6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 8^{1}

Problem 8.1

Autonomous system equations have the form

$$
\ddot{y}(t)=\left[\begin{array}{l}
y(t) \tag{8.1}\\
\dot{y}(t)
\end{array}\right]^{\prime} Q\left[\begin{array}{l}
y(t) \\
\dot{y}(t)
\end{array}\right]
$$

where y is the scalar output, and $Q=Q^{\prime}$ is a given symmetric 2 -by-2 matrix with real coefficients.
(a) Find all Q for which there exists a C^{∞} bijection $\psi: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$, matrices A, C, and a C^{∞} function $\phi: \mathbf{R} \mapsto \mathbf{R}^{2}$ such that $z=\psi(y, \dot{y})$ satisfies the ODE

$$
\dot{z}(t)=A z(t)+\phi(y(t)), \quad y(t)=C z(t)
$$

whenever $y(\cdot)$ satisfies (8.1).
(b) For those Q found in (a), construct C^{∞} functions $F=F_{Q}: \quad \mathbf{R}^{2} \times \mathbf{R} \mapsto \mathbf{R}^{2}$ and $H=H_{Q}: \quad \mathbf{R}^{2} \mapsto \mathbf{R}$ such that $H_{Q}(\eta(t))-\dot{y}(t) \rightarrow 0$ as $t \rightarrow \infty$ whenever $y:[0, \infty) \mapsto \mathbf{R}$ is a solution of (8.1), and

$$
\dot{\eta}(t)=F_{Q}(\eta(t), y(t))
$$

[^0]
Problem 8.2

A linear constrol system

$$
\left\{\begin{array}{llc}
\dot{x}_{1}(t)= & x_{2}(t)+w_{1}(t), \\
\dot{x}_{2}(t) & = & -x_{1}(t)-x_{2}(t)+u+w_{2}(t)
\end{array}\right.
$$

is equipped with the nonlinear sensor

$$
y(t)=x_{1}(t)+\sin \left(x_{2}(t)\right)+w_{3}(t)
$$

where $w_{i}(\cdot)$ represent plant disturbances and sensor noise satisfying a uniform bound $\left|w_{i}(t)\right| \leq d$. Design an observer of the form

$$
\dot{\eta}(t)=F(\eta(t), y(t), u(t))
$$

and constants $d_{0}>0$ and $C>0$ such that

$$
|\eta(t)-x(t)| \leq C d \quad \forall t \geq 0
$$

whenever $\eta(0)=x(0)$ and $d<d_{0}$. (Try to make d_{0} as large as possible, and C as small as possible.)

Problem 8.3

Is it true or false that the set $\Omega=\Omega_{F}=\{P\}$ of positive definite quadratic forms $V_{P}(\bar{x})=$ $\bar{x}^{\prime} P \bar{x}$, where $P=P^{\prime}>0$, which are valid control Lyapunov function for a given ODE model

$$
\dot{x}(t)=F(x(t), u(t)),
$$

in the sense that

$$
\inf _{\bar{u} \in \mathbf{R}} x^{\prime} P F(\bar{x}, \bar{u}) \leq-|\bar{x}|^{2} \quad \forall \bar{x} \in \mathbf{R}^{n}
$$

is linearly connected for all continuously differentiable functions $F: \mathbf{R}^{n} \times \mathbf{R} \mapsto \mathbf{R}^{n}$? (Remember that a set Ω of matrices is called linearly connected if for every two matrices $P_{0}, P_{1} \in \Omega$ there exists a continuous function $p:[0,1] \mapsto \Omega$ such that $p(0)=P_{0}$ and $p(1)=P_{1}$. In particular, the empty set is linearly connected.)

[^0]: ${ }^{1}$ Posted November 19, 2003. Due date November 26, 2003

