXIMATION IN POLICY SPACE II

• Proof of the gradient formula: We have, by “dif-
ferentiating” Bellman’s equation,

∆η(r)·e+∆h(r) = ∆g(r)+∆P (r)h(r)+P (r)∆h(r)

By left-multiplying with ξ′,

′∆ ( )· + ′∆ ( ) = ′ξ η r e ξ h r ξ ∆ ( )+∆ ( ) ( ) + ′g r P r h r ξ P (r)∆h(r)

Since ξ′∆η(r)

( )

· e = ∆η(r) and ξ′ = ξ′P (r), this
equation simplifies to

∆η = ξ′(∆g +∆Ph)

• Since we don’t know ξ, we cannot implement a
gradient-like method for minimizing η(r). An al-
ternative is to use “sampled gradients”, i.e., gener-
ate a simulation trajectory (i0, i1, . . .), and change
r once in a while, in the direction of a simulation-
based estimate of ξ′(∆g +∆Ph).

• Important Fact: ∆η can be viewed as an ex-
pected value!

• Much research on this subject, see the text.
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6.231 DYNAMIC PROGRAMMING

OVERVIEW-EPILOGUE

• Finite horizon problems

− Deterministic vs Stochastic

− Perfect vs Imperfect State Info

• Infinite horizon problems

− Stochastic shortest path problems

− Discounted problems

− Average cost problems
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FINITE HORIZON PROBLEMS - ANALYSIS

• Perfect state info

− A general formulation - Basic problem, DP
algorithm

− A few nice problems admit analytical solu-
tion

• Imperfect state info

− Reduction to perfect state info - Sufficient
statistics

− Very few nice problems admit analytical so-
lution

− Finite-state problems admit reformulation as
perfect state info problems whose states are
prob. distributions (the belief vectors)
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FINITE HORIZON PROBS - EXACT COMP. SOL.

• Deterministic finite-state problems

− Equivalent to shortest path

− A wealth of fast algorithms

− Hard combinatorial problems are a special
case (but # of states grows exponentially)

• Stochastic perfect state info problems

− The DP algorithm is the only choice

− Curse of dimensionality is big bottleneck

• Imperfect state info problems

− Forget it!

− Only small examples admit an exact compu-
tational solution
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FINITE HORIZON PROBS - APPROX. SOL.

• Many techniques (and combinations thereof) to
choose from

• Simplification approaches

− Certainty equivalence

− Problem simplification

− Rolling horizon

− Aggregation - Coarse grid discretization

• Limited lookahead combined with:

− Rollout

− MPC (an important special case)

− Feature-based cost function approximation

• Approximation in policy space

− Gradient methods

− Random search
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INFINITE HORIZON PROBLEMS - ANALYSIS

• A more extensive theory

• Bellman’s equation

• Optimality conditions

• Contraction mappings

• A few nice problems admit analytical solution

• Idiosynchracies of problems with no underlying
contraction

• Idiosynchracies of average cost problems

• Elegant analysis
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INF. HORIZON PROBS - EXACT COMP. SOL.

• Value iteration

− Variations (Gauss-Seidel, asynchronous, etc)

• Policy iteration

− Variations (asynchronous, based on value it-
eration, optimistic, etc)

• Linear programming

• Elegant algorithmic analysis

• Curse of dimensionality is major bottleneck
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INFINITE HORIZON PROBS - ADP

• Approximation in value space (over a subspace
of basis functions)

• Approximate policy evaluation

− Direct methods (fitted VI)

− Indirect methods (projected equation meth-
ods, complex implementation issues)

− Aggregation methods (simpler implementa-
tion/many basis functions tradeoff)

• Q-Learning (model-free, simulation-based)

− Exact Q-factor computation

− Approximate Q-factor computation (fitted VI)

− Aggregation-based Q-learning

− Projected equation methods for opt. stop-
ping

• Approximate LP

• Rollout

• Approximation in policy space

− Gradient methods

− Random search
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