by A. Megretski

Problem Set 2^{1}

Problem 2.1

Consider the feedback system with external input $r=r(t)$, a causal linear time invariant forward loop system G with input $u=u(t)$, output $v=v(t)$, and impulse response $g(t)=0.1 \delta(t)+(t+a)^{-1 / 2} e^{-t}$, where $a \geq 0$ is a parameter, and a memoryless nonlinear feedback loop $u(t)=r(t)+\phi(v(t))$, where $\phi(y)=\sin (y)$. It is customary to require well-

Figure 2.1: Feedback setup for Problem 2.1
posedness of such feedback models, which will usually mean existence and uniqueness of solutions $v=v(t), u=u(t)$ of system equations

$$
v(t)=0.1 u(t)+\int_{0}^{t} h(t-\tau) u(\tau) d \tau, \quad u(t)=r(t)+\phi(v(t))
$$

on the time interval $t \in[0, \infty)$ for every bounded input signal $r=r(t)$.

[^0](a) Show how Theorem 3.1 from the lecture notes can be used to prove well-posedness in the case when $a>0$. Hint: it may be a good idea to begin with getting rid of the algebraic part of the system equations by introducing a new signal $e(t)=$ $v(t)-0.1 \phi(v(t))-0.1 r(t)$.
(b) Propose a generalization of Theorem 3.1 which can be applied when $a=0$ as well. (You are not required to write down the proof of your generalization, but make every effort to ensure the statement is correct.)

Problem 2.2

Read the section of Lecture 4 handouts on limit sets of trajectories of ODE (it was not covered in the classroom).
(a) Give an example of a continuously differentiable function $a: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$, and a solution of ODE

$$
\begin{equation*}
\dot{x}(t)=a(x(t)), \tag{2.1}
\end{equation*}
$$

for which the limit set consists of a single trajectory of a non-periodic and nonequilibrium solution of (2.1).
(b) Give an example of a continuously differentiable function $a: \mathbf{R}^{n} \mapsto \mathbf{R}^{n}$, and a bounded solution of $\operatorname{ODE}(2.1)$, for which the limit set contains no equilibria and no trajectories of periodic solutions. Hint: it is possible to do this with a 4th order linear time-invariant system with purely imaginary poles.
(c) Use Theorem 4.3 from the lecture notes to derive the Poincare-Bendixon theorem: if a set $X \subset \mathbf{R}^{2}$ is compact (i.e. closed and bounded), positively invariant for system (2.1) (i.e. $x(t, \bar{x}) \in X$ for all $t \geq 0$ and $\bar{x} \in X$), and contains no equilibria, then the limit set of every solution starting in X is a closed orbit (i.e. the trajectory of a periodic solution). Assume that $a: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ is continuously differentiable.

Problem 2.3

Use the index theory to prove the following statements.
(a) If $n>1$ is even and $F: S^{n} \mapsto S^{n}$ is continuous then there exists $x \in S^{n}$ such that $x=F(x)$ or $x=-F(x)$.
(b) The equations for the harmonically forced nonlinear oscillator

$$
\ddot{y}(t)+\dot{y}(t)+\left(1+y(t)^{2}\right) y(t)=100 \cos (t)
$$

have at least one 2π-periodic solution. Hint: Show first that, for

$$
V(t)=\dot{y}(t)^{2}+y(t)^{2}+y(t) \dot{y}(t)+0.5 y(t)^{2}
$$

the inequality

$$
\dot{V}(t) \leq-c_{1} V(t)+c_{2}
$$

where c_{1}, c_{2} are some positive constants, holds for all t.

[^0]: ${ }^{1}$ Posted September 17, 2003. Due date September 24, 2003

