APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

- Review of discounted problem theory
- Review of shorthand notation
- Algorithms for discounted DP
- Value iteration
- Various forms of policy iteration
- Optimistic policy iteration
- Q-factors and Q-learning
- Other DP models - Continuous space and time
- A more abstract view of DP
- Asynchronous algorithms

DISCOUNTED PROBLEMS/BOUNDED COST

- Stationary system with arbitrary state space

$$
x_{k+1}=f\left(x_{k}, u_{k}, w_{k}\right), \quad k=0,1, \ldots
$$

- Cost of a policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$
$J_{\pi}\left(x_{0}\right)=\lim _{N \rightarrow \infty} \underset{\substack{w_{k} \\ k=0,1, \ldots}}{E}\left\{\sum_{k=0}^{N-1} \alpha^{k} g\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}$
with $\alpha<1$, and for some M, we have $|g(x, u, w)| \leq$ M for all (x, u, w)
- Shorthand notation for DP mappings (operate on functions of state to produce other functions)
$(T J)(x)=\min _{u \in U(x)} \underset{w}{E}\{g(x, u, w)+\alpha J(f(x, u, w))\}, \forall x$
$T J$ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ.
- For any stationary policy μ

$$
\left(T_{\mu} J\right)(x)=\underset{w}{E}\{g(x, \mu(x), w)+\alpha J(f(x, \mu(x), w))\}, \forall x
$$

"SHORTHAND" THEORY - A SUMMARY

- Bellman's equation: $J^{*}=T J^{*}, J_{\mu}=T_{\mu} J_{\mu}$ or

$$
\begin{aligned}
J^{*}(x) & =\min _{u \in U(x)} \underset{w}{E}\left\{g(x, u, w)+\alpha J^{*}(f(x, u, w))\right\}, \forall x \\
J_{\mu}(x) & =\underset{w}{E}\left\{g(x, \mu(x), w)+\alpha J_{\mu}(f(x, \mu(x), w))\right\}, \forall x
\end{aligned}
$$

- Optimality condition:
$\mu:$ optimal $<==>\quad T_{\mu} J^{*}=T J^{*}$
i.e.,
$\mu(x) \in \arg \min _{u \in U(x)} \underset{w}{E}\left\{g(x, u, w)+\alpha J^{*}(f(x, u, w))\right\}, \forall x$
- Value iteration: For any (bounded) J

$$
J^{*}(x)=\lim _{k \rightarrow \infty}\left(T^{k} J\right)(x), \quad \forall x
$$

- Policy iteration: Given μ^{k},
- Find $J_{\mu^{k}}$ from $J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}}$ (policy evaluation); then
- Find μ^{k+1} such that $T_{\mu^{k+1}} J_{\mu^{k}}=T J_{\mu^{k}}$ (policy improvement) ${ }_{3}$

MAJOR PROPERTIES

- Monotonicity property: For any functions J and J^{\prime} on the state space X such that $J(x) \leq J^{\prime}(x)$ for all $x \in X$, and any μ

$$
(T J)(x) \leq\left(T J^{\prime}\right)(x), \quad\left(T_{\mu} J\right)(x) \leq\left(T_{\mu} J^{\prime}\right)(x), \quad \forall x \in X
$$

- Contraction property: For any bounded functions J and J^{\prime}, and any μ,

$$
\max _{x}\left|(T J)(x)-\left(T J^{\prime}\right)(x)\right| \leq \alpha \max _{x}\left|J(x)-J^{\prime}(x)\right|,
$$

$$
\max _{x}\left|\left(T_{\mu} J\right)(x)-\left(T_{\mu} J^{\prime}\right)(x)\right| \leq \alpha \max _{x}\left|J(x)-J^{\prime}(x)\right|
$$

- Compact Contraction Notation:

$$
\left\|T J-T J^{\prime}\right\| \leq \alpha\left\|J-J^{\prime}\right\|, \quad\left\|T_{\mu} J-T_{\mu} J^{\prime}\right\| \leq \alpha\left\|J-J^{\prime}\right\|,
$$

where for any bounded function J, we denote by $\|J\|$ the sup-norm

$$
\|J\|=\max _{x}|J(x)|
$$

THE TWO MAIN ALGORITHMS: VI AND PI

- Value iteration: For any (bounded) J

$$
J^{*}(x)=\lim _{k \rightarrow \infty}\left(T^{k} J\right)(x), \quad \forall x
$$

- Policy iteration: Given μ^{k}
- Policy evaluation: Find $J_{\mu^{k}}$ by solving

$$
\begin{aligned}
& J_{\mu^{k}}(x)=\underset{w}{E}\left\{g\left(x, \mu^{k}(x), w\right)+\alpha J_{\mu^{k}}\left(f\left(x, \mu^{k}(x), w\right)\right)\right\}, \forall x \\
& \quad \text { or } J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}}
\end{aligned}
$$

- Policy improvement: Let μ^{k+1} be such that

$$
\mu^{k+1}(x) \in \arg \min _{u \in U(x)} \underset{w}{E}\left\{g(x, u, w)+\alpha J_{\mu^{k}}(f(x, u, w))\right\}, \forall x
$$

$$
\text { or } T_{\mu^{k+1}} J_{\mu^{k}}=T J_{\mu^{k}}
$$

- For the case of n states, policy evaluation is equivalent to solving an $n \times n$ linear system of equations: $J_{\mu}=g_{\mu}+\alpha P_{\mu} J_{\mu}$
- For large n, exact PI is out of the question (even though it terminates finitely as we will show)

JUSTIFICATION OF POLICY ITERATION

- We can show that $J_{\mu^{k}} \geq J_{\mu^{k+1}}$ for all k
- Proof: For given k, we have

$$
J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}} \geq T J_{\mu^{k}}=T_{\mu^{k+1}} J_{\mu^{k}}
$$

Using the monotonicity property of DP,

$$
J_{\mu^{k}} \geq T_{\mu^{k+1}} J_{\mu^{k}} \geq T_{\mu^{k+1}}^{2} J_{\mu^{k}} \geq \cdots \geq \lim _{N \rightarrow \infty} T_{\mu^{k+1}}^{N} J_{\mu^{k}}
$$

- Since

$$
\lim _{N \rightarrow \infty} T_{\mu^{k+1}}^{N} J_{\mu^{k}}=J_{\mu^{k+1}}
$$

we have $J_{\mu^{k}} \geq J_{\mu^{k+1}}$.

- If $J_{\mu^{k}}=J_{\mu^{k+1}}$, all above inequalities hold as equations, so $J_{\mu^{k}}$ solves Bellman's equation. Hence $J_{\mu^{k}}=J^{*}$
- Thus at iteration k either the algorithm generates a strictly improved policy or it finds an optimal policy
- For a finite spaces MDP, the algorithm terminates with an optimal policy
- For infinite spaces MDP, convergence (in an infinite number of iterations) can be shown

OPTIMISTIC POLICY ITERATION

- Optimistic PI: This is PI, where policy evaluation is done approximately, with a finite number of VI
- So we approximate the policy evaluation

$$
J_{\mu} \approx T_{\mu}^{m} J
$$

for some number $m \in[1, \infty)$ and initial J

- Shorthand definition: For some integers m_{k}
$T_{\mu^{k}} J_{k}=T J_{k}, \quad J_{k+1}=T_{\mu^{k}}^{m_{k}} J_{k}, \quad k=0,1, \ldots$
- If $m_{k} \equiv 1$ it becomes VI
- If $m_{k}=\infty$ it becomes PI
- Converges for both finite and infinite spaces discounted problems (in an infinite number of iterations)
- Typically works faster than VI and PI (for large problems)

APPROXIMATE PI

- Suppose that the policy evaluation is approximate,

$$
\left\|J_{k}-J_{\mu^{k}}\right\| \leq \delta, \quad k=0,1, \ldots
$$

and policy improvement is approximate,

$$
\left\|T_{\mu^{k+1}} J_{k}-T J_{k}\right\| \leq \epsilon, \quad k=0,1, \ldots
$$

where δ and ϵ are some positive scalars.

- Error Bound I: The sequence $\left\{\mu^{k}\right\}$ generated by approximate policy iteration satisfies

$$
\limsup _{k \rightarrow \infty}\left\|J_{\mu^{k}}-J^{*}\right\| \leq \frac{\epsilon+2 \alpha \delta}{(1-\alpha)^{2}}
$$

- Typical practical behavior: The method makes steady progress up to a point and then the iterates $J_{\mu^{k}}$ oscillate within a neighborhood of J^{*}.
- Error Bound II: If in addition the sequence $\left\{\mu^{k}\right\}$ "terminates" at $\bar{\mu}$ (i.e., keeps generating $\bar{\mu}$)

$$
\left\|J_{\bar{\mu}}-J^{*}\right\|_{8} \leq \frac{\epsilon+2 \alpha \delta}{1-\alpha}
$$

Q-FACTORS I

- Optimal Q-factor of (x, u) :

$$
Q^{*}(x, u)=E\left\{g(x, u, w)+\alpha J^{*}(\bar{x})\right\}
$$

with $\bar{x}=f(x, u, w)$. It is the cost of starting at x, applying u is the 1st stage, and an optimal policy after the 1st stage

- We can write Bellman's equation as

$$
J^{*}(x)=\min _{u \in U(x)} Q^{*}(x, u), \quad \forall x
$$

- We can equivalently write the VI method as

$$
J_{k+1}(x)=\min _{u \in U(x)} Q_{k+1}(x, u), \quad \forall x,
$$

where Q_{k+1} is generated by

$$
Q_{k+1}(x, u)=E\left\{g(x, u, w)+\alpha \min _{v \in U(\bar{x})} Q_{k}(\bar{x}, v)\right\}
$$

with $\bar{x}=f(x, u, w)$

Q-FACTORS II

- Q-factors are costs in an "augmented" problem where states are (x, u)
- They satisfy a Bellman equation $Q^{*}=F Q^{*}$ where

$$
(F Q)(x, u)=E\left\{g(x, u, w)+\alpha \min _{v \in U(\bar{x})} Q(\bar{x}, v)\right\}
$$

where $\bar{x}=f(x, u, w)$

- VI and PI for Q-factors are mathematically equivalent to VI and PI for costs
- They require equal amount of computation ... they just need more storage
- Having optimal Q-factors is convenient when implementing an optimal policy on-line by

$$
\mu^{*}(x)=\min _{u \in U(x)} Q^{*}(x, u)
$$

- Once $Q^{*}(x, u)$ are known, the model $[g$ and $E\{\cdot\}]$ is not needed. Model-free operation
- Q-Learning (to be discussed later) is a sampling method that calculates $Q^{*}(x, u)$ using a simulator of the system (no model needed)

OTHER DP MODELS

- We have looked so far at the (discrete or continuous spaces) discounted models for which the analysis is simplest and results are most powerful
- Other DP models include:
- Undiscounted problems $(\alpha=1)$: They may include a special termination state (stochastic shortest path problems)
- Continuous-time finite-state MDP: The time between transitions is random and state-and-control-dependent (typical in queueing systems, called Semi-Markov MDP). These can be viewed as discounted problems with state-and-control-dependent discount factors
- Continuous-time, continuous-space models: Classical automatic control, process control, robotics
- Substantial differences from discrete-time
- Mathematically more complex theory (particularly for stochastic problems)
- Deterministic versions can be analyzed using classical optimal control theory
- Admit treatment by DP, based on time discretization

CONTINUOUS-TIME MODELS

- System equation: $d x(t) / d t=f(x(t), u(t))$
- Cost function: $\int_{0}^{\infty} g(x(t), u(t))$
- Optimal cost starting from $x: J^{*}(x)$
- δ-Discretization of time: $x_{k+1}=x_{k}+\delta \cdot f\left(x_{k}, u_{k}\right)$
- Bellman equation for the δ-discretized problem:

$$
J_{\delta}^{*}(x)=\min _{u}\left\{\delta \cdot g(x, u)+J_{\delta}^{*}(x+\delta \cdot f(x, u))\right\}
$$

- Take $\delta \rightarrow 0$, to obtain the Hamilton-JacobiBellman equation [assuming $\lim _{\delta \rightarrow 0} J_{\delta}^{*}(x)=J^{*}(x)$]

$$
0=\min _{u}\left\{g(x, u)+\nabla J^{*}(x)^{\prime} f(x, u)\right\}, \quad \forall x
$$

- Policy Iteration (informally):
- Policy evaluation: Given current μ, solve

$$
0=g(x, \mu(x))+\nabla J_{\mu}(x)^{\prime} f(x, \mu(x)), \quad \forall x
$$

- Policy improvement: Find

$$
\begin{aligned}
& \bar{\mu}(x) \in \arg \min _{u}\left\{g(x, u)+\nabla J_{\mu}(x)^{\prime} f(x, u\right. \\
& \text { ote: Need to learn } \nabla J_{\mu}(x) \text { NOT } J_{\mu}(x)
\end{aligned}
$$

A MORE GENERAL/ABSTRACT VIEW OF DP

- Let Y be a real vector space with a norm $\|\cdot\|$ - A function $F: Y \mapsto Y$ is said to be a contraction mapping if for some $\rho \in(0,1)$, we have

$$
\|F y-F z\| \leq \rho\|y-z\|, \quad \text { for all } y, z \in Y .
$$

ρ is called the modulus of contraction of F.

- Important example: Let X be a set (e.g., state space in DP), $v: X \mapsto \Re$ be a positive-valued function. Let $B(X)$ be the set of all functions $J: X \mapsto \Re$ such that $J(x) / v(x)$ is bounded over x.
- We define a norm on $B(X)$, called the weighted sup-norm, by

$$
\|J\|=\max _{x \in X} \frac{|J(x)|}{v(x)} .
$$

- Important special case: The discounted problem mappings T and $T_{\mu}[$ for $v(x) \equiv 1, \rho=\alpha]$.

CONTRACTION MAPPINGS: AN EXAMPLE

- Consider extension from finite to countable state space, $X=\{1,2, \ldots\}$, and a weighted sup norm with respect to which the one stage costs are bounded
- Suppose that T_{μ} has the form

$$
\left(T_{\mu} J\right)(i)=b_{i}+\alpha \sum_{j \in X} a_{i j} J(j), \quad \forall i=1,2, \ldots
$$

where b_{i} and $a_{i j}$ are some scalars. Then T_{μ} is a contraction with modulus ρ if and only if

$$
\frac{\sum_{j \in X}\left|a_{i j}\right| v(j)}{v(i)} \leq \rho, \quad \forall i=1,2, \ldots
$$

- Consider T,

$$
(T J)(i)=\min _{\mu}\left(T_{\mu} J\right)(i), \quad \forall i=1,2, \ldots
$$

where for each $\mu \in M, T_{\mu}$ is a contraction mapping with modulus ρ. Then T is a contraction mapping with modulus ρ

- Allows extensions of main DP results from bounded one-stage cost to unbounded one-stage cost.

CONTRACTION MAPPING FIXED-POINT TH.

- Contraction Mapping Fixed-Point Theorem: If $F: B(X) \mapsto B(X)$ is a contraction with modulus $\rho \in(0,1)$, then there exists a unique $J^{*} \in B(X)$ such that

$$
J^{*}=F J^{*} .
$$

Furthermore, if J is any function in $B(X)$, then $\left\{F^{k} J\right\}$ converges to J^{*} and we have

$$
\left\|F^{k} J-J^{*}\right\| \leq \rho^{k}\left\|J-J^{*}\right\|, \quad k=1,2, \ldots
$$

- This is a special case of a general result for contraction mappings $F: Y \mapsto Y$ over normed vector spaces Y that are complete: every sequence $\left\{y_{k}\right\}$ that is Cauchy (satisfies $\left\|y_{m}-y_{n}\right\| \rightarrow 0$ as $m, n \rightarrow \infty)$ converges.
- The space $B(X)$ is complete (see the text for a proof).

ABSTRACT FORMS OF DP

- We consider an abstract form of DP based on monotonicity and contraction
- Abstract Mapping: Denote $R(X)$: set of realvalued functions $J: X \mapsto \Re$, and let $H: X \times U \times$ $R(X) \mapsto \Re$ be a given mapping. We consider the mapping

$$
(T J)(x)=\min _{u \in U(x)} H(x, u, J), \quad \forall x \in X .
$$

- We assume that $(T J)(x)>-\infty$ for all $x \in X$, so T maps $R(X)$ into $R(X)$.
- Abstract Policies: Let \mathcal{M} be the set of "policies", i.e., functions μ such that $\mu(x) \in U(x)$ for all $x \in X$.
- For each $\mu \in \mathcal{M}$, we consider the mapping $T_{\mu}: R(X) \mapsto R(X)$ defined by

$$
\left(T_{\mu} J\right)(x)=H(x, \mu(x), J), \quad \forall x \in X
$$

- Find a function $J^{*} \in R(X)$ such that

$$
J^{*}(x)=\min _{u \in U(x)} H\left(x, u, J^{*}\right), \quad \forall x \in X
$$

EXAMPLES

- Discounted problems

$$
H(x, u, J)=E\{g(x, u, w)+\alpha J(f(x, u, w))\}
$$

- Discounted "discrete-state continuous-time" Semi-Markov Problems (e.g., queueing)

$$
H(x, u, J)=G(x, u)+\sum_{y=1}^{n} m_{x y}(u) J(y)
$$

where $m_{x y}$ are "discounted" transition probabilities, defined by the distribution of transition times

- Minimax Problems/Games

$$
H(x, u, J)=\max _{w \in W(x, u)}[g(x, u, w)+\alpha J(f(x, u, w))]
$$

- Shortest Path Problems

$$
H(x, u, J)= \begin{cases}a_{x u}+J(u) & \text { if } u \neq d \\ a_{x d} & \text { if } u=d\end{cases}
$$

where d is the destination. There are stochastic and minimax versions of this problem

ASSUMPTIONS

- Monotonicity: If $J, J^{\prime} \in R(X)$ and $J \leq J^{\prime}$,

$$
H(x, u, J) \leq H\left(x, u, J^{\prime}\right), \quad \forall x \in X, u \in U(x)
$$

- We can show all the standard analytical and computational results of discounted DP if monotonicity and the following assumption holds:
- Contraction:
- For every $J \in B(X)$, the functions $T_{\mu} J$ and $T J$ belong to $B(X)$
- For some $\alpha \in(0,1)$, and all μ and $J, J^{\prime} \in$ $B(X)$, we have

$$
\left\|T_{\mu} J-T_{\mu} J^{\prime}\right\| \leq \alpha\left\|J-J^{\prime}\right\|
$$

- With just monotonicity assumption (as in undiscounted problems) we can still show various forms of the basic results under appropriate conditions
- A weaker substitute for contraction assumption is semicontractiveness: (roughly) for some μ, T_{μ} is a contraction and for others it is not; also the "noncontractive" μ are not optimal

RESULTS USING CONTRACTION

- Proposition 1: The mappings T_{μ} and T are weighted sup-norm contraction mappings with modulus α over $B(X)$, and have unique fixed points in $B(X)$, denoted J_{μ} and J^{*}, respectively (cf. Bellman's equation).

Proof: From the contraction property of H.

- Proposition 2: For any $J \in B(X)$ and $\mu \in \mathcal{M}$,

$$
\lim _{k \rightarrow \infty} T_{\mu}^{k} J=J_{\mu}, \quad \lim _{k \rightarrow \infty} T^{k} J=J^{*}
$$

(cf. convergence of value iteration).
Proof: From the contraction property of T_{μ} and T.

- Proposition 3: We have $T_{\mu} J^{*}=T J^{*}$ if and only if $J_{\mu}=J^{*}$ (cf. optimality condition).

Proof: $T_{\mu} J^{*}=T J^{*}$, then $T_{\mu} J^{*}=J^{*}$, implying $J^{*}=J_{\mu}$. Conversely, if $J_{\mu}=J^{*}$, then $T_{\mu} J^{*}=$ $T_{\mu} J_{\mu}=J_{\mu}=J^{*}=T J^{*}$.

RESULTS USING MON. AND CONTRACTION

- Optimality of fixed point:

$$
J^{*}(x)=\min _{\mu \in \mathcal{M}} J_{\mu}(x), \quad \forall x \in X
$$

- Existence of a nearly optimal policy: For every $\epsilon>0$, there exists $\mu_{\epsilon} \in \mathcal{M}$ such that

$$
J^{*}(x) \leq J_{\mu_{\epsilon}}(x) \leq J^{*}(x)+\epsilon, \quad \forall x \in X
$$

- Nonstationary policies: Consider the set Π of all sequences $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$ with $\mu_{k} \in \mathcal{M}$ for all k, and define
$J_{\pi}(x)=\liminf _{k \rightarrow \infty}\left(T_{\mu_{0}} T_{\mu_{1}} \cdots T_{\mu_{k}} J\right)(x), \quad \forall x \in X$,
with J being any function (the choice of J does not matter)
- We have

$$
J^{*}(x)=\min _{\pi \in \Pi} J_{\pi}(x), \quad \forall x \in X
$$

THE TWO MAIN ALGORITHMS: VI AND PI

- Value iteration: For any (bounded) J

$$
J^{*}(x)=\lim _{k \rightarrow \infty}\left(T^{k} J\right)(x), \quad \forall x
$$

- Policy iteration: Given μ^{k}
- Policy evaluation: Find $J_{\mu^{k}}$ by solving

$$
J_{\mu^{k}}=T_{\mu^{k}} J_{\mu^{k}}
$$

- Policy improvement: Find μ^{k+1} such that

$$
T_{\mu^{k+1}} J_{\mu^{k}}=T J_{\mu^{k}}
$$

- Optimistic PI: This is PI, where policy evaluation is carried out by a finite number of VI
- Shorthand definition: For some integers m_{k}

$$
\begin{aligned}
& T_{\mu^{k}} J_{k}=T J_{k}, \quad J_{k+1}=T_{\mu^{k}}^{m_{k}} J_{k}, \quad k=0,1, \ldots \\
- & \text { If } m_{k} \equiv 1 \text { it becomes VI } \\
- & \text { If } m_{k}=\infty \text { it becomes PI } \\
- & \text { For intermediate values of } m_{k}, \text { it is generally } \\
& \text { more efficient than either VI or PI }
\end{aligned}
$$

ASYNCHRONOUS ALGORITHMS

- Motivation for asynchronous algorithms
- Faster convergence
- Parallel and distributed computation
- Simulation-based implementations
- General framework: Partition X into disjoint nonempty subsets X_{1}, \ldots, X_{m}, and use separate processor ℓ updating $J(x)$ for $x \in X_{\ell}$
- Let J be partitioned as

$$
J=\left(J_{1}, \ldots, J_{m}\right),
$$

where J_{ℓ} is the restriction of J on the set X_{ℓ}.

- Synchronous VI algorithm:

$$
J_{\ell}^{t+1}(x)=T\left(J_{1}^{t}, \ldots, J_{m}^{t}\right)(x), \quad x \in X_{\ell}, \ell=1, \ldots, m
$$

- Asynchronous VI algorithm: For some subsets of times \mathcal{R}_{ℓ},

$$
J_{\ell}^{t+1}(x)= \begin{cases}T\left(J_{1}^{\tau_{\ell 1}(t)}, \ldots, J_{m}^{\tau_{\ell m}(t)}\right)(x) & \text { if } t \in \mathcal{R}_{\ell} \\ J_{\ell}^{t}(x) & \text { if } t \notin \mathcal{R}_{\ell}\end{cases}
$$

where $t-\tau_{\ell j}(t)$ are communication "delays"

ONE-STATE-AT-A-TIME ITERATIONS

- Important special case: Assume n "states", a separate processor for each state, and no delays
- Generate a sequence of states $\left\{x^{0}, x^{1}, \ldots\right\}$, generated in some way, possibly by simulation (each state is generated infinitely often)
- Asynchronous VI:

$$
J_{\ell}^{t+1}= \begin{cases}T\left(J_{1}^{t}, \ldots, J_{n}^{t}\right)(\ell) & \text { if } \ell=x^{t}, \\ J_{\ell}^{t} & \text { if } \ell \neq x^{t},\end{cases}
$$

where $T\left(J_{1}^{t}, \ldots, J_{n}^{t}\right)(\ell)$ denotes the ℓ-th component of the vector

$$
T\left(J_{1}^{t}, \ldots, J_{n}^{t}\right)=T J^{t}
$$

- The special case where

$$
\left\{x^{0}, x^{1}, \ldots\right\}=\{1, \ldots, n, 1, \ldots, n, 1, \ldots\}
$$

is the Gauss-Seidel method

ASYNCHRONOUS CONV. THEOREM I

- KEY FACT: VI and also PI (with some modifications) still work when implemented asynchronously
- Assume that for all $\ell, j=1, \ldots, m, \mathcal{R}_{\ell}$ is infinite and $\lim _{t \rightarrow \infty} \tau_{\ell j}(t)=\infty$
- Proposition: Let T have a unique fixed point J^{*}, and assume that there is a sequence of nonempty subsets $S(k) \subset R(X)$ with $S(k+1) \subset S(k)$ for all k, and with the following properties:
(1) Synchronous Convergence Condition: Every sequence $\left\{J^{k}\right\}$ with $J^{k} \in S(k)$ for each k, converges pointwise to J^{*}. Moreover,

$$
T J \in S(k+1), \quad \forall J \in S(k), k=0,1, \ldots
$$

(2) Box Condition: For all $k, S(k)$ is a Cartesian product of the form

$$
S(k)=S_{1}(k) \times \cdots \times S_{m}(k),
$$

where $S_{\ell}(k)$ is a set of real-valued functions on $X_{\ell}, \ell=1, \ldots, m$.

Then for every $J \in S(0)$, the sequence $\left\{J^{t}\right\}$ generated by the asynchronous algorithm converges pointwise to J^{*}.

ASYNCHRONOUS CONV. THEOREM II

- Interpretation of assumptions:

A synchronous iteration from any J in $S(k)$ moves into $S(k+1)$ (component-by-component)

- Convergence mechanism:

Key: "Independent" component-wise improvement. An asynchronous component iteration from any J in $S(k)$ moves into the corresponding component portion of $S(k+1)$

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

