
APPROXIMATE DYNAMIC PROGRAMMING

A SERIES OF LECTURES GIVEN AT

TSINGHUA UNIVERSITY

JUNE 2014

DIMITRI P. BERTSEKAS

Based on the books:

(1) “Neuro-Dynamic Programming,” by DPB
and J. N. Tsitsiklis, Athena Scientific,
1996

(2) “Dynamic Programming and Optimal
Control, Vol. II: Approximate Dynamic
Programming,” by DPB, Athena Sci
entific, 2012

(3) “Abstract Dynamic Programming,” by
DPB, Athena Scientific, 2013

http://www.athenasc.com

For a fuller set of slides, see

http://web.mit.edu/dimitrib/www/publ.html

1

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

http://web.mit.edu/dimitrib/www/publ.html
http://www.athenasc.com

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

• Our subject:

− Large-scale DP based on approximations and
in part on simulation.

− This has been a research area of great inter
est for the last 25 years known under various
names (e.g., reinforcement learning, neuro
dynamic programming)

− Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence
and optimization/control theory

− Deals with control of dynamic systems under
uncertainty, but applies more broadly (e.g.,
discrete deterministic optimization)

− A vast range of applications in control the
ory, operations research, artificial intelligence,
and beyond ...

− The subject is broad with rich variety of
theory/math, algorithms, and applications.
Our focus will be mostly on algorithms ...
less on theory and modeling

2

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

• Our aim:

− A state-of-the-art account of some of the ma
jor topics at a graduate level

− Show how to use approximation and simula
tion to address the dual curses of DP: di
mensionality and modeling

• Our 6-lecture plan:

− Two lectures on exact DP with emphasis on
infinite horizon problems and issues of large
scale computational methods

− One lecture on general issues of approxima
tion and simulation for large-scale problems

− One lecture on approximate policy iteration
based on temporal differences (TD)/projected
equations/Galerkin approximation

− One lecture on aggregation methods

− One lecture on Q-learning, and other meth
ods, such as approximation in policy space

3

APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Introduction to DP and approximate DP

• Finite horizon problems

• The DP algorithm for finite horizon problems

• Infinite horizon problems

• Basic theory of discounted infinite horizon prob
lems

4

DP AS AN OPTIMIZATION METHODOLOGY

•	 Generic optimization problem:

min g(u)
u∈U

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set

• Categories of problems:

− Discrete (U is finite) or continuous

− Linear (g is linear and U is polyhedral) or
nonlinear

− Stochastic or deterministic: In stochastic prob
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

 	

g(u) = Ew G(u,w)

where w is a random parameter.

•	 DP deals with multistage stochastic problems

− Information about w is revealed in stages

− Decisions are also made in stages and make
use of the available information

− Its methodology is “different”

5

BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called “distur
bance” or “noise” depending on the context)

− N : Horizon or number of times control is
applied

• Cost function that is additive over time

N−1

E gN (xN) + gk(xk, uk, wk)
k=0

• Alternative system description: P (xk+1 | xk, uk)

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk)

6

INVENTORY CONTROL EXAMPLE

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time

N−1

E gN (xN) + gk(xk, uk, wk)
k=0

N−1

= E cuk + r(xk + uk − wk)
k=0

{

∑

}

{

∑

}

7

ADDITIONAL ASSUMPTIONS

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

− Otherwise past values of w, x, or u would be
useful for future optimization

• The constraint set from which uk is chosen at
time k depends at most on xk, not on prior x or
u

• Optimization over policies (also called feedback
control laws): These are rules/functions

uk = µk(xk), k = 0, . . . , N − 1

that map state/inventory to control/order (closed
loop optimization, use of feedback)

• MAJOR DISTINCTION: We minimize over se
quences of functions (mapping inventory to order)

{µ0, µ1, . . . , µN−1}

NOT over sequences of controls/orders

{u0, u1, . . . , uN−1}

8

GENERIC FINITE-HORIZON PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N −1

• Control contraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

N−1

Jπ(x0) = E gN (xN) + gk(xk, µk(xk), wk)

k=0

• Optimal cost function

J∗(x0) = min Jπ(x0)
π

• Optimal policy π∗ satisfies

Jπ∗ (x0) = J∗(x0)

When produced by DP, π∗ is independent of x0.

{

∑

}

9

0

PRINCIPLE OF OPTIMALITY

∗ ∗ ∗• Let π∗ = {µ0, µ 1, . . . , µ } be optimal policy N−1

• Consider the “tail subproblem” whereby we are
at xk at time k and wish to minimize the “cost
to-go” from time k to time N

N−1

E gN (xN) + gℓ xℓ, µℓ(xℓ), wℓ

ℓ=k

∗ ∗ ∗and the “tail policy” {µ , µ k+1, . . . , µ }k N−1

Tail Subproblem
x
k

k N Time

• Principle of optimality: The tail policy is opti
mal for the tail subproblem (optimization of the

future does not depend on what we did in the past)

• DP solves ALL the tail subroblems

• At the generic step, it solves ALL tail subprob
lems of a given time length, using the solution of
the tail subproblems of shorter time length

{

∑

()

}

10

DP ALGORITHM

• Computes for all k and states xk:

Jk(xk): opt. cost of tail problem starting at xk

• Initial condition:

JN (xN) = gN (xN)

Go backwards, k = N − 1, . . . , 0, using

Jk(xk) = min E gk(xk, uk, wk)
uk ∈Uk (xk) wk

+ Jk+1 fk(xk, uk, wk) ,

• To solve tail subproblem at time k minimize

kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

∗ ∗π∗ = {µ0, . . . , µ }N−1

∗
where µ (xk) minimizes in the right side above for k

each xk and k, is optimal

• Proof by induction

{

()}

11

PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

• The curse of modeling

− Sometimes a simulator of the system is easier
to construct than a model

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system

is controlled – need for on-line replanning

• All of the above are motivations for approxi
mation and simulation

12

�	 �

A MAJOR IDEA: COST APPROXIMATION

• Use a policy computed from the DP equation
where the optimal cost-to-go function Jk+1 is re
placed by an approximation J̃k+1.

• Apply µk(xk), which attains the minimum in

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk)
uk ∈Uk (xk)

• Some approaches:

(a) Problem Approximation: Use J̃k derived from
a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Use
˜as Jk a function of a suitable parametric

form, whose parameters are tuned by some
heuristic or systematic scheme (we will mostly
focus on this)

− This is a major portion of Reinforcement
Learning/Neuro-Dynamic Programming

˜(c)	 Rollout Approach: Use as Jk the cost of
some suboptimal policy, which is calculated
either analytically or by simulation

(

)
)

13

ROLLOUT ALGORITHMS

• At each k and state xk, use the control µk(xk)
that minimizes in

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) ,
uk ∈Uk (xk)

where J̃k+1 is the cost-to-go of some heuristic pol
icy (called the base policy).

• Cost improvement property: The rollout algo
rithm achieves no worse (and usually much better)
cost than the base policy starting from the same
state.

• Main difficulty: Calculating J̃k+1(x) may be
computationally intensive if the cost-to-go of the
base policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case (an
important application is discrete optimiza
tion).

− Connection w/ Model Predictive Control (MPC).

{ ()}

14

INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− The system is stationary.

• Total cost problems: Minimize

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

− Discounted problems (α < 1, bounded g)

− Stochastic shortest path problems (α = 1,
finite-state system with a termination state)
- we will discuss sparringly

− Discounted and undiscounted problems with
unbounded cost per stage - we will not cover

• Average cost problems - we will not cover

• Infinite horizon characteristics:

− Challenging analysis, elegance of solutions
and algorithms

− Stationary policies π = {µ, µ, . . .} and sta
tionary forms of DP play a special role

{

∑

()

}

15

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

with α < 1, and g is bounded [for some M , we
have |g(x, u, w)| ≤ M for all (x, u, w)]

• Optimal cost function: J∗(x) = minπ Jπ(x)

• Boundedness of g guarantees that all costs are

 ≤ Mwell-defined and bounded: Jπ(x) 1−α

• All spaces are arbitrary - only boundedness of

g is important (there are math fine points, e.g.

measurability, but they don’t matter in practice)

• Important special case: All underlying spaces
finite; a (finite spaces) Markovian Decision Prob
lem or MDP

• All algorithms ultimately work with a finite

spaces MDP approximating the original problem

{

∑

)

}

16

SHORTHAND NOTATION FOR DP MAPPINGS

• For any function J of x, denote

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

• TJ is the optimal cost function for the one
stage problem with stage cost g and terminal cost
function αJ .

• T operates on bounded functions of x to pro
duce other bounded functions of x

• For any stationary policy µ, denote

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

• The critical structure of the problem is cap
tured in T and Tµ

• The entire theory of discounted problems can
be developed in shorthand using T and Tµ

• True for many other DP problems.

• T and Tµ provide a powerful unifying framework
for DP. This is the essence of the book “Abstract
Dynamic Programming”

{ ()}

{ () ()}

17

�

�

FINITE-HORIZON COST EXPRESSIONS

• Consider anN -stage policy πN = {µ0, µ1, . . . , µN−1}0

1

with a terminal cost J :

N−1

JπN

+ αJπN

0
(x0) = E αNJ(xk) + αℓg xℓ, µℓ(xℓ), wℓ

ℓ=0

g x0, µ0(x0), w0
 (x1)
= E

JπN
1

= {µ1, µ2, . . . , µN−1}

(Tµ0
)(x0)
=

where π1
N

• By induction we have

()J xNπ
0

= (Tµ0 Tµ1 · · · TµN−1 J)(x), ∀ x

0

• For a stationary policy µ the N -stage cost func
tion (with terminal cost J) is

JπN = Tµ
NJ

where Tµ
N is the N -fold composition of Tµ

• Similarly the optimal N -stage cost function
(with terminal cost J) is TNJ

• TNJ = T (TN−1J) is just the DP algorithm

{

∑

()

}

{

()

}

18

“SHORTHAND” THEORY – A SUMMARY

• Infinite horizon cost function expressions [with
J0(x) ≡ 0]

Jπ(x) = lim (Tµ0 Tµ1 · · · TµN J0)(x), Jµ(x) = lim (Tµ
NJ0)(x)

N→∞ N→∞

∗ ∗• Bellman’s equation: J = TJ , Jµ = TµJµ

• Optimality condition:

∗ ∗ µ: optimal <==> TµJ = TJ

•	 Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk,

− Policy evaluation: Find J by solving kµ

J = T k J kkµ µ µ

− Policy improvement: Find µk+1 such that

T k+1 J	 k = TJ kµ µ µ

19

TWO KEY PROPERTIES

′• Monotonicity property: For any J and J such
that J(x) ≤ J ′ (x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

• Constant Shift property: For any J , any scalar
r, and any µ

T (J + re) (x) = (TJ)(x) + αr, ∀ x,

Tµ(J + re) (x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Monotonicity is present in all DP models (undis
counted, etc)

• Constant shift is special to discounted models

• Discounted problems have another property
of major importance: T and Tµ are contraction
mappings (we will show this later)

()

()

20

CONVERGENCE OF VALUE ITERATION

• For all bounded J ,

J∗(x) = lim (T kJ)(x), for all x
k→∞

Proof: For simplicity we give the proof for J ≡ 0.
For any initial state x0, and policy π = {µ0, µ1, . . .},

∞

Jπ(x0) = E αℓg xℓ, µℓ(xℓ), wℓ

ℓ=0

k−1

= E αℓg xℓ, µℓ(xℓ), wℓ

ℓ=0

∞

+ E αℓg xℓ, µℓ(xℓ), wℓ

ℓ=k

The tail portion satisfies

∞

αkM
E αℓg xℓ, µℓ(xℓ), wℓ ≤ ,

1− α
ℓ=k

where M ≥ |g(x, u, w)|. Take min over π of both
sides, then lim as k → ∞. Q.E.D.

{

∑

(

()
)

}

{

∑

(

()
)

}

{

∑

(

()
)

}

∣

∣

∣

∣

∣

{

∑

(

()
)

}
∣

∣

∣

∣

∣

21

BELLMAN’S EQUATION

∗• The optimal cost function J is a solution of

∗Bellman’s equation, J = TJ∗, i.e., for all x,

∗J∗(x) = min E g(x, u, w) + αJ f(x, u, w)
u∈U(x) w

Proof: For all x and k,

αkM αkM
J∗(x)− ≤ (T kJ0)(x) ≤ J∗(x) + ,

1− α 1− α

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying
T to this relation, and using Monotonicity and
Constant Shift,

αk+1M

(TJ∗)(x)− ≤ (T k+1J0)(x)

1− α

αk+1M
≤ (TJ∗)(x) +

1− α

Taking the limit as k → ∞ and using the fact

lim (T k+1J0)(x) = J∗(x)
k→∞

∗ ∗we obtain J = TJ . Q.E.D.

22

THE CONTRACTION PROPERTY

• Contraction property: For any bounded func
tions J and J ′ , and any µ,

max (TJ)(x)− (TJ ′)(x) ≤ αmax J(x)− J ′ (x) ,
x x

max (TµJ)(x)−(TµJ ′)(x) ≤ αmax J(x)−J ′(x) .
x x

Proof: Denote c = maxx∈S J(x)− J ′ (x) . Then

J(x)− c ≤ J ′ (x) ≤ J(x) + c, ∀ x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence

(TJ)(x)− (TJ ′)(x) ≤ αc, ∀ x.

Q.E.D.

∗• Note: This implies that J is the unique solu
∗tion of J = TJ∗, and Jµ is the unique solution

of

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

23Jµ = TµJµ

NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

∗ ∗TJ = TµJ ,

or, equivalently, for all x,

∗ µ(x) ∈ arg min E g(x, u, w) + αJ f(x, u, w)

u∈U(x) w

∗Proof: If TJ = TµJ∗, then using Bellman’s equa
∗tion (J = TJ∗), we have

∗ ∗J = TµJ ,

so by uniqueness of the fixed point of Tµ, we obtain
∗J = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,

∗we have J = Jµ, so

∗ ∗J = TµJ .

∗Combining this with Bellman’s Eq. (J = TJ∗),
∗ ∗we obtain TJ = TµJ . Q.E.D.

{ ()}

24

APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Review of discounted problem theory

• Review of shorthand notation

• Algorithms for discounted DP

• Value iteration

• Various forms of policy iteration

• Optimistic policy iteration

• Q-factors and Q-learning

• Other DP models - Continuous space and time

• A more abstract view of DP

• Asynchronous algorithms

25

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

with α < 1, and for someM , we have |g(x, u, w)| ≤

M for all (x, u, w)

• Shorthand notation for DP mappings (operate

on functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

26

“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or

J∗(x) = min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x
u∈U(x) w

Jµ(x) =	 E g x, µ(x), w + αJµ f(x, µ(x), w) , ∀ x
w

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(x) ∈ arg min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x
u∈U(x) w

•	 Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk,

− Find J k from J k = T kJ (policy evaluakµ	 µ µ µ

tion); then

− Find µk+1 such that T k+1 J k = TJ k (polµ µ µ

icy improvement)

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)}

{

()
(

f(x, u, w)
)}

27

MAJOR PROPERTIES

• Monotonicity property: For any functions J and
′J on the state space X such that J(x) ≤ J ′(x)

for all x ∈ X, and any µ

(TJ)(x) ≤ (TJ ′)(x), (TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X

• Contraction property: For any bounded func
tions J and J ′, and any µ,

max (TJ)(x)− (TJ ′)(x) ≤ αmax J(x)− J ′(x) ,
x x

 max (TµJ)(x)− (TµJ ′)(x) ≤ αmax J(x)−J ′(x)
x x

• Compact Contraction Notation:

ITJ−TJ ′I ≤ αIJ−J ′I, ITµJ−TµJ ′I ≤ αIJ−J ′I,

where for any bounded function J , we denote by

IJI the sup-norm

 IJI = max J(x)

x

28

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk

− Policy evaluation: Find J by solving kµ

J	 k (x) = E g x, µ
k(x), w + αJ k f(x, µ

k(x), w) , ∀ xµ	 µ
w

or	 J = T kJ kkµ µ µ

− Policy improvement: Let µk+1 be such that

µ
k+1(x) ∈ arg min E g(x, u, w) + αJ k f(x, u, w) , ∀ xµ

u∈U(x) w

or	 T k+1 J = TJ kkµ µ µ

• For the case of n states, policy evaluation is
equivalent to solving an n × n linear system of
equations: Jµ = gµ + αPµJµ

• For large n, exact PI is out of the question (even
though it terminates finitely as we will show)

{

g
(

x, µ
k(x), w

)

+ αJµk

(

f(x, µk(x), w)
)}

{

g(x, u, w) + αJµk

(

f(x, u, w)
)}

29

JUSTIFICATION OF POLICY ITERATION

• We can show that J k ≥ J k+1 for all kµ µ

• Proof: For given k, we have

J = T kJ k ≥ TJ k = T k+1 Jk kµ µ µ µ µ µ

Using the monotonicity property of DP,

J k ≥ T k+1 J k ≥ T 2 J k ≥ · · · ≥ lim TN J kµ µ µ k+1 µ k+1 µµ µN→∞

• Since
lim T

µ
N
k+1 Jµk = Jµk+1

N→∞

we have J k ≥ J k+1 .µ µ

• If J = J k+1 , all above inequalities hold kµ µ

as equations, so J solves Bellman’s equation.
 kµ

Hence Jµk = J∗

• Thus at iteration k either the algorithm gen
erates a strictly improved policy or it finds an op
timal policy

− For a finite spaces MDP, the algorithm ter
minates with an optimal policy

− For infinite spaces MDP, convergence (in an
infinite number of iterations) can be shown

30

OPTIMISTIC POLICY ITERATION

• Optimistic PI: This is PI, where policy evalu
ation is done approximately, with a finite number
of VI

• So we approximate the policy evaluation

mJµ ≈ Tµ J

for some number m ∈ [1,∞) and initial J

• Shorthand definition: For some integers mk

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . .
µ

• If mk ≡ 1 it becomes VI

• If mk = ∞ it becomes PI

• Converges for both finite and infinite spaces
discounted problems (in an infinite number of it
erations)

• Typically works faster than VI and PI (for
large problems)

31

APPROXIMATE PI

• Suppose that the policy evaluation is approxi
mate,

IJk − JµkI ≤ δ, k = 0, 1, . . .

and policy improvement is approximate,

ITµk+1 Jk − TJkI ≤ ǫ, k = 0, 1, . . .

where δ and ǫ are some positive scalars.

• Error Bound I: The sequence {µk} generated
by approximate policy iteration satisfies

ǫ+ 2αδ
lim sup IJ k − J∗I ≤ µ
k→∞ (1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗ .

• Error Bound II: If in addition the sequence {µk}
“terminates” at µ (i.e., keeps generating µ)

ǫ+ 2αδ
IJµ − J∗I ≤

1− α
32

� �

Q-FACTORS I

• Optimal Q-factor of (x, u):

Q∗(x, u) = E {g(x, u, w) + αJ∗(x)}

with x = f(x, u, w). It is the cost of starting at x,
applying u is the 1st stage, and an optimal policy
after the 1st stage

• We can write Bellman’s equation as

J∗(x) = min Q∗(x, u), ∀ x,
u∈U(x)

• We can equivalently write the VI method as

Jk+1(x) = min Qk+1(x, u), ∀ x,
u∈U(x)

where Qk+1 is generated by

Qk+1(x, u) = E g(x, u, w) + α min Qk(x, v)
v∈U(x)

with x = f(x, u, w)

33

� �

Q-FACTORS II

• Q-factors are costs in an “augmented” problem
where states are (x, u)

• They satisfy a Bellman equation Q∗ = FQ∗

where

(FQ)(x, u) = E g(x, u, w) + α min Q(x, v)

v∈U(x)

where x = f(x, u, w)

• VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

• They require equal amount of computation ...
they just need more storage

• Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

µ ∗(x) = min Q∗(x, u)
u∈U(x)

• Once Q∗(x, u) are known, the model [g and
E{·}] is not needed. Model-free operation

• Q-Learning (to be discussed later) is a sampling
method that calculates Q∗(x, u) using a simulator
of the system (no model needed)

{ }

34

OTHER DP MODELS

• We have looked so far at the (discrete or con
tinuous spaces) discounted models for which the

analysis is simplest and results are most powerful

• Other DP models include:

− Undiscounted problems (α = 1): They may
include a special termination state (stochas
tic shortest path problems)

− Continuous-time finite-state MDP: The time
between transitions is random and state-and
control-dependent (typical in queueing sys
tems, called Semi-Markov MDP). These can
be viewed as discounted problems with state
and-control-dependent discount factors

• Continuous-time, continuous-space models: Clas
sical automatic control, process control, robotics

− Substantial differences from discrete-time

− Mathematically more complex theory (par
ticularly for stochastic problems)

− Deterministic versions can be analyzed using
classical optimal control theory

− Admit treatment by DP, based on time dis
cretization 35

CONTINUOUS-TIME MODELS

• System equation: dx(t)/dt = f x(t), u(t)

∞
• Cost function: g x(t), u(t)

0

• Optimal cost starting from x: J∗(x)

• δ-Discretization of time: xk+1 = xk+δ·f(xk, uk)

• Bellman equation for the δ-discretized problem:

Jδ
∗(x) = min δ · g(x, u) + Jδ

∗ x + δ · f(x, u)
u

• Take δ → 0, to obtain the Hamilton-Jacobi-
Bellman equation [assuming limδ→0 J

∗(x) = J∗(x)] δ

0 = min g(x, u) +∇J∗(x)′f(x, u) , ∀ x
u

• Policy Iteration (informally):

− Policy evaluation: Given current µ, solve

0 = g x, µ(x) +∇Jµ(x)′f x, µ(x) , ∀ x

− Policy improvement: Find

µ(x) ∈ argmin g(x, u)+∇Jµ(x)′f(x, u) , ∀ x
u

• Note: Need to learn ∇Jµ(x) NOT Jµ(x)

(t)/dt = f
(

x(t), u(t)
)

(

x(t), u(t)
)

∗(x)

e: xk+1 = xk+δ·f(xk, uk)

J∗

δ (x) = min
u

{

δ · g(x, u) + J∗

δ

(

x+ δ · f(x, u)
)}

mδ→0 J
∗

δ (x) = J∗(x)]

0 = min
u

{

g(x, u) +∇J∗(x)′f(x, u)
}

,

0 = g
(

x, µ(x)
)

+∇Jµ(x)′f
(

x, µ(x)
)

,

µ(x) ∈ argmin
u

{

g(x, u)+∇Jµ(x)′f(x, u)
}

,

36

A MORE GENERAL/ABSTRACT VIEW OF DP

• Let Y be a real vector space with a norm I · I

• A function F : Y → Y is said to be a contrac
tion mapping if for some ρ ∈ (0, 1), we have

IFy − FzI ≤ ρIy − zI, for all y, z ∈ Y.

ρ is called the modulus of contraction of F .

• Important example: Let X be a set (e.g., state

space in DP), v : X → ℜ be a positive-valued

function. Let B(X) be the set of all functions

J : X → ℜ such that J(x)/v(x) is bounded over

x.

• We define a norm on B(X), called the weighted

sup-norm, by

|J(x)|
IJI = max .

x∈X v(x)

• Important special case: The discounted prob
lem mappings T and Tµ [for v(x) ≡ 1, ρ = α].

37

CONTRACTION MAPPINGS: AN EXAMPLE

• Consider extension from finite to countable state
space, X = {1, 2, . . .}, and a weighted sup norm
with respect to which the one stage costs are bounded

• Suppose that Tµ has the form

(TµJ)(i) = bi + α aij J(j), ∀ i = 1, 2, . . .

j∈X

where bi and aij are some scalars. Then Tµ is a
contraction with modulus ρ if and only if

L

j∈X |aij | v(j)
≤ ρ, ∀ i = 1, 2, . . .

v(i)

• Consider T ,

(TJ)(i) = min (TµJ)(i), ∀ i = 1, 2, . . .
µ

where for each µ ∈ M , Tµ is a contraction map
ping with modulus ρ. Then T is a contraction
mapping with modulus ρ

•

∑

j∈X

38

Allows extensions of main DP results from
bounded one-stage cost to interesting unbounded
one-stage cost cases.

CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If

F : B(X) B(X) is a contraction with modulus
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X)
such that

J∗ = FJ∗ .

Furthermore, if J is any function in B(X), then
{F kJ} converges to J∗ and we have

IF kJ − J∗I ≤ ρkIJ − J∗I, k = 1, 2,

• This is a special case of a general result for
contraction mappings F : Y → Y over normed
vector spaces Y that are complete: every sequence
{yk} that is Cauchy (satisfies Iym − ynI → 0 as
m,n → ∞) converges.

• The space B(X) is complete (see the text for a
proof).

7→

39

ABSTRACT FORMS OF DP

• We consider an abstract form of DP based on
monotonicity and contraction

• Abstract Mapping: Denote R(X): set of real
valued functions J : X → ℜ, and let H : X ×U ×
R(X) → ℜ be a given mapping. We consider the
mapping

(TJ)(x) = min H(x, u, J), ∀ x ∈ X.

u∈U(x)

• We assume that (TJ)(x) > −∞ for all x ∈ X,
so T maps R(X) into R(X).

• Abstract Policies: Let M be the set of “poli
cies”, i.e., functions µ such that µ(x) ∈ U(x) for
all x ∈ X.

• For each µ ∈ M, we consider the mapping
Tµ : R(X) R(X) defined by

(TµJ)(x) = H x, µ(x), J , ∀ x ∈ X.

• Find a function J∗ ∈ R(X) such that

J∗(x) = min H(x, u, J∗), ∀ x ∈ X
u∈U(x)

()

40

7→

�

EXAMPLES

•	 Discounted problems

H(x, u, J) = E g(x, u, w) + αJ f(x, u, w)

• Discounted “discrete-state continuous-time”
Semi-Markov Problems (e.g., queueing)

n

H(x, u, J) = G(x, u) + mxy(u)J(y)
y=1

where mxy are “discounted” transition probabili
ties, defined by the distribution of transition times

•	 Minimax Problems/Games

 	

H(x, u, J) = max g(x, u, w)+αJ f(x, u, w)
w∈W (x,u)

•	 Shortest Path Problems

axu + J(u) if u = d,
H(x, u, J) =

axd	 if u = d

where d is the destination. There are stochastic
and minimax versions of this problem

n
∑

y=1

(

{

6

{ ()}

6

41

)

ASSUMPTIONS

′ ′• Monotonicity: If J, J ∈ R(X) and J ≤ J ,

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• We can show all the standard analytical and
computational results of discounted DP if mono-
tonicity and the following assumption holds:

• Contraction:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X)

′− For some α ∈ (0, 1), and all µ and J, J ∈
B(X), we have

ITµJ − TµJ ′I ≤ αIJ − J ′I

• With just monotonicity assumption (as in undis
counted problems) we can still show various forms

of the basic results under appropriate conditions

• A weaker substitute for contraction assumption
is semicontractiveness: (roughly) for some µ, Tµ

is a contraction and for others it is not; also the
“noncontractive” µ are not optimal

42

RESULTS USING CONTRACTION

• Proposition 1: The mappings Tµ and T are
weighted sup-norm contraction mappings with mod
ulus α over B(X), and have unique fixed points
in B(X), denoted Jµ and J∗, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H.

• Proposition 2: For any J ∈ B(X) and µ ∈ M,

lim Tµ
kJ = Jµ, lim T kJ = J∗

k→∞ k→∞

(cf. convergence of value iteration).

Proof: From the contraction property of Tµ and
T .

• Proposition 3: We have TµJ∗ = TJ∗ if and
only if Jµ = J∗ (cf. optimality condition).

Proof: TµJ∗ = TJ∗, then TµJ∗ = J∗, implying
J∗ = Jµ. Conversely, if Jµ = J∗, then TµJ∗ =
TµJµ = Jµ = J∗ = TJ∗ .

43

RESULTS USING MON. AND CONTRACTION

• Optimality of fixed point:

J∗(x) = min Jµ(x), ∀ x ∈ X
µ∈M

• Existence of a nearly optimal policy: For every
ǫ > 0, there exists µǫ ∈ M such that

J∗(x) ≤ Jµǫ(x) ≤ J∗(x) + ǫ, ∀ x ∈ X

• Nonstationary policies: Consider the set Π of
all sequences π = {µ0, µ1, . . .} with µk ∈ M for
all k, and define

Jπ(x) = lim inf (Tµ0 Tµ1 · · · TµkJ)(x), ∀ x ∈ X,
k→∞

with J being any function (the choice of J does
not matter)

• We have

J∗(x) = min Jπ(x), ∀ x ∈ X
π∈Π

44

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk

− Policy evaluation: Find J by solving kµ

J = T kJ kkµ µ µ

− Policy improvement: Find µk+1 such that

T k+1 J k = TJ kµ µ µ

• Optimistic PI: This is PI, where policy evalu
ation is carried out by a finite number of VI

− Shorthand definition: For some integers mk

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . .
µ

− If mk ≡ 1 it becomes VI

− If mk = ∞ it becomes PI

− For intermediate values of mk, it is generally

more efficient than either VI or PI

45

�

ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

− Faster convergence

− Parallel and distributed computation

− Simulation-based implementations

• General framework: Partition X into disjoint
nonempty subsets X1, . . . , Xm, and use separate
processor ℓ updating J(x) for x ∈ Xℓ

• Let J be partitioned as

J = (J1, . . . , Jm),

where Jℓ is the restriction of J on the set Xℓ.

• Synchronous VI algorithm:

J t+1 (x) = 1, . . . , J
t x ∈ Xℓ, ℓ = 1, . . . ,m T (J t
m)(x),ℓ

• Asynchronous VI algorithm: For some subsets
of times Rℓ,

τℓ1(t) τℓm(t)

J t+1 T (J , . . . , Jm)(x) if t ∈ Rℓ,1(x) = ℓ J t
ℓ(x) if t /∈ Rℓ

where t − τℓj(t) are communication “delays”

{

46

�

ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, a
separate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen
erated in some way, possibly by simulation (each
state is generated infinitely often)

•	 Asynchronous VI:

J t+1 T (J1
t , . . . , Jnt)(ℓ) if ℓ = xt,

= ℓ J t	 if ℓ = xt,ℓ

where T (J1
t , . . . , Jnt)(ℓ) denotes the ℓ-th compo

nent of the vector

T (J1
t , . . . , Jn

t) = TJ t,

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method

{

6

47

ASYNCHRONOUS CONV. THEOREM I

• KEY FACT: VI and also PI (with some modifi
cations) still work when implemented asynchronously

• Assume that for all ℓ, j = 1, . . . ,m, Rℓ is infinite
and limt→∞ τℓj(t) = ∞

• Proposition: Let T have a unique fixed point J∗ ,
and assume that there is a sequence of nonempty
subsets S(k) ⊂ R(X) with S(k + 1) ⊂ S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition: Every
sequence {Jk} with Jk ∈ S(k) for each k,
converges pointwise to J∗ . Moreover,

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1,

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · · × Sm(k),

where Sℓ(k) is a set of real-valued functions
on Xℓ, ℓ = 1, . . . ,m.

Then for every J ∈ S(0), the sequence {J t} gen
erated by the asynchronous algorithm converges
pointwise to J∗ . 48

(0)
) + 1)

∗

(0)

(0)
) + 1)

∗

Iterations

ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)
S(k)

S(k + 1) J∗

J = (J1, J2)

J1 Iterations

J2 Iteration

Key: “Independent” component-wise improve
ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com
ponent portion of S(k + 1)

S(0)
S(k)

S(k + 1) J∗

J = (J1, J2)

S1(0)

S2(0)
T J

S(0)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

TJ

(0) S(k)

49

APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Review of discounted DP

• Introduction to approximate DP

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy evaluation

• Some general issues about approximation and
simulation

50

REVIEW

51

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

with α < 1, and for someM , we have |g(x, u, w)| ≤

M for all (x, u, w)

• Shorthand notation for DP mappings (operate

on functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ

• For any stationary policy µ

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

52

MDP - TRANSITION PROBABILITY NOTATION

• We will mostly assume the system is an n-state
(controlled) Markov chain

• We will often switch to Markov chain notation

− States i = 1, . . . , n (instead of x)

− Transition probabilities pik ik+1 (uk) [instead

of xk+1 = f(xk, uk, wk)]

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

− Cost functions J = J(1), . . . , J(n) (vec
tors in ℜn)

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i0 = i
N→∞ ik

k=1,2,... k=0

• Shorthand notation for DP mappings

n

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n,
u∈U(i)

j=1

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n

j=1

(

)
)

{

N−1
∑

k=0

αkg
(

i
)

}

n
∑

j=1

pij(u)
(

(j)
)

,

n
∑

pij
(

µ(i)
)(

g
()

+αJ(j)
)

53

“SHORTHAND” THEORY – A SUMMARY

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or

n

J∗(i) = min pij(u) g(i, u, j)+αJ∗(j) , ∀ i
u∈U(i)

j=1

n

Jµ(i) = pij	 µ(i) g i, µ(i), j + αJµ(j) , ∀ i
j=1

• Optimality	 condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

n

µ(i) ∈ arg min pij(u) g(i, u, j)+αJ∗(j) , ∀ i
u∈U(i)

j=1

∑

()

∑

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

∑

()

54

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim (T kJ)(i), ∀ i = 1, . . . , n
k→∞

• Policy iteration: Given µk

− Policy evaluation: Find J by solving kµ

n

Jµk (i) = pij µ
k(i) g i, µ

k(i), j +αJµk (j) , i = 1, . . . , n

j=1

or J = T k J kkµ µ µ

− Policy improvement: Let µk+1 be such that

n

µ
k+1(i) ∈ arg min pij(u) g(i, u, j)+αJ k (j) , ∀ iµ

u∈U(i)
j=1

or T k+1 J = TJ kkµ µ µ

• Policy evaluation is equivalent to solving an
n × n linear system of equations

• For large n, exact PI is out of the question. We
use instead optimistic PI (policy evaluation with
a few VIs)

∑

(

µ
k()
)(

g
(

(i),
)

(j)
)

n
∑

(

g(i, u, j)+αJµk (j)
)

55

APPROXIMATE DP

56

GENERAL ORIENTATION TO ADP

• ADP (late 80s - present) is a breakthrough

methodology that allows the application of DP to

problems with many or infinite number of states.

• Other names for ADP are:

− “reinforcement learning” (RL).

− “neuro-dynamic programming” (NDP).

− “adaptive dynamic programming” (ADP).

• We will mainly adopt an n-state discounted

model (the easiest case - but think of HUGE n).

• Extensions to other DP models (continuous

space, continuous-time, not discounted) are possi
ble (but more quirky). We will set aside for later.

• There are many approaches:

− Problem approximation

− Simulation-based approaches (we will focus
on these)

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in value space

− Approximation in policy space

57

WHY DO WE USE SIMULATION?

• One reason: Computational complexity advan
tage in computing sums/expectations involving a
very large number of terms

− Any sum
n

ai
i=1

can be written as an expected value:

n n � �
ai ai

ai = ξi = Eξ ,
ξi ξi

i=1 i=1

where ξ is any prob. distribution over {1, . . . , n}

− It can be approximated by generating many
samples {i1, . . . , ik} from {1, . . . , n}, accord
ing to distribution ξ, and Monte Carlo aver
aging:

n � � k
ai 1 ait ai = Eξ ≈
ξi k ξiti=1 t=1

• Simulation is also convenient when an analytical
model of the system is unavailable, but a simula
tion/computer model is possible.

∑

a

∑ ∑

∑ ∑

58

APPROXIMATION IN VALUE AND

POLICY SPACE

59

APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r) where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights

• Use J̃ in place of J∗ or Jµ in various algorithms
and computations

• Role of r: By adjusting r we can change the
“shape” of J̃ so that it is “close” to J∗ or Jµ

• Two key issues:

− The choice of parametric class J̃(i; r) (the
approximation architecture)

− Method for tuning the weights (“training”
the architecture)

• Success depends strongly on how these issues

are handled ... also on insight about the problem

• A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

• We will focus on simulation, but this is not the
only possibility

• We may also use parametric approximation for
Q-factors or cost function differences

60

APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(i; r) on r]

• Linear architectures are easier to train, but non
linear ones (e.g., neural networks) are richer

• Computer chess example:

− Think of board position as state and move
as control

− Uses a feature-based position evaluator that
assigns a score (or approximate Q-factor) to
each position/move

Feature
Extraction

Weighting
of Features

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

Score

• Relatively few special features and weights, and
multistep lookahead

61

Approximator
i Mapping Feature Vector

Approximator ()Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

LINEAR APPROXIMATION ARCHITECTURES

• Often, the features encode much of the nonlin
earity inherent in the cost function approximated

• Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func
tion)

• With well-chosen features, we can use a linear
architecture: J̃(i; r) = φ(i)′ r, i = 1, . . . , n, or

s

J̃(r) = Φr = Φjrj
j=1

Φ: the matrix whose rows are φ(i)′ , i = 1, . . . , n,
Φj is the jth column of Φ

State i Feature Extraction
Mapping Mapping

Feature Vector φ(i) Linear
Linear Cost

Approximator φ(i)′ r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}

spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc

∑

Approximator
i Mapping Feature Vector

Approximator ()Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

62

ILLUSTRATIONS: POLYNOMIAL TYPE

• Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be i =
(i1, . . . , iq) (i.e., have q “dimensions”) and define

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q

Linear approximation architecture:

q q q

J̃(i; r) = r0 + rkik + rkmikim,

k=1 k=1 m=k

where r has components r0, rk, and rkm.

• Interpolation: A subset I of special/representative
states is selected, and the parameter vector r has
one component ri per state i ∈ I. The approxi
mating function is

J̃(i; r) = ri, i ∈ I,

J̃(i; r) = interpolation using the values at i ∈ I, i /∈ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.

∑ ∑∑

63

A DOMAIN SPECIFIC EXAMPLE

• Tetris game (used as testbed in competitions)

......

TERMINATION

• J∗(i): optimal score starting from position i

• Number of states > 2200 (for 10× 20 board)

• Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

64

Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r)

SteadyState Distribution
Cost ()

Approximate Policy Evaluation

Approximate Policy Evaluation

Initial state () Time

Controlled System Cost per Stage Vector
tion Matrix ()

Approximate Policy

Evaluation

Policy Improvement

Approximate Policy

Evaluation

Policy ImprovementGenerate “Imp

APPROX. PI - OPTION TO APPROX. Jµ OR Qµ

• Use simulation to approximate the cost Jµ of
the current policy µ

• Generate “improved” policy µ by minimizing in
(approx.) Bellman equation

Generate “Improved” Policy µ

Initial Policy

J̃µ(i, r)
Evaluate Approximate Cost

• Altenatively approximate the Q-factors of µ

roved” Policy µ

Evaluate Approximate QFactors

µ(i) = arg minu∈U (i) Q̃µ(i, u, r)

Initial Policy

Q̃µ(i, u, r)

65

� �

APPROXIMATING J∗ OR Q∗

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the Q-factors

n

Q∗(i, u) = g(i, u) + α pij(u)J∗(j);
j=1

and the optimal costs

J∗(i) = min Q∗(i, u)
u∈U(i)

− Bellman Error approach: Find r to

2
min Ei J̃(i; r)− (T J̃)(i; r)
r

where Ei{·} is taken with respect to some
distribution over the states

− Approximate Linear Programming (we will
not discuss here)

• Q-learning can also be used with approxima
tions

• Q-learning and Bellman error approach can also
be used for policy evaluation

∑

()

66

APPROXIMATION IN POLICY SPACE

•	 A brief discussion; we will return to it later.

• Use parametrization µ(i; r) of policies with a
vector r = (r1, . . . , rs). Examples:

− Polynomial, e.g., µ(i; r) = r1 + r2 · i+ r3 · i2

− Linear feature-based

µ(i; r) = φ1(i) · r1 + φ2(i) · r2

•	 Optimize the cost over r. For example:

− Each value of r defines a stationary policy,
with cost starting at state i denoted by J̃(i; r).

− Let (p1, . . . , pn) be some probability distri
bution over the states, and minimize over r

n

˜piJ(i; r)
i=1

−	 Use a random search, gradient, or other method

• A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture Ĵ , i.e.,

n

µ(i; r) ∈ arg min pij(u) g(i, u, j) + αĴ(j; r)
u∈U(i)

j=1

∑

∑

67

()

APPROXIMATE POLICY EVALUATION

METHODS

68

Set

=

Direct Method: Projection of cost vector Π

µ

cost vector

() () ()Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

DIRECT POLICY EVALUATION

• Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

• Amounts to projection of Jµ onto the approxi
mation subspace

Jµ

ΠJµ
0

=

Direct Method: Projection of
cost vector Jµ

• Solution by least squares methods

• Regular and optimistic policy iteration

• Nonlinear approximation architectures may also
be used

69

DIRECT EVALUATION BY SIMULATION

• Projection by Monte Carlo Simulation: Com
pute the projection ΠJµ of Jµ on subspace S =
{Φr | r ∈ ℜs}, with respect to a weighted Eu
clidean norm I · Iξ

• Equivalently, find Φr ∗, where
n

r ∗ = arg min IΦr−JµI2 = arg min ξi φ(i)′ r−Jµ(i)ξ
r∈ℜs r∈ℜs

i=1
• Setting to 0 the gradient at r ∗ ,

 −1n n

r ∗ = ξiφ(i)φ(i)′ ξiφ(i)Jµ(i)

i=1 i=1

• Generate samples (i1, Jµ(i1)), . . . , (ik, Jµ(ik))
using distribution ξ

• Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

 −1
k k

r̂k = φ(it)φ(it)′ φ(it)Jµ(it)

t=1 t=1

• Equivalent least squares alternative calculation:

k
2

r̂k = arg min φ(it)′ r − Jµ(it)

r∈ℜs

t=1

2 ∑

()

(

∑

)

∑

(

k
∑

t=1

)

∑

∑

()

70

{ }

Set

=

Set

=

Direct Method: Projection of cost vector Π

µ

form of Bellman’s equation

Projection onIndirect Method: Solving a projected

cost vector

() () ()Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

0

Tµ(Φr)

Φr = ΠTµ(Φr)

INDIRECT POLICY EVALUATION

• An example: Galerkin approximation

• Solve the projected equation Φr = ΠTµ(Φr)
where Π is projection w/ respect to a suitable
weighted Euclidean norm

Jµ

ΠJµ
0

= Subspace S = {Φr | r ∈ ℜs}

Direct Method: Projection of Indirect Method: Solving a projected
cost vector Jµ form of Bellman’s equation

• Solution methods that use simulation (to man
age the calculation of Π)

− TD(λ): Stochastic iterative algorithm for solv
ing Φr = ΠTµ(Φr)

− LSTD(λ): Solves a simulation-based approx
imation w/ a standard solver

− LSPE(λ): A simulation-based form of pro
jected value iteration; essentially

Φrk+1 = ΠTµ(Φrk) + simulation noise
71

BELLMAN EQUATION ERROR METHODS

• Another example of indirect approximate policy

evaluation:

min IΦr − Tµ(Φr)I2 (∗)ξ r

where I · Iξ is Euclidean norm, weighted with re
spect to some distribution ξ

• It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

• Several ways to implement projected equation

and Bellman error methods by simulation. They

involve:

− Generating many random samples of states
ik using the distribution ξ

− Generating many samples of transitions (ik, jk)
using the policy µ

− Form a simulation-based approximation of
the optimality condition for projection prob
lem or problem (*) (use sample averages in
place of inner products)

− Solve the Monte-Carlo approximation of the
optimality condition

• Issues for indirect methods: How to generate

the samples? How to calculate r ∗ efficiently?

72

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

ANOTHER INDIRECT METHOD: AGGREGATION

• A first idea: Group similar states together into
“aggregate states” x1, . . . , xs; assign a common
cost value ri to each group xi.

• Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1, . . . , rs). This
is called hard aggregation

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• More general/mathematical view: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ)

• Compare with projected equation Φr = ΠTµ(Φr).
Note: ΦD is a projection in some interesting cases

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

73

according to with cost

S

, = 1

),),

System States Aggregate States

Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

AGGREGATION AS PROBLEM APPROXIMATION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• Aggregation can be viewed as a systematic
approach for problem approximation. Main ele
ments:

− Solve (exactly or approximately) the “ag
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

−	 Use the optimal cost of the aggregate prob
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa
tion approach

according to pij(u), with cost

S

, = 1

),),

System States Aggregate States

{

Original Aggregate States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States

{

|

Original System States

, j = 1i

), x), y

74

APPROXIMATE POLICY ITERATION

ISSUES

75

THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max |J̃(i, rk)− J k (i)| ≤ δ, k = 0, 1, . . . µ
i

• If policy improvement is also approximate,

max |(T k+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ǫ, k = 0, 1, . . . µ
i

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

ǫ+ 2αδ
lim sup max J k (i)− J∗(i) ≤µ
k→∞ i (1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
J oscillate within a neighborhood of J∗

k .µ

• Oscillations are quite unpredictable.

− Some bad examples of oscillations have been
constructed.

− In practice oscillations between policies is
probably not the major concern.

76

()

THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula
tion by underrepresenting states that are unlikely
to occur under µ

• Cost-to-go estimates of underrepresented states
may be highly inaccurate

• This seriously impacts the improved policy µ

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela
tively small” (e.g., a deterministic system)

• Some remedies:

− Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

− Occasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy µ

− Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen
erate the transition sequence, the other is
used to generate the state sequence).

77

APPROXIMATING Q-FACTORS

• Given J̃(i; r), policy improvement requires a
model [knowledge of pij(u) for all controls u ∈
U(i)]

• Model-free alternative: Approximate Q-factors

n

Q̃(i, u; r) ≈ pij(u) g(i, u, j) + αJµ(j)
j=1

and use for policy improvement the minimization

˜µ(i) ∈ arg min Q(i, u; r)

u∈U(i)

• r is an adjustable parameter vector and Q̃(i, u; r)
is a parametric architecture, such as

s

Q̃(i, u; r) = rmφm(i, u)
m=1

• We can adapt any of the cost approximation

approaches, e.g., projected equations, aggregation

• Use the Markov chain with states (i, u), so
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to
other (j, u′)

• Major concern: Acutely diminished exploration

∑

∑

78

()

SOME GENERAL ISSUES

79

STOCHASTIC ALGORITHMS: GENERALITIES

• Consider solution of a linear equation x = b +
Ax by using m simulation samples b + wk and
A+Wk, k = 1, . . . ,m, where wk,Wk are random,
e.g., “simulation noise”

• Think of x = b + Ax as approximate policy
evaluation (projected or aggregation equations)

• Stoch. approx. (SA) approach: For k = 1, . . . ,m

xk+1 = (1− γk)xk + γk (b+ wk) + (A+ Wk)xk

• Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

m m
1 1

bm = (b+ wk), Am = (A+ Wk)
m m

k=1 k=1

Then solve x = bm + Amx by matrix inversion

xm = (1−Am)−1bm

or iteratively

• TD(λ) and Q-learning are SA methods

• LSTD(λ) and LSPE(λ) are MCE methods

(

∑ ∑

80

COSTS OR COST DIFFERENCES?

• Consider the exact policy improvement process.
To compare two controls u and u ′ at x, we need

E g(x, u, w)− g(x, u ′ , w) + α Jµ(x)− Jµ(x
′)

′ where x = f(x, u, w) and x = f(x, u ′ , w)

• Approximate Jµ(x) or

Dµ(x, x ′) = Jµ(x)− Jµ(x ′)?

• Approximating Dµ(x, x
′) avoids “noise differ

encing”. This can make a big difference

• Important point: Dµ satisfies a Bellman equa
tion for a system with “state” (x, x ′)

Dµ(x, x ′) = E Gµ(x, x ′ , w) + αDµ(x, x
′)

′ where x = f x, µ(x), w , x = f x′ , µ(x ′), w and

Gµ(x, x ′ , w) = g x, µ(x), w − g x ′ , µ(x ′), w

• Dµ can be “learned” by the standard methods
(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.

)}

)
{ }

(

x, µ(x), w
)

, x′ = f
(

x′, µ(x′), w
)

and

) = g
(

x, µ(x), w
)

− g
(

x′, µ(x′), w
)

81

AN EXAMPLE (FROM THE NDP TEXT)

• System and cost per stage:

xk+1 = xk + δuk, g(x, u) = δ(x2 + u2)

δ > 0 is very small; think of discretization of

continuous-time problem involving dx(t)/dt = u(t)

• Consider policy µ(x) = −2x. Its cost function
is

5x2
Jµ(x) = (1 + δ) +O(δ2)

4

and its Q-factor is

5x2 9x2 5
Qµ(x, u) = + δ + u2 + xu + O(δ2)

4 4 2

• The important part for policy improvement is

δ u2 +
5
xu

2

When Jµ(x) [or Qµ(x, u)] is approximated by
J̃µ(x; r) [or by Q̃µ(x, u; r)], it will be dominated

by 5x
2
and will be “lost” 4

82

6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Review of approximation in value space

• Approximate VI and PI

• Projected Bellman equations

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods

• Optimistic versions

• Multistep projected Bellman equations

• Bias-variance tradeoff

83

REVIEW

84

DISCOUNTED MDP

• System: Controlled Markov chain with states

i = 1, . . . , n, and finite control set U(i) at state i

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p j j(u)

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

N

()

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i0 = i
N→∞

k=0

with α ∈ [0, 1)

• Shorthand notation for DP mappings

n

()

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n,
u∈U(i)

j=1

n

()(())

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n

j=1

i j

pij(u)

p

pji(u)

85

“SHORTHAND” THEORY – A SUMMARY

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or

n
()

J∗(i) = min pij(u) g(i, u, j)+αJ∗(j) , ∀ i
u∈U(i)

j=1

n

()(())

Jµ(i) = pij	 µ(i) g i, µ(i), j + αJµ(j) , ∀ i
j=1

• Optimality	 condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

n
()

µ(i) ∈ arg min pij(u) g(i, u, j)+αJ∗(j) , ∀ i
u∈U(i)

j=1

∑

∑

∑

86

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim (T kJ)(i), ∀ i = 1, . . . , n
k→∞

•	 Policy iteration: Given µk

− Policy evaluation: Find J by solving kµ

n
()(())

Jµk (i) = pij µ
k(i) g i, µ

k(i), j +αJµk (j) , i = 1, . . . , n

j=1

or	 J = T kJ kkµ µ µ

− Policy improvement: Let µk+1 be such that

n

k+1
()

µ (i) ∈ arg min pij(u) g(i, u, j)+αJµk (j) , ∀ i
u∈U(i)

j=1

or	 T k+1 J = TJ kkµ µ µ

• Policy evaluation is equivalent to solving an
n × n linear system of equations

• For large n, exact PI is out of the question
(even though it terminates finitely)

∑

∑

87

APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r), where i is the current state and r = (r1, . . . , rs)
is a vector of “tunable” scalars weights

• Think n: HUGE, s: (Relatively) SMALL

• Many types of approximation architectures [i.e.,
parametric classes J̃(i; r)] to select from

• Any r ∈ ℜs defines a (suboptimal) one-step
lookahead policy

n
()

µ̃(i) = arg min pij(u) g(i, u, j)+αJ̃(j; r) , ∀ i
u∈U(i)

j=1

• We want to find a “good” r

• We will focus mostly on linear architectures

J̃(r) = Φr

where Φ is an n × s matrix whose columns are
viewed as basis functions

∑

88

Approximator
i Mapping Feature Vector

Approximator ()Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

LINEAR APPROXIMATION ARCHITECTURES

• We have

J̃(i; r) = φ(i)′ r, i = 1, . . . , n

where φ(i)′ , i = 1, . . . , n is the ith row of Φ, or
s

J̃(r) = Φr = Φjrj
j=1

where Φj is the jth column of Φ

State i Feature Extraction
Mapping Mapping

Feature Vector φ(i) Linear
Linear Cost

Approximator φ(i)′ r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}

spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc

• Instead of computing Jµ or J∗, which is huge-
dimensional, we compute the low-dimensional r =
(r1, . . . , rs) using low-dimensional calculations

∑

Approximator
i Mapping Feature Vector

Approximator ()Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

89

APPROXIMATE VALUE ITERATION

90

Set

Fitted Value Iteration

0

0

˜
1

1

˜
2

˜
2

Subspace S = {Φr | r ∈ ℜs}

APPROXIMATE (FITTED) VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
k = 1, 2, . . ., with J̃k(i; rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• Approximate (Fitted) Value Iteration: A se
quential “fit” to produce J̃k+1 from J̃k, i.e., J̃k+1 ≈
T J̃k or (for a single policy µ) J̃k+1 ≈ TµJ̃k

TJ0
T J̃1

T J̃2

˜

J0 J2 ˜
˜ J3J1

Fitted Value Iteration

• After a large enough number N of steps, J̃N (i; rN)
is used as approximation J̃(i; r) to J∗(i)

• Possibly use (approximate) projection Π with
respect to some projection norm,

J̃k+1 ≈ ΠT J̃k
91

WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

 n

()2
 IJIξ = ξi J(i) ,

i=1

where ξ = (ξ1, . . . , ξn) is a positive distribution
(ξi > 0 for all i).

• Let Π denote the projection operation onto

S = {Φr | r ∈ ℜs}

with respect to this norm, i.e., for any J ∈ ℜn,

ΠJ = Φr ∗

where
r ∗ = arg min IΦr − JI2

ξ
r∈ℜs

• Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(i) according to ξ and solving

k
()2

min φ(it)′ r − J(it)
r∈ℜs

t=1

∑

∑

92

FITTED VI - NAIVE IMPLEMENTATION

• Select/sample a “small” subset Ik of represen
tative states

• For each i ∈ Ik, given J̃k, compute

n
()

(T J̃k)(i) = min pij(u) g(i, u, j) + αJ̃k(j; r)
u∈U(i)

j=1

• “Fit” the function J̃k+1(i; rk+1) to the “small”
set of values (T J̃k)(i), i ∈ Ik (for example use
some form of approximate projection)

• Simulation can be used for “model-free” imple
mentation

• Error Bound: If the fit is uniformly accurate
within δ > 0, i.e.,

max |J̃k+1(i)− T J̃k(i)| ≤ δ,
i

then

() 2αδ
lim sup max J̃k(i, rk)− J∗(i) ≤

k→∞ i=1,...,n (1− α)2

• But there is a potential problem!

∑

93

� �

AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2 → 2

− Transition costs ≡ 0, so J∗(1) = J∗(2) = 0.

• Consider (exact) fitted VI scheme that approx

imates cost functions within S = (r, 2r) | r ∈ ℜ

1
with a weighted least squares fit; here Φ =

2

• Given J̃k = (rk, 2rk), we find J̃k+1 = (rk+1, 2rk+1),
where J̃k+1 = Πξ(T J̃k), with weights ξ = (ξ1, ξ2):

()2 ()2
rk+1 = argmin ξ1 r−(T J̃k)(1) +ξ2 2r−(T J̃k)(2)

r

• With straightforward calculation

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β (e.g., ξ1 = ξ2 = 1), the sequence
{rk} diverges and so does {J̃k}.

• Difficulty is that T is a contraction, but ΠξT

(= least squares fit composed with T) is not.
94

Set

Fitted Value Iteration

0

˜
1

˜
2

J

0

1̃

 2

Subspace S = {Φr | r ∈ ℜs}

� �

NORM MISMATCH PROBLEM

• For the method to converge, we need ΠξT to
be a contraction; the contraction property of T is
not enough

TJ0
T J̃1

T J̃2

˜ = Πξ(T ˜J2 J1)J0

˜ J̃3 = Πξ(T J̃2)
J1 = Πξ(TJ0)

Fitted Value Iteration with Projection

• We need a vector of weights ξ such that T is
a contraction with respect to the weighted Eu
clidean norm I · Iξ

• Then we can show that ΠξT is a contraction
with respect to I · Iξ

• We will come back to this issue

95

APPROXIMATE POLICY ITERATION

96

Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r)

SteadyState Distribution
Cost ()

Approximate Policy

Evaluation

Policy Improvement

APPROXIMATE PI

Generate “Improved” Policy µ

Initial Policy

J̃µ(i, r)
Evaluate Approximate Cost

• Evaluation of typical policy µ: Linear cost func
tion approximation J̃µ(r) = Φr, where Φ is full
rank n × s matrix with columns the basis func
tions, and ith row denoted φ(i)′ .

• Policy “improvement” to generate µ:
n

()

µ(i) = arg min pij(u) g(i, u, j) + αφ(j)′ r
u∈U(i)

j=1

• Error Bound (same as approximate VI): If

max |J̃ k(i, rk)− J k(i)| ≤ δ, k = 0, 1, . . . µ µ
i

the sequence {µk} satisfies

() 2αδ
lim sup max J k(i)− J∗(i) ≤µ

i (1− α)2
k→∞

∑

97

Set

=

Set

=

Direct Method: Projection of cost vector Π

µ

form of Bellman’s equation

Projection onIndirect Method: Solving a projected

cost vector

() () ()Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

0

POLICY EVALUATION

• Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

− Direct policy evaluation - Cost samples gen
erated by simulation, and optimization by
least squares

− Indirect policy evaluation - solving the pro
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

= Subspace S = {Φr | r ∈ ℜs}

0

Jµ

ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected
form of Bellman’s equation

Direct Method: Projection of
cost vector Jµ

• Recall that projection can be implemented by
simulation and least squares

98

Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r)

SteadyState Distribution
Cost ()

Approximate Policy

Evaluation

Policy Improvement

PI WITH INDIRECT POLICY EVALUATION

Generate “Improved” Policy µ

Initial Policy

J̃µ(i, r)
Evaluate Approximate Cost

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

with the projected equation solution J̃µ(r)

99

KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

N
1

ξj = lim P (ik = j | i0 = i) > 0
N→∞ N

k=1

Note that ξj is the long-term frequency of state j.

• Proposition: (Norm Matching Property) As
sume that the projection Π is with respect to I·Iξ,
where ξ = (ξ1, . . . , ξn) is the steady-state proba
bility vector. Then:

(a) ΠTµ is contraction of modulus α with re
spect to I · Iξ.

(b) The unique fixed point Φr ∗ of ΠTµ satisfies

1
IJµ − Φr ∗Iξ ≤ √ IJµ −ΠJµIξ

1− α2

∑

100

Set

r

�

J

Subspace S {Φr | r ∈ ℜs}

PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm I · Iξ. For all J ∈
ℜn, Φr ∈ S, the Pythagorean Theorem holds:

IJ − ΦrI
2

ξ
 =
 IJ −ΠJI
2

ξ
 + IΠJ − ΦrI
2

ξ

J

Φr ΠJ

=

• The Pythagorean Theorem implies that the pro
jection is nonexpansive, i.e.,

¯ ¯IΠJ −ΠJIξ ≤ IJ − J̄Iξ, for all J, J ∈ ℜn .

To see this, note that

2

2

2

 Π(J − J) ≤ Π(J − J) + (I −Π)(J − J)
ξ ξ ξ

= IJ − JI
2

ξ

101

PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

IPzIξ ≤ IzIξ, z ∈ ℜn

Proof: Let pij be the components of P . For all
z ∈ ℜn, we have

 2
n n n n

2IPzIξ
2 = ξi pijzj ≤ ξi pijzj

i=1 j=1 i=1 j=1

n n n

2 2= ξipijz = ξjz = IzIξ
2 ,j j

j=1 i=1 j=1

where the inequality follows from the convexity of

the quadratic function, and the next to last equal

 n
ity follows from the defining property ξipij = i=1
ξj of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ , we have

¯ ¯�ΠTµJ−ΠTµJ�ξ ≤ �TµJ−TµJ�ξ = α�P (J−J̄)�ξ ≤ α�J−J̄�ξ

¯for all J, J ∈ ℜn . Hence ΠTµ is a contraction of
modulus α.

∑ ∑ ∑ ∑

∑∑ ∑

102

PROOF OF ERROR BOUND

• Let Φr ∗ be the fixed point of ΠT . We have

1

IJµ − Φr ∗Iξ ≤ √ IJµ −ΠJµIξ.

1− α2

Proof: We have

2
IJµ − Φr ∗I2 = IJµ −ΠJµI2 + ΠJµ − Φr ∗ ξ ξ ξ

= IJµ −ΠJµI2 + ΠTJµ −ΠT (Φr ∗)ξ ξ

≤ IJµ −ΠJµI2 + α2IJµ − Φr ∗I2
ξ ,ξ

where

− The first equality uses the Pythagorean The
orem

− The second equality holds because Jµ is the
fixed point of T and Φr ∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.

2

∥

∥

∥

∥

∥

∥

∥

∥

103

SIMULATION-BASED SOLUTION OF

PROJECTED EQUATION

104

Set

=

r

MATRIX FORM OF PROJECTED EQUATION

Subspace S = {Φr | r ∈ ℜs}

0

Tµ(Φr)= g + αP Φr

Φr = ΠξTµ(Φr)

• The solution Φr ∗ satisfies the orthogonality con
dition: The error

Φr ∗ − (g + αPΦr ∗)

is “orthogonal” to the subspace spanned by the
columns of Φ.

• This is written as

()

Φ′Ξ Φr ∗ − (g + αPΦr ∗) = 0,

where Ξ is the diagonal matrix with the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• Equivalently, Cr∗ = d, where

C = Φ′Ξ(I − αP)Φ, d = Φ′Ξg

but computing C and d is HARD (high-dimensional
inner products).

105

SOLUTION OF PROJECTED EQUATION

• Solve Cr∗ = d by matrix inversion: r ∗ = C−1d

• Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r ∗ because ΠT is a contraction.

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projection
on S

• PVI can be written as:

2
rk+1 = arg min Φr − (g + αPΦrk) ξr∈ℜs

By setting to 0 the gradient with respect to r,

()

Φ′Ξ Φrk+1 − (g + αPΦrk) = 0,

which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)

∥

∥

∥

∥

106

SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi
mations based on k samples

Ck ≈ C, dk ≈ d

• Matrix inversion r ∗ = C−1d is approximated
by

C−1 r̂k = k dk

This is the LSTD (Least Squares Temporal Dif
ferences) Method.

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is
approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
Gk ≈ (Φ′ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua
tion) Method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).

107

SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating each transition (it, it+1), we
compute the row φ(it)′ of Φ and the cost compo
nent g(it, it+1).

• We form

k

dk =
1

φ(it)g(it, it+1) ≈ ξipijφ(i)g(i, j) = Φ ′ Ξg = d
k + 1

t=0 i,j

k
1 ()′

Ck = φ(it) φ(it)−αφ(it+1) ≈ Φ ′ Ξ(I−αP)Φ = C
k + 1

t=0

Also in the case of LSPE

k
1

Gk = φ(it)φ(it)′ ≈ Φ′ΞΦ
k + 1

t=0

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem
poral differences (this is just a matter of style)

∑ ∑

∑

∑

108

OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op
timistic methods often do)

• Very complex behavior (see the subsequent dis
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C matrix is
ill-conditioned

• LSPE tends to cope better because of its itera
tive nature (this is true of other iterative methods
as well)

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)

109

MULTISTEP PROJECTED EQUATIONS

110

MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa
tion J = T (λ)J , where for λ ∈ [0, 1),

∞

T (λ) λℓT ℓ+1 = (1− λ)
ℓ=0

Geometrically weighted sum of powers of T .

• Note that T ℓ is a contraction with modulus
αℓ, with respect to the weighted Euclidean norm
I·Iξ, where ξ is the steady-state probability vector
of the Markov chain.

• Hence T (λ) is a contraction with modulus

∞

α(1− λ)
αℓ+1λℓ =αλ = (1− λ)

1− αλ
ℓ=0

Note that αλ → 0 as λ → 1

• T ℓ and T (λ) have the same fixed point Jµ and

1
∗IJµ − ΦrλIξ ≤ � IJµ −ΠJµIξ

1− α2
λ

∗where Φr is the fixed point of ΠT (λ).λ

∗• The fixed point Φr depends on λ.
λ

∑

∑

111

Set

Slope

Simulation error

Simulation error

)

= 0 0

. Φ

Solution of

∗

BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ ℜs}

Jµ

Simulation error
ΠJµ

Bias

λ = 0

λ = 1

Solution of projected equation

Simulation error

Φr = ΠT (λ)(Φr)

Φr ∗
λ
:

∗ √ 1• Error bound IJµ−Φr Iξ ≤
1−α2

IJµ−ΠJµIξλ
λ

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
the quality of approximation) improves as λ ↑ 1.
In fact

∗lim Φr = ΠJµλ
λ↑1

• But the simulation noise in approximating
∞

T (λ) λℓT ℓ+1 = (1− λ)
ℓ=0

increases

• Choice of λ is usually based on trial and error

∑

112

MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

()

C(λ) = Φ′Ξ I − αP (λ) Φ, d(λ) = Φ′Ξg(λ),

with
∞ ∞

αℓλℓP ℓ+1 P (λ) = (1− λ) , g(λ) = αℓλℓP ℓg

ℓ=0 ℓ=0

• The LSTD(λ) method is
((λ))−1 (λ)
Ck dk ,

(λ) (λ)
where C and d are simulation-based approxk k

imations of C(λ) and d(λ).

• The LSPE(λ) method is

()(λ) (λ)
rk+1 = rk − γGk Ck rk − dk

where Gk is a simulation-based approx. to (Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].

∑ ∑

113

MORE ON MULTISTEP METHODS

(λ) (λ)
• The simulation process to obtain C and dk k

is similar to the case λ = 0 (single simulation tra
jectory i0, i1, . . ., more complex formulas)

k k
(λ) 1 ()′

C = φ(it) αm−tλm−t φ(im)−αφ(im+1)k k + 1
t=0 m=t

k k
1

d
(λ)

= φ(it) αm−tλm−tgimk k + 1
t=0 m=t

• In the context of approximate policy iteration,
we can use optimistic versions (few samples be
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:
(λ) (λ)

− As λ ↑ 1, Ck and dk contain more “sim
ulation noise”, so more samples are needed
for a close approximation of rλ (the solution
of the projected equation)

− The error bound IJµ−ΦrλIξ becomes smaller

− As λ ↑ 1, ΠT (λ) becomes a contraction for
arbitrary projection norm

∑ ∑

∑ ∑

114

6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Review of approximate PI based on projected
Bellman equations

• Issues of policy improvement

− Exploration enhancement in policy evalua
tion

− Oscillations in approximate PI

• Aggregation – An alternative to the projected
equation/Galerkin approach

• Examples of aggregation

• Simulation-based aggregation

• Relation between aggregation and projected
equations

115

REVIEW

116

DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p j j(u)

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

N

()

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i = i0
N→∞

k=0

with α ∈ [0, 1)

• Shorthand notation for DP mappings

n

()

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n,
u∈U(i)

j=1

n

()(())

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n

j=1

i j

117

Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r)

SteadyState Distribution
Cost ()

Approximate Policy

Evaluation

Policy Improvement

APPROXIMATE PI

Generate “Improved” Policy µ

Initial Policy

J̃µ(i, r)
Evaluate Approximate Cost

• Evaluation of typical policy µ: Linear cost func
tion approximation

J̃µ(r) = Φr

where Φ is full rank n × s matrix with columns
the basis functions, and ith row denoted φ(i)′ .

• Policy “improvement” to generate µ:
n

()

µ(i) = arg min pij(u) g(i, u, j) + αφ(j)′ r
u∈U(i)

j=1

∑

118

Set

Slope

Simulation error

Simulation error

)

= 0 0

. Φ

Solution of

∗

EVALUATION BY PROJECTED EQUATIONS

• Approximate policy evaluation by solving

Φr = ΠTµ(Φr)

Π: weighted Euclidean projection; special nature

of the steady-state distribution weighting.

• Implementation by simulation (single long tra
jectory using current policy - important to make
ΠTµ a contraction). LSTD, LSPE methods.

(λ)
• Multistep option: Solve Φr = ΠTµ (Φr) with

∞

(λ)
λℓT ℓ+1 Tµ = (1− λ) µ , 0 ≤ λ < 1

ℓ=0
(λ)

− As λ ↑ 1, ΠTµ becomes a contraction for
any projection norm (allows changes in Π)

− Bias-variance tradeoff

Subspace S = {Φr | r ∈ ℜs}

Jµ

Simulation error
ΠJµ

Bias

λ = 0

λ = 1

Solution of projected equation

Simulation error

Φr = ΠT (λ)(Φr)

∑

119

ISSUES OF POLICY IMPROVEMENT

120

EXPLORATION

• 1st major issue: exploration. To evaluate µ,
we need to generate cost samples using µ

• This biases the simulation by underrepresenting
states that are unlikely to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate,
and seriously impact the “improved policy” µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela
tively small” (e.g., a deterministic system).

• To deal with this we must change the sampling

mechanism and modify the simulation formulas.

• Solve
Φr = ΠTµ(Φr)

where Π is projection with respect to an exploration-
enhanced norm [uses a weight distribution ζ =
(ζ1, . . . , ζn)].

• ζ is more “balanced” than ξ the steady-state
distribution of the Markov chain of µ.

• This also addresses any lack of ergodicity of µ.

121

EXPLORATION MECHANISMS

• One possibility: Use multiple short simulation
trajectories instead of single long trajectory start
ing from a rich mixture of states. This is known
as geometric sampling, or free-form sampling.

− By properly choosing the starting states, we
enhance exploration

− The simulation formulas for LSTD(λ) and
LSPE(λ) have to be modified to yield the so

(λ)
lution of Φr = ΠTµ (Φr) (see the DP text)

• Another possibility: Use a modified policy to
generate a single long trajectory. This is called an
off-policy approach.

− Modify the transition probabilities of µ to
enhance exploration

− Again the simulation formulas for LSTD(λ)
and LSPE(λ) have to be modified to yield

(λ)
the solution of Φr = ΠTµ (Φr) (use of im
portance sampling; see the DP text)

• With larger values of λ > 0 the contraction

(λ)

property of ΠTµ is maintained.

(λ)
• LSTD may be used without ΠTµ being a con
traction ... LSPE and TD require a contraction.

122

k

+1

+2

+2

� �

POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition of the space
of weights r: Rµ is the set of parameter vectors r
for which µ is greedy with respect to J̃(·; r) = Φr

Rµ = r | Tµ(Φr) = T (Φr) ∀ µ

If we use r in Rµ the next “improved” policy is µ

r µ k

r µ k+1

r µ k+2

r µ k+3

R µ k

R µ k+1

R µ k+2

R µ k+3

• If policy evaluation is exact, there is a finite
number of possible vectors rµ, (one per µ)

• The algorithm ends up repeating some cycle of
policies µk, µk+1 , . . . , µk+m with

r k ∈ R k+1 , r ∈ R k+2 , . . . , r k+m ∈ Rk+1 kµ µ µ µ µ µ

• Many different cycles are possible
123

1

2

2

MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a dif
ferent picture holds (policy evaluation does not
produce exactly rµ)

r µ 1

r µ 2

r µ 3

R µ 1

R µ 2

R µ 3

• Oscillations of weight vector r are less violent,
but the “limit” point is meaningless!

• Fundamentally, oscillations are due to the lack

of monotonicity of the projection operator, i.e.,

′ ′J ≤ J does not imply ΠJ ≤ ΠJ .

• If approximate PI uses an evaluation of the form

Φr = (WTµ)(Φr)

with W : monotone and WTµ: contraction, the
policies converge (to a possibly nonoptimal limit).

• These conditions hold when aggregation is used

124

AGGREGATION

125

PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
J∗ or Jµ with the cost-to-go functions of a simpler
problem.

• Aggregation is a systematic approach for prob
lem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

−	 Solve (exactly or approximately) the “ag
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

• If R̂(y) is the optimal cost of aggregate state y,
we use the approximation

J∗(j) ≈ φjy R̂(y), ∀ j
y

where φjy are the aggregation probabilities, en
coding the “degree of membership of j in the ag
gregate state y”

• This is a linear architecture: φjy are the features
of state j

∑

126

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

HARD AGGREGATION EXAMPLE

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y (piecewise constant approx).

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• What should be the “aggregate” transition probs.
out of x?

• Select i ∈ x and use the transition probs. of i.
But which i should I use?

• The simplest possibility is to assume that all
states i in x are equally likely.

• A generalization is to randomize, i.e., use “dis
aggregation probabilities” dxi: Roughly, the “de
gree to which i is representative of x.”

127

according to with cost

S

, = 1

),),

System States Aggregate States

�

Original Aggregate States

�

|

Original System States

Probabilities

�

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

�

Aggregation

Disaggregation Probabilities

Matrix D

pij(u),
ji

x y

AGGREGATION/DISAGGREGATION PROBS

dxi φjy Q

Original
System States

Aggregate States

Disaggregation
Probabilities

Aggregation
Probabilities

Matrix D Matrix Φ

• Define the aggregate system transition proba
bilities via two (somewhat arbitrary) choices.

• For each original system state j and aggregate
state y, the aggregation probability φjy

− Roughly, the “degree of membership of j in
the aggregate state y.”

− In hard aggregation, φjy = 1 if state j be
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− Roughly, the “degree to which i is represen
tative of x.”

• Aggregation scheme is defined by the two ma
trices D and Φ. The rows of D and Φ must be
probability distributions.

according to pij(u), with cost
, j = 1i

), x), y

128

according to with cost

S

, = 1

),),

System States Aggregate States

Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

AGGREGATE SYSTEM DESCRIPTION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• The transition probability from aggregate state
x to aggregate state y under control u

n n

ˆp̂xy(u) = dxi pij(u)φjy, or P (u) = DP (u)Φ
i=1 j=1

where the rows of D and Φ are the disaggregation
and aggregation probs.

• The expected transition cost is

n n

ĝ(x, u) = dxi pij(u)g(i, u, j), or ĝ = DP (u)g
i=1 j=1

∑ ∑

∑ ∑

according to pij(u), with cost

S

, j = 1i

), x), y

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States

129

according to with cost

S

, = 1

),),

System States Aggregate States
Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation ProbabilitiesAggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

� �

AGGREGATE BELLMAN’S EQUATION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• The optimal cost function of the aggregate prob
lem, denoted R̂, is

R̂(x) = min ĝ(x, u) + α p̂xy(u)R̂(y) , ∀ x
u∈U

y

Bellman’s equation for the aggregate problem.

• The optimal cost function J∗ of the original
problem is approximated by J̃ given by

˜ ˆJ(j) = φjy R(y), ∀ j
y

according to with cost

S

, = 1

),),

System States Aggregate States

{

Original Aggregate States

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

Matrix Matrix

∑

∑

according to pij(u), with cost
, j = 1i

), x), y

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States

130

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y.

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• Disaggregation probs.: There are many possi
bilities, e.g., all states i within aggregate state x
have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).

131

Special Aggregate States Features
)

Special States FeaturesSpecial States Aggregate States

Feature Extraction Mapping Vector
Feature Mapping Feature Vector

States Aggregate StatesFeatures

Feature
Extraction

EXAMPLE II: FEATURE-BASED AGGREGATION

• Important question: How do we group states
together?

• If we know good features, it makes sense to

group together states that have “similar features”

• A general approach for passing from a feature-
based state representation to a hard aggregation-
based architecture

• Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

• Aggregation-based architecture is more power
ful (it is nonlinear in the features)

• ... but may require many more aggregate states
to reach the same level of performance as the cor
responding linear feature-based architecture

132

j

x j1

j2

x

j3 1

2

y3

EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

x

j2

j3

j1

y1 y2

y3

Original State Space

Representative/Aggregate States

• Disaggregation probabilities are dxi = 1 if i is
equal to representative state x.

• Aggregation probabilities associate original sys
tem states with convex combinations of represen
tative states

j ∼ φjyy

y∈A

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in
cluding belief space of POMDP

∑

133

y3

0 1 2 49

Small cost

Small costij

ij

Aggregate States/Subsets
0 1 2 49

φ

φ

EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty subsets
of original system states. Common case: Each Sx

is a group of states with “similar features”

Original State Space

Aggregate States/Subsets

Sx1 Sx2

Sx3

j

j
i

pij

pij

φjx1

φjx2

φjx3

• Restrictions:

− The aggregate states/subsets are disjoint.

− The disaggregation probabilities satisfy dxi >

0 if and only if i ∈ x.

− The aggregation probabilities satisfy φjy = 1
for all j ∈ y.

• Hard aggregation is a special case: ∪xSx =
{1, . . . , n}

• Aggregation with representative states is a spe
cial case: Sx consists of just one state

134

according to with cost

S

, = 1

),),

System States Aggregate States
Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation ProbabilitiesAggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

APPROXIMATE PI BY AGGREGATION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• Consider approximate PI for the original prob
lem, with policy evaluation done by aggregation.

• Evaluation of policy µ: J̃ = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states for µ). Can be done by simulation.

• Looks like projected equation ΦR = ΠTµ(ΦR)
(but with ΦD in place of Π).

• Advantage: It has no problem with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions.

according to pij(u), with cost
, j = 1i

), x), y

{

Original System States Aggregate States

{

|

Original System States Aggregate States

, g(i, u, j)
Matrix Matrix

135

ADDITIONAL ISSUES OF AGGREGATION

136

according to with cost

S

, = 1

),),

System States Aggregate States

�

Original Aggregate States

�

|

Original System States

Probabilities

�

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

�

Aggregation

Disaggregation Probabilities

Matrix D

pij(u),
ji

x y

ALTERNATIVE POLICY ITERATION

• The preceding PI method uses policies that as
sign a control to each aggregate state.

• An alternative is to use PI for the combined
system, involving the Bellman equations:

n

R∗(x) = dxi J̃0(i), ∀ x,
i=1

n
()

J̃0(i) = min pij(u) g(i, u, j)+αJ̃1(j) , i = 1, . . . , n,
u∈U(i)

j=1

J̃1(j) = φjyR∗(y), j = 1, . . . , n.

y∈A

dxi φjy Q

Original
System States

Aggregate States

Disaggregation
Probabilities

Aggregation
Probabilities

Matrix D Matrix Φ

• Simulation-based PI and VI are still possible.

∑

∑

,

∑

according to pij(u), with cost

S

, j = 1i

), x), y

System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

Matrix D

137

RELATION OF AGGREGATION/PROJECTION

• Compare aggregation and projected equations

ΦR = ΦDT (ΦR), Φr = ΠT (Φr)

• If ΦD is a projection (with respect to some
weighted Euclidean norm), then the methodology
of projected equations applies to aggregation

• Hard aggregation case: ΦD can be verified to be
projection with respect to weights ξi proportional
to the disaggregation probabilities dxi

• Aggregation with representative features case:
ΦD can be verified to be a semi-norm projection
with respect to weights ξi proportional to dxi

• A (weighted) Euclidean semi-norm is defined by

L
()2nIJIξ = ξi J(i) , where ξ = (ξ1, . . . , ξn), i=1

with ξi≥ 0.

• If Φ′ΞΦ is invertible, the entire theory and
algorithms of projected equations generalizes to
semi-norm projected equations [including multi
step methods such as LSTD/LSPE/TD(λ)].

• Reference: Yu and Bertsekas, “Weighted Bell
man Equations and their Applications in Approxi
mate Dynamic Programming,” MIT Report, 2012.

138

DISTRIBUTED AGGREGATION I

• We consider decomposition/distributed solu
tion of large-scale discounted DP problems by hard
aggregation.

• Partition the original system states into subsets
S1, . . . , Sm.

• Distributed VI Scheme: Each subset Sℓ

− Maintains detailed/exact local costs

J(i) for every original system state i ∈ Sℓ

using aggregate costs of other subsets
L

− Maintains an aggregate cost R(ℓ) = i∈Sℓ
dℓiJ(i)

− Sends R(ℓ) to other aggregate states

• J(i) and R(ℓ) are updated by VI according to

Jk+1(i) = min Hℓ(i, u, Jk, Rk), ∀ i ∈ Sℓ
u∈U(i)

with Rk being the vector of R(ℓ) at time k, and

n

Hℓ(i, u, J, R) = pij(u)g(i, u, j) + α pij(u)J(j)

j=1 j∈Sℓ

+ α pij(u)R(ℓ ′)

j∈Sℓ ′ , ℓ′=� ℓ

∑ ∑

∑

′ 6

139

DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it
converges to the unique solution of the system of
equations in (J,R)

J(i) = min Hℓ(i, u, J,R), R(ℓ) = dℓiJ(i),
u∈U(i)

i∈Sℓ

∀ i ∈ Sℓ, ℓ = 1, . . . ,m.

• This follows from the fact that {dℓi | i =
1, . . . , n} is a probability distribution.

• View these equations as a set of Bellman equa
tions for an “aggregate” DP problem. The differ
ence is that the mapping H involves J(j) rather

()

than R x(j) for j ∈ Sℓ.

• In an asynchronous version of the method, the
aggregate costs R(ℓ) may be outdated to account
for communication “delays” between aggregate states.

• Convergence can be shown using the general

theory of asynchronous distributed computation,

briefly described in the 2nd lecture (see the text).

∑

140

6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Review of Q-factors and Bellman equations for
Q-factors

• VI and PI for Q-factors

• Q-learning - Combination of VI and sampling

• Q-learning and cost function approximation

• Adaptive dynamic programming

• Approximation in policy space

• Additional topics

141

REVIEW

142

DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p j j(u)

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

N

()
Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i = i0

N→∞
k=0

with α ∈ [0, 1)

• Shorthand notation for DP mappings

n

()

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n,
u∈U(i)

j=1

n

()(())
(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n

j=1

i j

143

BELLMAN EQUATIONS FOR Q-FACTORS

• The optimal Q-factors are defined by

n
()

Q∗(i, u) = pij(u) g(i, u, j) +αJ∗(j) , ∀ (i, u)
j=1

∗• Since J = TJ∗, we have J∗(i) = minu∈U(i) Q∗(i, u)
so the optimal Q-factors solve the equation

n � �

Q∗(i, u) = pij(u) g(i, u, j) + α min Q∗(j, u′)
′ u ∈U(j)

j=1

• Equivalently Q∗ = FQ∗, where

n � �

(FQ)(i, u) = pij(u) g(i, u, j) + α min Q(j, u′)
′ u ∈U(j)

j=1

• This is Bellman’s Eq. for a system whose states
are the pairs (i, u)

• Similar mapping Fµ and Bellman equation for
a policy µ: Qµ = FµQµ

∑

∑

∑

144

)

StateControl Pairs States

) States p

j

)

v

j)

Case (

BELLMAN EQ FOR Q-FACTORS OF A POLICY

States

(i, u)

j

pij (u)

g(i, u, j)

µ(j)

�
j, µ(j)

�

StateControl Pairs: Fixed Policy µ

• Q-factors of a policy µ: For all (i, u)

n
(())

Qµ(i, u) = pij(u) g(i, u, j) + αQµ j, µ(j)

j=1

Equivalently Qµ = FµQµ, where
n

(())
(FµQ)(i, u) = pij(u) g(i, u, j) + αQ j, µ(j)

j=1

• This is a linear equation. It can be used for
policy evaluation.

• Generally VI and PI can be carried out in terms
of Q-factors.

• When done exactly they produce results that
are mathematically equivalent to cost-based VI
and PI.

)

State-Control Pairs States

) States p

j

)

v

j)

Case (

∑

∑

145

WHAT IS GOOD AND BAD ABOUT Q-FACTORS

• All the exact theory and algorithms for costs
applies to Q-factors

− Bellman’s equations, contractions, optimal
ity conditions, convergence of VI and PI

• All the approximate theory and algorithms for
costs applies to Q-factors

− Projected equations, sampling and exploration
issues, oscillations, aggregation

• A MODEL-FREE (on-line) controller imple
mentation

− Once we calculate Q∗(i, u) for all (i, u),

µ ∗(i) = arg min Q∗(i, u), ∀ i
u∈U(i)

− Similarly, once we calculate a parametric ap
proximation Q̃(i, u; r) for all (i, u),

˜µ̃(i) = arg min Q(i, u; r), ∀ i
u∈U(i)

• The main bad thing: Greater dimension and
more storage! (It can be used for large-scale prob
lems only through aggregation, or other approxi
mation.) 146

Q-LEARNING

147

� �

�	 �

Q-LEARNING

• In addition to the approximate PI methods
adapted for Q-factors, there is an important addi
tional algorithm:

−	 Q-learning, a sampled form of VI (a stochas
tic iterative algorithm).

• Q-learning algorithm (in its classical form):

− Sampling: Select sequence of pairs (ik, uk)
[use any probabilistic mechanism for this,
but all (i, u) are chosen infinitely often].

−	 Iteration: For each k, select jk according to

pik j(uk). Update just Q(ik, uk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+	 γk g(ik, uk, jk) + α min Qk(jk, u ′)
u ′ ∈U(jk)

Leave unchanged all other Q-factors.

− Stepsize conditions: γk ↓ 0

•	 We move Q(i, u) in the direction of a sample of

n

(FQ)(i, u) = pij(u) g(i, u, j) + α min Q(j, u ′)
′ u ∈U(j)

j=1

∑

()

148

� �

NOTES AND QUESTIONS ABOUT Q-LEARNING

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk g(ik, uk, jk) + α min Qk(jk, u ′)
′ u ∈U(jk)

• Model free implementation. We just need a
simulator that given (i, u) produces next state j
and cost g(i, u, j)

• Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method. (Connection with asynchronous
algorithms.)

• Aims to find the (exactly) optimal Q-factors.

• Why does it converge to Q∗?

• Why can’t I use a similar algorithm for optimal
costs (a sampled version of VI)?

• Important mathematical (fine) point: In the Q-
factor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

n
()

J∗(i) = min pij(u) g(i, u, j) + αJ∗(j)
u∈U(i)

j=1

()

∑

149

� �

CONVERGENCE ASPECTS OF Q-LEARNING

• Q-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

• The proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo
rithms.

• Uses the fact that the Q-learning map F :

(FQ)(i, u) = Ej g(i, u, j) + αmin Q(j, u′)
u ′

is a sup-norm contraction.

• Generic stochastic approximation algorithm:

− Consider generic fixed point problem involv
ing an expectation:

{ }
x = Ew f(x,w)

{ }

− Assume Ew f(x,w) is a contraction with
respect to some norm, so the iteration

{ }
xk+1 = Ew f(xk, w)

converges to the unique fixed point
{ }

− Approximate Ew f(x,w) by sampling
150

STOCH. APPROX. CONVERGENCE IDEAS

• Generate a sequence of samples {w1, w2, . . .},
and approximate the convergent fixed point iter

{ }

ation xk+1 = Ew f(xk, w)

• At each iteration k use the approximation

k
1 { }

xk+1 = f(xk, wt) ≈ Ew f(xk, w)
k

t=1

• Amajor flaw: it requires, for each k, the compu
tation of f(xk, wt) for all values wt, t = 1, . . . , k.

• This motivates the more convenient iteration

k
1

xk+1 = f(xt, wt), k = 1, 2, . . . ,
k

t=1
that is similar, but requires much less computa
tion; it needs only one value of f per sample wt.

• By denoting γk = 1/k, it can also be written as

xk+1 = (1− γk)xk + γkf(xk, wk), k = 1, 2, . . .

• Compare with Q-learning, where the fixed point
problem is Q = FQ

{ }

(FQ)(i, u) = Ej g(i, u, j) + αmin Q(j, u′)
′ u

∑

∑

151

� �

Q-LEARNING COMBINED WITH OPTIMISTIC PI

• Each Q-learning iteration requires minimization
over all controls u ′ ∈ U(jk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk g(ik, uk, jk) + α min Qk(jk, u ′)
′ u ∈U(jk)

• To reduce this overhead we may consider re
placing the minimization by a simpler operation
using just the “current policy” µk

• This suggests an asynchronous sampled version
of the optimistic PI algorithm which policy eval
uates by

mkQk+1 = F
µk Qk,

and policy improves by µ k+1(i) ∈ arg minu∈U(i) Qk+1(i, u)

• This turns out not to work (counterexamples
by Williams and Baird, which date to 1993), but
a simple modification of the algorithm is valid

• See a series of papers starting with
D. Bertsekas and H. Yu, “Q-Learning and En
hanced Policy Iteration in Discounted Dynamic
Programming,” Math. of OR, Vol. 37, 2012, pp.
66-94

()

152

Q-FACTOR APPROXIMATIONS

• We introduce basis function approximation:

Q̃(i, u; r) = φ(i, u)′ r

• We can use approximate policy iteration and
LSTD/LSPE for policy evaluation

• Optimistic policy iteration methods are fre
quently used on a heuristic basis

• An extreme example: Generate trajectory {(ik, uk) |
k = 0, 1, . . .} as follows.

• At iteration k, given rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using the

transition probabilities pikj(uk).

(2) Generate control uk+1 from

˜uk+1 = arg min Q(ik+1, u, rk)
u∈U(ik+1)

(3) Update the parameter vector via

rk+1 = rk − (LSPE or TD-like correction)

• Complex behavior, unclear validity (oscilla
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)

153

BELLMAN EQUATION ERROR APPROACH

• Another model-free approach for approximate
evaluation of policy µ: Approximate Qµ(i, u) with
Q̃µ(i, u; rµ) = φ(i, u)′ rµ, obtained from

 2
 rµ ∈ argmin Φr − Fµ(Φr) ξr

where I · Iξ is Euclidean norm, weighted with re
spect to some distribution ξ.

• Implementation for deterministic problems:

(1) Generate a large set of sample pairs (ik, uk),
and corresponding deterministic costs g(ik, uk)

()

and transitions jk, µ(jk) (a simulator may
be used for this).

(2) Solve the linear least squares problem:

(()′)
2

min

φ(ik, uk)′ r − g(ik, uk) + αφ jk, µ(jk) r

r

(ik ,uk)

• For stochastic problems a similar (more com
plex) least squares approach works. It is closely

related to LSTD (but less attractive; see the text).

• Because this approach is model-free, it is often
used as the basis for adaptive control of systems
with unknown dynamics.

∑

154

ADAPTIVE CONTROL BASED ON ADP

155

� �

LINEAR-QUADRATIC PROBLEM

• System: xk+1 = Axk+Buk, xk ∈ ℜn , uk ∈ ℜm

�

∞ ′ ′• Cost: (x Qxk + u Ruk), Q ≥ 0, R > 0k=0 k k

• Optimal policy is linear: µ ∗(x) = Lx

• The Q-factor of each linear policy µ is quadratic:

x
Qµ(x, u) = (x ′ u ′)Kµ (∗)

u

• We will consider A and B unknown

• We represent Q-factors using as basis func
tions all the quadratic functions involving state
and control components

xixj , uiuj , xiuj , ∀ i, j

These are the “rows” φ(x, u)′ of Φ

• The Q-factor Qµ of a linear policy µ can be ex
actly represented within the approximation sub-
space:

Qµ(x, u) = φ(x, u)′ rµ

where rµ consists of the components of Kµ in (*)

()

156

PI FOR LINEAR-QUADRATIC PROBLEM

• Policy evaluation: rµ is found by the Bellman
error approach

(()′) 2

min φ(xk, uk)
′
r − x

′
kQxk + u ′ kRuk + φ xk+1, µ(xk+1) r

r
(xk ,uk)

where (xk, uk, xk+1) are many samples generated
by the system or a simulator of the system.

• Policy improvement:

()

µ(x) ∈ argmin φ(x, u)′ rµ
u

• Knowledge of A and B is not required

• If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

• The basic idea of this example has been gener
alized and forms the starting point of the field of

adaptive dynamic programming

• This field deals with adaptive control of continuous-
space, (possibly nonlinear) dynamic systems, in
both discrete and continuous time

∑

∣

∣

∣

∣

∣

∣

157

APPROXIMATION IN POLICY SPACE

158

APPROXIMATION IN POLICY SPACE

• We parametrize policies by a vector r = (r1, . . . , rs)
(an approximation architecture for policies).

{ }

• Each policy µ̃(r) = µ̃(i; r) | i = 1, . . . , n
defines a cost vector Jµ̃(r) (a function of r).

• We optimize some measure of Jµ̃(r) over r.

• For example, use a random search, gradient, or
other method to minimize over r

n

ξiJµ̃(r)(i),
i=1

where ξ1, . . . , ξn are some state-dependent weights.

• An important special case: Introduce cost ap
proximation architecture V (i; r) that defines indi
rectly the parametrization of the policies

n
()

µ̃(i; r) = arg min pij(u) g(i, u, j)+αV (j; r) , ∀ i
u∈U(i)

j=1

• This introduces state features into approxima
tion in policy space.

• A policy approximator is called an actor, while a
cost approximator is also called a critic. An actor
and a critic may coexist.

∑

∑

159

APPROXIMATION IN POLICY SPACE METHODS

• Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

− At a given point/r they generate a random
collection of neighboring r. They search within
the neighborhood for better points.

− Many variations (the cross entropy method
is one).

− They are very broadly applicable (to discrete
and continuous search spaces).

− They are idiosynchratic.

• Gradient-type methods (known as policy gra
dient methods) also have been used extensively.

− They move along the gradient with respect
to r of

n

ξiJµ̃(r)(i)
i=1

− There are explicit gradient formulas which
can be approximated by simulation.

− Policy gradient methods generally suffer by
slow convergence, local minima, and exces
sive simulation noise.

∑

160

� �

COMBINATION WITH APPROXIMATE PI

• Another possibility is to try to implement PI
within the class of parametrized policies.

• Given a policy/actor µ(i; rk), we evaluate it
(perhaps approximately) with a critic that pro
duces J̃µ, using some policy evaluation method.

• We then consider the policy improvement phase

n
()

µ(i) ∈ argmin pij(u) g(i, u, j) + αJ̃µ(j) , ∀ i
u

j=1

and do it approximately via parametric optimiza
tion

n n
() ()

min ξi pij µ(i; r) g i, µ(i; r), j +αJ̃µ(j)
r

i=1 j=1

where ξi are some weights.

• This can be attempted by a gradient-type method
in the space of the parameter vector r.

•

• Many unresolved theoretical issues, particularly
for stochastic problems.

∑

∑ ∑

()

161

• Schemes like this have been extensively applied
to continuous-space deterministic problems.

FINAL WORDS

162

TOPICS THAT WE HAVE NOT COVERED

• Extensions to discounted semi-Markov, stochas
tic shortest path problems, average cost problems,
sequential games ...

• Extensions to continuous-space problems

• Extensions to continuous-time problems

• Adaptive DP - Continuous-time deterministic
optimal control. Approximation of cost function
derivatives or cost function differences

• Random search methods for approximate policy
evaluation or approximation in policy space

• Basis function adaptation (automatic genera
tion of basis functions, optimal selection of basis
functions within a parametric class)

• Simulation-based methods for general linear
problems, i.e., solution of linear equations, linear
least squares, etc - Monte-Carlo linear algebra

163

CONCLUDING REMARKS

• There is no clear winner among ADP methods

• There is interesting theory in all types of meth
ods (which, however, does not provide ironclad
performance guarantees)

• There are major flaws in all methods:

− Oscillations and exploration issues in approx
imate PI with projected equations

− Restrictions on the approximation architec
ture in approximate PI with aggregation

− Flakiness of optimization in policy space ap
proximation

• Yet these methods have impressive successes
to show with enormously complex problems, for
which there is often no alternative methodology

• There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

• Theoretical understanding is important and
nontrivial

• Practice is an art and a challenge to our cre
ativity! 164

THANK YOU

165

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

