6.241 Spring 2011

Midterm Exam

3/16/2011

You have a total of three hours to complete this exam. These three hours can be chosen at your convenience.

Problem 1

Let $A \in \mathbb{C}^{n \times n}$, and $B \in \mathbb{C}^{m \times m}$. Show that $X(t)=e^{A t} X(0) e^{B t}$ is the solution to $\dot{X}=$ $A X+X B$.

Problem 2

Given two non-zero vectors $v, w \in \mathbb{R}^{n}$. Does there exist a matrix A such that $v=A w$ and

1. $\sigma_{\max }(A)=\sqrt{v^{T} v / w^{T} w}$?
2. $\|A\|_{1}=\|v\|_{\infty} /\|w\|_{\infty}$?

Prove or disprove each case separately.

Problem 3

Let $\|A\|<1$. Show that $\left\|(I-A)^{-1}\right\| \geq \frac{1}{1+\|A\|}$.

Problem 4

Use the projection theorem to solve the problem:

$$
\min x \in \mathbb{R}^{n}\left\{x^{T} Q x: A x=b\right\},
$$

where Q is a positive-definite $n \times n$ matrix, A is a $m \times n$ real matrix, with rank $m<n$, and b is a real m-dimensional vector. Is the solution unique?

Problem 5

Consider a single-input discrete-time LTI system, described by

$$
\begin{gathered}
x[k+1]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] x[k]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u[k] \\
y[k]=x[k],
\end{gathered}
$$

and the initial condition $x[0]=0$. Given $M>1$, what is the maximum value of $\|y[M]\|_{2}$ that can be attained with an input of "unit energy,", i.e., such that $u[0]^{2}+u[1]^{2}+\ldots+$ $u[M-1]^{2}=1$? What is the input that attains such value? How would your answer change if you were to double M, i.e., $M \leftarrow 2 M$?

Problem 6

Consider a physical system whose behavior is modeled, in continuous time, by the differential equation

$$
\dot{x}=A x+B u .
$$

Assume that you have two sensors. The first sensor yields measurements $y_{1}=C_{1} x$ for $t=0,1,2,3, \ldots$, and the second sensor yields measurements $y_{2}=C_{2} x$ for $t=0,2,4, \ldots$. Assuming that $u(t)=u(\lfloor t\rfloor)$, for all $t \geq 0$, derive a discrete-time state-space model for the system, relating the inputs at times $(u(0), u(1), u(2), \ldots)$ to the outputs at times $(y(0), y(1), y(2), \ldots)$.

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

