Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 6^{1}

Problem 6.1

For the following statement, verify whether it is true or false (give a proof if true, give a counterexample if false):

Assume that
(a) n, m are positive integers;
(b) $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \mapsto \mathbf{R}^{n}$ and $g: \mathbf{R}^{n} \times \mathbf{R}^{m} \mapsto \mathbf{R}^{m}$ are continuously differentiable functions;
(c) the ODE

$$
\dot{y}(t)=g(\bar{x}, y(t))
$$

has a globally asymptotically stable equilibrium for every $\bar{x} \in \mathbf{R}^{n}$;
(d) functions $x_{0}:[0,1] \mapsto \mathbf{R}^{n}$ and $y_{0}:[0,1] \mapsto \mathbf{R}^{m}$ are continuously differentiable and satisfy

$$
\dot{x}_{0}(t)=f\left(x_{0}(t), y_{0}(t)\right), \quad g\left(x_{0}(t), y_{0}(t)\right)=0 \quad \forall t \in[0,1] .
$$

Then there exists $\epsilon_{0}>0$ such that for every $\epsilon \in\left(0, \epsilon_{0}\right)$ the differential equation

$$
\dot{x}(t)=f(x(t), y(t)), \quad \dot{y}(t)=\epsilon^{-1} g(x(t), y(t)),
$$

has a solution $x_{\epsilon}:[0,1] \mapsto \mathbf{R}^{n}, y_{\epsilon}:[0,1] \mapsto \mathbf{R}^{m}$ such that $x_{e}(0)=x_{0}(0)$, $y_{\epsilon}(0)=y_{0}(0)$, and $x_{\epsilon}(t)$ converges to $x_{0}(t)$ as $\epsilon \rightarrow 0$ for all $t \in[0,1]$.

[^0]
Problem 6.2

Find all values of parameter $k \in \mathbf{R}$ for which solutions of the ODE system

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+k\left(x_{1}^{3}-3 x_{1} x_{2}^{2}\right) \\
& \dot{x}_{2}=-x_{2}+k\left(3 x_{1}^{2} x_{2}-x_{2}^{3}\right)
\end{aligned}
$$

with almost all initial conditions converge to zero as $t \rightarrow \infty$. Hint: use weighted volume monotonicity with density function

$$
\rho(x)=|x|^{\gamma}
$$

Also, for those who remember complex analysis, it is useful to pay attention to the fact that

$$
\left(x_{1}^{3}-3 x_{1} x_{2}^{2}\right)+j\left(3 x_{1}^{2} x_{2}-x_{2}^{3}\right)=\left(x_{1}+j x_{2}\right)^{3}
$$

Problem 6.3

Equations for steering a two-wheeled vehicle (with one wheel used for steering and the other wheel fixed) on a planar surface are given by

$$
\begin{aligned}
\dot{x}_{1} & =\cos \left(x_{3}\right) u_{1}, \\
\dot{x}_{2} & =\sin \left(x_{3}\right) u_{1}, \\
\dot{x}_{3} & =x_{4} u_{1}, \\
\dot{x}_{4} & =u_{2},
\end{aligned}
$$

where x_{1}, x_{2} are Decart coordinates of the fixed wheel, x_{3} is the angle between the vehicle's axis and the x_{1} axis, x_{4} is a parameter characterizing the steering angle, u_{1}, u_{2} are functions of time with values restricted to the interval $[-1,1]$.
(a) Find all states reachable (time finite but not fixed) from a given initial state $\bar{x}_{0} \in \mathbf{R}^{4}$ by using appropriate control.
(b) Design and test in computer simulation an algorithm for moving in finite time the state from a given initial position $\bar{x}_{0} \in \mathbf{R}^{4}$ to an arbitrary reachable state $\bar{x}_{1} \in \mathbf{R}^{4}$.

[^0]: ${ }^{1}$ Posted October 29, 2003. Due date November 5, 2003

