Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 1 Solutions ${ }^{1}$

Problem 1.1

Behavior set \mathcal{B} of an autonomous system with a scalar binary DT output consists of all DT signals $w=w(t) \in\{0,1\}$ which change value at most ONCE FOR $0 \leq t<\infty$.
(a) Give an example of two signals $w_{1}, w_{2} \in \mathcal{B}$ which commute at $t=3$, but do not define same state of \mathcal{B} at $t=3$.
To answer this and the following questions, let us begin with formulating necessary and sufficient conditions for two signals $z_{1}, z_{2} \in \mathcal{B}$ to commute and to define same state of \mathcal{B} at a given time t.
For $w \in \mathcal{B}, t \in[0, \infty)$ let

$$
w[t]= \begin{cases}\lim _{\tau \rightarrow t, \tau<t} w(\tau), & \text { if } t>0 \\ w(0), & \text { if } t=0\end{cases}
$$

be the left side limit value of w at t. Let

$$
N_{+}(w, t)= \begin{cases}0, & \text { if } w(t)=\lim _{\tau \rightarrow \infty} w(\tau) \\ 1, & \text { otherwise }\end{cases}
$$

be the number of discontinuities of $w(\tau)$ between $\tau=t$ and $\tau=\infty$. Similarly, let

$$
N_{-}(w, t)= \begin{cases}0, & \text { if } w(0)=w[t], \\ 1, & \text { otherwise }\end{cases}
$$

be the number of discontinuities of $w(\tau)$ between $\tau=0$ and $\tau=t-0$.

[^0]Lemma 1.1 Signals $z_{1}, z_{2} \in \mathcal{B}$ commute at time $t \in[0, \infty)$ if and only if $z_{1}(t)=$ $z_{2}(t)$ and

$$
\begin{equation*}
N_{-}\left(z_{1}, t\right)+N_{+}\left(z_{2}, t\right)+\left|z_{2}(t)-z_{1}[t]\right| \leq 1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{-}\left(z_{2}, t\right)+N_{+}\left(z_{1}, t\right)+\left|z_{1}(t)-z_{2}[t]\right| \leq 1 . \tag{1.2}
\end{equation*}
$$

Proof First note that the "hybrid" signal z_{12}, obtained by "gluing" the past of z_{1} (before time t) to the future of z_{2} (from t to ∞), is a discrete time signal if and only if $z_{1}(t)=z_{2}(t)$. Moreover, since he discontinuities of z_{12} result from three causes: discontinuities of $z_{1}(\tau)$ before $\tau=t$, discontinuities of z_{2} between $\tau=t$ and $\tau=\infty$, and the inequality between $z_{1}[t]$ and $z_{1}(t)$, condition (1.1) is necessary and sufficient for $z_{12} \in \mathcal{B}$ (subject to $z_{1}(t)=z_{2}(t)$). Similarly, considering the discontinuities of the other "hybrid" obtained by "gluing" the past of z_{2} to the future of z_{2} yields (1.2).

It follows immediately from Lemma 1.1 that signals $z_{1}, z_{2} \in \mathcal{B}$ define same state of \mathcal{B} at time $t \in[0, \infty)$ if and only if

$$
\begin{equation*}
N_{-}\left(z_{1}, t\right)=N_{-}\left(z_{2}, t\right), D\left(z_{1}, t\right)=D\left(z_{2}, t\right), N_{+}\left(z_{1}, t\right)=N_{+}\left(z_{2}, t\right), z_{1}(t)=z_{2}(t) \tag{1.3}
\end{equation*}
$$

where for $w \in \mathcal{B}$

$$
D(w, t)=|w(t)-w[t]|
$$

is the indicator of a discontinuity at t.
For $k \in \mathbf{Z}_{+}$let $u_{k} \in \mathcal{B}$ be defined by

$$
u_{k}(t)= \begin{cases}0, & t<k \\ 1, & t \geq k\end{cases}
$$

Then u_{1} and u_{0} commute but do not define same state of \mathcal{B} at time $t=3$.
(b) Give an example of two different signals $w_{1}, w_{2} \in \mathcal{B}$ which define same state of \mathcal{B} at $t=4$.
u_{1} and u_{2}.
(c) Find a time-invariant discrete-time finite state-space "difference inCLUSION" MODEL FOR \mathcal{B}, I.E. FIND A finite SET X and FUNCTIONS $g: X \mapsto$ $\{0,1\}, f: X \mapsto S(X)$, Where $S(X)$ Denotes the set of all non-empty SUBSETS OF X, SUCH THAT A SEQUENCE $w(0), w(1), w(2), \ldots$ CAN BE ObTAINED by sampling a signal $w \in \mathcal{B}$ If and only if there exists a sequence $x(0), x(1), x(2), \ldots$ of elements from X such that

$$
x(t+1) \in f(x(t)) \text { and } w(t)=g(x(t)) \text { for } t=0,1,2, \ldots
$$

(Figuring out which pairs of signals define same state of \mathcal{B} at a given time is one possible way to arrive at a solution.)
Condition (1.3) naturally calls for X to be the set of all possible combinations

$$
x(t)=\left[N_{-}(w, t) ; N_{+}(w, t) ; D(w, t) ; w(t)\right] .
$$

Note that not more than one of the first three components can be non-zero at a given time instance, and hence the total number of possible values of $x(t)$ is eight, which further reduces to four at $t=0$, since

$$
N_{-}(w, 0)=D(w, 0)=0 \quad \forall w \in \mathcal{B} .
$$

The dynamics of $x(t)$ is given by

$$
\begin{aligned}
& f([0 ; 0 ; 0 ; 0])=\{[0 ; 0 ; 0 ; 0]\}, \\
& f([0 ; 0 ; 0 ; 1])=\{[0 ; 0 ; 0 ; 1]\}, \\
& f([1 ; 0 ; 0 ; 0])=\{[1 ; 0 ; 0 ; 0]\}, \\
& f([1 ; 0 ; 0 ; 1])=\{[1 ; 0 ; 0 ; 1]\}, \\
& f([0 ; 1 ; 0 ; 0])=\{[1 ; 0 ; 0 ; 0]\}, \\
& f([0 ; 1 ; 0 ; 1])=\{[1 ; 0 ; 0 ; 1]\}, \\
& f([0 ; 0 ; 1 ; 0])=\{[0 ; 0 ; 1 ; 0],[0 ; 1 ; 0 ; 1]\}, \\
& f([0 ; 0 ; 1 ; 1])=\{[0 ; 0 ; 1 ; 1],[0 ; 1 ; 0 ; 0]\},
\end{aligned}
$$

while $g(x(t))$ is simply the last bit of $x(t)$.
This model is not the minimal state space model of \mathcal{B}. Note that last two bits of $x(t+1)$, as well as $w(t)$, depend only on the last two bits of $x(t)$. Hence a model of \mathcal{B} with a two-bit state space $X_{*}=\{0,1\} \times\{0,1\}$ can be given by
$f_{*}([0 ; 0])=\{[0 ; 0]\}, f_{*}([0 ; 1])=\{[0 ; 1]\}, f_{*}([1 ; 0])=\{[0 ; 1],[1 ; 0]\}, f_{*}([1 ; 1])=\{[0 ; 0],[1 ; 1]\}$,
and

$$
g_{*}\left(\left[x_{1} ; x_{2}\right]\right)=x_{2} .
$$

Problem 1.2

Consider differential equation

$$
\ddot{y}(t)+\operatorname{sgn}(\dot{y}(t)+y(t))=0 .
$$

(a) Write down an equivalent ODE $\dot{x}(t)=a(x(t))$ FOR the state Vector $x(t)=[y(t) ; \dot{y}(t)]$.

$$
a\left(\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
\bar{x}_{2} \\
-\operatorname{sgn}\left(\bar{x}_{1}+\bar{x}_{2}\right)
\end{array}\right] .
$$

(b) Find all vectors $\bar{x}_{0} \in \mathbf{R}^{2}$ for which the ODE from (a) does not have A SOLUTION $x:\left[t_{0}, t_{1}\right] \mapsto \mathbf{R}^{2}$ (With $t_{1}>t_{0}$) SATISFYing INITIAL CONDITION $x\left(t_{0}\right)=x_{0}$.
Solutions (forward in time) do not exist for

$$
\bar{x}_{0} \in X_{0}=\left\{\left[\begin{array}{c}
\bar{x}_{01} \\
\bar{x}_{02}
\end{array}\right] \in \mathbf{R}^{2}: \bar{x}_{01}+\bar{x}_{02}=0, \bar{x}_{01} \in[-1,1], \bar{x}_{01} \neq 0\right\}
$$

To show this, note first that, for

$$
\bar{x}_{01}+\bar{x}_{02} \geq 0, \bar{x}_{02}>1,
$$

a solution is given by

$$
x(t)=\left[\begin{array}{c}
\bar{x}_{01}+t \bar{x}_{02}-t^{2} / 2 \\
\bar{x}_{02}-t
\end{array}\right], \quad t \in\left[0,2\left(\bar{x}_{02}-1\right)\right] .
$$

Similarly, for

$$
\bar{x}_{01}+\bar{x}_{02} \leq 0, \bar{x}_{02}<-1,
$$

a solution is given by

$$
x(t)=\left[\begin{array}{c}
\bar{x}_{01}+t \bar{x}_{02}+t^{2} / 2 \\
\bar{x}_{02}+t
\end{array}\right], \quad t \in\left[0,2\left(-\bar{x}_{02}-1\right)\right] .
$$

Finally, for $\bar{x}_{0}=0$ there is the equilibrium solution $x(t) \equiv 0$.
Now it is left to prove that no solutions with $x(0) \in X_{0}$ exist. Assume that, to the contrary, $x:[0, \epsilon] \mapsto \mathbf{R}$ is a solution with $\epsilon>0$ and $x(0)=[-t, t]$ for some $t \in[-1,1], t \neq 0$. Without loss of generality, assume that $0<t \leq 1$.
Since x is continuous, there exist $\delta \in(0, \epsilon)$ such that $x_{2}(t)>0$ for all $t \in[0, \delta]$. Let t_{0} be the argument of minimum of $x_{1}(t)+x_{2}(t)$ for $t \in[0, \delta]$. If $x_{1}\left(t_{0}\right)+x_{2}\left(t_{0}\right)<0$ then $x_{2}(t)-\operatorname{sgn}\left(x_{1}(t)+x_{2}(t)\right) \geq 1$ for t in a neigborhood of t_{0}, which contradicts
the assumption that t_{0} is an argument of a minimum. Hence $x_{1}(t)+x_{2}(t) \geq 0$ for all $t \in[0, \delta]$. Moreover, since x_{1} is an integral of $x_{2}>0, x_{1}(t)$ is strictly monotonically non-increasing on $[0, \delta]$, and hence $x_{1}(t)>-1$ for all $t \in(0, \delta]$.
Let t_{0} be the argument of maximum of $x_{1}(t)+x_{2}(t)$ on $[0, \delta]$. If $x_{1}\left(t_{0}\right)+x_{2}\left(t_{0}\right)>0$ then $x_{1}(t)+x_{2}(t)>0$ in a neigborhood of t_{0}. Combined with $x_{1}(t)>-1$, this yields

$$
d(t)=x_{2}(t)-\operatorname{sgn}\left(x_{1}(t)+x_{2}(t)\right)<-x_{1}(t)-\operatorname{sgn}\left(x_{1}(t)+x_{2}(t)\right)<1-1=0
$$

Since $x_{1}+x_{2}$ is an integral of d, this contradicts the assumption that t_{0} is an argument of a maximum. Hence $x_{1}(t)+x_{2}(t)=0$ for $t \in[0, \delta]$, which implies that $x_{2}(t)$ is a constant. Hence $x_{1}(t)$ is a constant as well, which contradicts the strict monotonicity of $x_{1}(t)$.
(c) Define a semicontinuous convex set-valued function η : $\mathbf{R}^{2} \mapsto 2^{2} \mathbf{R}^{2}$ SUCH THAT $a(\bar{x}) \in \eta(\bar{x})$ FOR ALL x. Make SURE THE SETS $\eta(\bar{x})$ ARE THE SMALLEST POSSIBLE SUBJECT TO THESE CONSTRAINTS.
First note that $a\left(\left[\bar{x}_{1}, \bar{x}_{2}\right]\right)$ converges to $\left[\bar{x}_{2}^{0} ; 1\right]$ as $\bar{x}_{2} \rightarrow \bar{x}_{2}^{0}$ within the open half plane $\bar{x}_{1}+\bar{x}_{2}<0$. Similarly, $a\left(\left[\bar{x}_{1}, \bar{x}_{2}\right]\right)$ converges to $\left[\bar{x}_{2}^{0} ;-1\right]$ as $\bar{x}_{2} \rightarrow \bar{x}_{2}^{0}$ subject to $\bar{x}_{1}+\bar{x}_{2}>0$. Hence one must have $\eta(\bar{x}) \supset \eta_{0}(\bar{x})$, where

$$
\begin{aligned}
& \eta_{0}\left(\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]\right)=\left\{\left[\begin{array}{c}
\bar{x}_{2} \\
-t
\end{array}\right]:\right. \\
&\left.\qquad t \in \nu\left(\bar{x}_{1}+\bar{x}_{2}\right)\right\}, \\
& \nu(y)= \begin{cases}\{1\}, & y>0 \\
\{-1\}, & y<0, \\
{[-1,1],} & y=0 .\end{cases}
\end{aligned}
$$

On the other hand, it is easy to check that the compact convex set-valued function η_{0} is semicontinuous. Hence $\eta=\eta_{0}$.
(d) Find explicitly all solutions of the differential inclusion $\dot{x}(t) \in \eta(x(t))$ SATISFYING INITIAL CONDITIONS $x(0)=x_{0}$, WHERE x_{0} ARE THE VECTORS FOUND in (B). Such solutions are calles sliding modes.
The proof in (b) can be repeated to show that all such solutions will stay on the hyperplane $x_{1}(t)+x_{2}(t)=0$. Hence

$$
x_{1}(t)=x_{1}(0) e^{-t}, \quad x_{2}(t)=x_{2}(0) e^{-t}
$$

(e) Repeat (c) For $a: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ Defined by

$$
\begin{gathered}
a\left(\left[x_{1} ; x_{2}\right]\right)=\left[\operatorname{sgn}\left(x_{1}\right) ; \operatorname{sgn}\left(x_{2}\right)\right] . \\
\eta\left(\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]\right)=\left\{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]: c_{1} \in \nu\left(\bar{x}_{1}\right), c_{2} \in \nu\left(\bar{x}_{2}\right)\right\} .
\end{gathered}
$$

Problem 1.3

For the statements below, state whether they are true or false. For true statements, give a brief proof (CAn refer to lecture notes or books). For false statements, give a counterexample.
(a) All maximal solutions of ODE $\dot{x}(t)=\exp \left(-x(t)^{2}\right)$ ARE defined on the WHOLE TIME AXIS $\{t\}=\mathbf{R}$.
This statement is true. Indeed, a maximal solution $x=x(t)$ is defined on an interval with a finite bound t_{*} only when $|x(t)| \rightarrow \infty$ as $t \rightarrow t_{*}$. However, $x(t)$ is an integral of a function not exceeding 1 by absolute value. Hence $\left|x(t)-x\left(t_{0}\right)\right| \leq\left|t-t_{0}\right|$ for all t, and therefore $|x(t)|$ cannot approach infinity on a finite time interval.
(b) All solutions $x: \mathbf{R} \mapsto \mathbf{R}$ of the ODE

$$
\dot{x}(t)= \begin{cases}x(t) / t, & t \neq 0 \\ 0, & t=0\end{cases}
$$

ARE SUCH THAT $x(t)=-x(-t)$ FOR ALL $t \in \mathbf{R}$.
This statement is false. Indeed, for every pair $c_{1}, c_{2} \in \mathbf{R}$ the function

$$
x(t)= \begin{cases}c_{1} t, & t \leq 0 \\ c_{2} t, & t>0\end{cases}
$$

is a solution of the ODE, which can be verified by checking that

$$
x\left(t_{2}\right)-x\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} \frac{x(t)}{t} d t \quad \forall t_{1}, t_{2}
$$

(c) If constant signal $w(t) \equiv 1$ belongs to a system behavior set \mathcal{B}, But CONSTANT SIGNAL $w(t) \equiv-1$ DOES NOT THEN THE SYSTEM IS NOT LINEAR.
This statement is true. Indeed, if \mathcal{B} is linear then $c w \in \mathcal{B}$ for all $c \in \mathbf{R}, w \in \mathcal{B}$. With $c=-1$ this means that, for a linear system, $w \in \mathcal{B}$ if and only if $-w \in \mathcal{B}$.

[^0]: ${ }^{1}$ Version of October 2, 2003

