Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS

by A. Megretski

Problem Set 5^1

Problem 5.1

 $y(t) \equiv a$ is an equilibrium solution of the differential equation

$$y^{(3)}(t) + \ddot{y}(t) + \dot{y}(t) + 2\sin(y(t)) = 2\sin(a),$$

where $a \in \mathbf{R}$ and $y^{(3)}$ denotes the third derivative of y. For which values of $a \in \mathbf{R}$ is this equilibrium locally exponentially stable?

Problem 5.2

In order to solve a quadratic matrix equation $X^2 + AX + B = 0$, where A, B are given *n*-by-*n* matrices and X is an *n*-by-*n* matrix to be found, it is proposed to use an iterative scheme

$$X_{k+1} = X_k^2 + AX_k + X_k + B.$$

Assume that matrix X_* satisfies $X_*^2 + AX_* + B = 0$. What should be required of the eigenvalues of X_* and $A + X_*$ in order to guarantee that $X_k \to X_*$ exponentially as $k \to \infty$ when $||X_0 - X_*||$ is small enough? You are allowed to use the fact that matrix equation

$$ay + yb = 0,$$

where a, b, y are *n*-by-*n* matrices, has a non-zero solution y if and only if det(sI - a) = det(sI + b) for some $s \in \mathbf{C}$.

¹Posted October 22, 2003. Due date October 29, 2003

Problem 5.3

Use the Center manifold theory to prove local asymptotic stability of the equilibrium at the origin of the Lorentz system

$$\left\{ \begin{array}{l} \dot{x} = -\beta x + yz, \\ \dot{y} = -\sigma y + \sigma z, \\ \dot{z} = -yx + \rho y - z, \end{array} \right.$$

where β, σ are positive parameters and $\rho = 1$. Estimate the rate of convergence of x(t), y(t), z(t) to zero.

Problem 5.4

Check local asymptotic stability of the periodic trajectory $y(t) = \sin(t)$ of system

$$\ddot{y}(t) + \dot{y}(t) + y^3 = -\sin(t) + \cos(t) + \sin^3(t).$$

Problem 5.5

Find all values of parameter $a \in \mathbf{R}$ such that every solution $x : [0, \infty) \mapsto \mathbf{R}^2$ of the ODE

$$\dot{x}(t) = \epsilon \begin{bmatrix} \cos(2t) & a \\ \cos^4(t) & \sin^4(t) \end{bmatrix} x(t)$$

converges to zero as $t \to \infty$ when $\epsilon > 0$ is a sufficiently small constant.