Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 5^{1}

Problem 5.1

$y(t) \equiv a$ is an equilibrium solution of the differential equation

$$
y^{(3)}(t)+\ddot{y}(t)+\dot{y}(t)+2 \sin (y(t))=2 \sin (a),
$$

where $a \in \mathbf{R}$ and $y^{(3)}$ denotes the third derivative of y. For which values of $a \in \mathbf{R}$ is this equilibrium locally exponentially stable?

Problem 5.2

In order to solve a quadratic matrix equation $X^{2}+A X+B=0$, where A, B are given n-by- n matrices and X is an n-by- n matrix to be found, it is proposed to use an iterative scheme

$$
X_{k+1}=X_{k}^{2}+A X_{k}+X_{k}+B
$$

Assume that matrix X_{*} satisfies $X_{*}^{2}+A X_{*}+B=0$. What should be required of the eigenvalues of X_{*} and $A+X_{*}$ in order to guarantee that $X_{k} \rightarrow X_{*}$ exponentially as $k \rightarrow \infty$ when $\left\|X_{0}-X_{*}\right\|$ is small enough? You are allowed to use the fact that matrix equation

$$
a y+y b=0,
$$

where a, b, y are n-by- n matrices, has a non-zero solution y if and only if $\operatorname{det}(s I-a)=$ $\operatorname{det}(s I+b)$ for some $s \in \mathbf{C}$.

[^0]
Problem 5.3

Use the Center manifold theory to prove local asymptotic stability of the equilibrium at the origin of the Lorentz system

$$
\left\{\begin{array}{l}
\dot{x}=-\beta x+y z \\
\dot{y}=-\sigma y+\sigma z \\
\dot{z}=-y x+\rho y-z
\end{array}\right.
$$

where β, σ are positive parameters and $\rho=1$. Estimate the rate of convergence of $x(t), y(t), z(t)$ to zero.

Problem 5.4

Check local asymptotic stability of the periodic trajectory $y(t)=\sin (t)$ of system

$$
\ddot{y}(t)+\dot{y}(t)+y^{3}=-\sin (t)+\cos (t)+\sin ^{3}(t)
$$

Problem 5.5

Find all values of parameter $a \in \mathbf{R}$ such that every solution $x:[0, \infty) \mapsto \mathbf{R}^{2}$ of the ODE

$$
\dot{x}(t)=\epsilon\left[\begin{array}{cc}
\cos (2 t) & a \\
\cos ^{4}(t) & \sin ^{4}(t)
\end{array}\right] x(t)
$$

converges to zero as $t \rightarrow \infty$ when $\epsilon>0$ is a sufficiently small constant.

[^0]: ${ }^{1}$ Posted October 22, 2003. Due date October 29, 2003

