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Massachusetts Institute of Technology 

Department of Electrical Engineering and Computer Science 

6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS 

by A. Megretski 

Problem Set 21 

Problem 2.1 

Consider the feedback system with external input r = r(t), a causal linear time invariant 
forward loop system G with input u = u(t), output v = v(t), and impulse response 
g(t) = 0.1�(t) + (t + a)−1/2e−t, where a → 0 is a parameter, and a memoryless nonlinear 
feedback loop u(t) = r(t) + �(v(t)), where �(y) = sin(y). It is customary to require well-

u 
r 
 � 
 G 
 v 

�(y) 

Figure 2.1: Feedback setup for Problem 2.1 

posedness of such feedback models, which will usually mean existence and uniqueness of 
solutions v = v(t), u = u(t) of system equations 

t 

v(t) = 0.1u(t) + h(t − π )u(π )dπ, u(t) = r(t) + �(v(t)) 
0 

on the time interval t ≤ [0, ⊂) for every bounded input signal r = r(t). 
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(a) Show how Theorem 3.1 from the lecture notes can be used to prove well-posedness 
in the case when a > 0. Hint: it may be a good idea to begin with getting rid 
of the algebraic part of the system equations by introducing a new signal e(t) = 
v(t) − 0.1�(v(t)) − 0.1r(t). 

(b) Propose a generalization of Theorem 3.1 which can be applied when a = 0 as well. 
(You are not required to write down the proof of your generalization, but make 
every effort to ensure the statement is correct.) 

Problem 2.2 

Read the section of Lecture 4 handouts on limit sets of trajectories of ODE (it was not 
covered in the classroom). 

(a) Give an example of a continuously differentiable function a : R2 
≥� R2 , and a 

solution of ODE 
ẋ(t) = a(x(t)), (2.1) 

for which the limit set consists of a single trajectory of a non-periodic and non-
equilibrium solution of (2.1). 

Rn(b) Give an example of a continuously differentiable function	 a : ≥� Rn, and a 
bounded solution of ODE (2.1), for which the limit set contains no equilibria and no 
trajectories of periodic solutions. Hint: it is possible to do this with a 4th order 
linear time-invariant system with purely imaginary poles. 

(c) Use Theorem 4.3 from the lecture notes to derive the Poincare-Bendixon theorem: 
if a set X � R2 is compact (i.e. closed and bounded), positively invariant for system 
(2.1) (i.e. x(t, ¯	 ¯x) ≤ X for all t → 0 and x ≤ X), and contains no equilibria, then 
the limit set of every solution starting in X is a closed orbit (i.e. the trajectory of 
a periodic solution). Assume that a : R2 

≥� R2 is continuously differentiable. 

Problem 2.3 

Use the index theory to prove the following statements. 

Sn(a) If n > 1 is even and F : ≥� Sn is continuous then there exists x ≤ Sn such that 
x = F (x) or x = −F (x). 

(b) The equations for the harmonically forced nonlinear oscillator 

ÿ(t) + ẏ(t) + (1 + y(t)2)y(t) = 100 cos(t) 

have at least one 2�-periodic solution. Hint: Show first that, for 

V (t) = ẏ(t)2 + y(t)2 + y(t) ̇y(t) + 0.5y(t)2 , 
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the inequality 
V̇ (t) � −c1V (t) + c2, 

where c1, c2 are some positive constants, holds for all t. 


