Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 1^{1}

Problem 1.1

Behavior set \mathcal{B} of an autonomous system with a scalar binary DT output consists of all DT signals $w=w(t) \in\{0,1\}$ which change value at most once for $0 \leq t<\infty$.
(a) Give an example of two signals $w_{1}, w_{2} \in \mathcal{B}$ which commute at $t=3$, but do not define same state of \mathcal{B} at $t=3$.
(b) Give an example of two different signals $w_{1}, w_{2} \in \mathcal{B}$ which define same state of \mathcal{B} at $t=4$.
(c) Find a time-invariant discrete-time finite state-space "difference inclusion" model for \mathcal{B}, i.e. find a finite set X and functions $g: X \mapsto\{0,1\}, f: X \mapsto S(X)$, where $S(X)$ denotes the set of all non-empty subsets of X, such that a sequence $w(0), w(1), w(2), \ldots$ can be obtained by sampling a signal $w \in \mathcal{B}$ if and only if there exists a sequence $x(0), x(1), x(2), \ldots$ of elements from X such that

$$
x(t+1) \in f(x(t)) \text { and } w(t)=g(x(t)) \text { for } t=0,1,2, \ldots
$$

(Figuring out which pairs of signals define same state of \mathcal{B} at a given time is one possible way to arrive at a solution.)

Problem 1.2

Consider differential equation

$$
\ddot{y}(t)+\operatorname{sgn}(\dot{y}(t)+y(t))=0 .
$$

[^0](a) Write down an equivalent $\operatorname{ODE} \dot{x}(t)=a(x(t))$ for the state vector $x(t)=[y(t) ; \dot{y}(t)]$.
(b) Find all vectors $x_{0} \in \mathbf{R}^{2}$ for which the ODE from (a) does not have a solution $x:\left[t_{0}, t_{1}\right] \mapsto \mathbf{R}^{2}\left(\right.$ with $\left.t_{1}>t_{0}\right)$ satisfying initial condition $x\left(t_{0}\right)=x_{0}$.
(c) Define a semicontinuous convex set-valued function $\eta: \mathbf{R}^{2} \mapsto 2 \mathbf{R}^{2}$ such that $a(\bar{x}) \in$ $\eta(\bar{x})$ for all x. Make sure the sets $\eta(\bar{x})$ are the smallest possible subject to these constraints.
(d) Find explicitly all solutions of the differential inclusion $\dot{x}(t) \in \eta(x(t))$ satisfying initial conditions $x(0)=x_{0}$, where x_{0} are the vectors found in (b). Such solutions are calles sliding modes.
(e) Repeat (c) for $a: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ defined by
$$
a\left(\left[x_{1} ; x_{2}\right]\right)=\left[\operatorname{sgn}\left(x_{1}\right) ; \operatorname{sgn}\left(x_{2}\right)\right] .
$$

Problem 1.3

For the statements below, state whether they are true or false. For true statements, give a brief proof (can refer to lecture notes or books). For false statements, give a counterexample.
(a) All maximal solutions of ODE $\dot{x}(t)=\exp \left(-x(t)^{2}\right)$ are defined on the whole time axis $\{t\}=\mathbf{R}$.
(b) All solutions $x: \mathbf{R} \mapsto \mathbf{R}$ of the ODE

$$
\dot{x}(t)= \begin{cases}x(t) / t, & t \neq 0 \\ 0, & t=0\end{cases}
$$

are such that $x(t)=-x(-t)$ for all $t \in \mathbf{R}$.
(c) If constant signal $w(t) \equiv 1$ belongs to a system behavior set \mathcal{B}, but constant signal $w(t) \equiv-1$ does not then the system is not linear.

[^0]: ${ }^{1}$ Posted September 10, 2003. Due date September 17, 2003

