Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS

by A. Megretski

Problem Set 1 Solutions¹

Problem 1.1

Behavior set \mathcal{B} of an autonomous system with a scalar binary DT output consists of all DT signals $w = w(t) \in \{0, 1\}$ which change value at most once for $0 \leq t < \infty$.

(a) GIVE AN EXAMPLE OF TWO SIGNALS $w_1, w_2 \in \mathcal{B}$ which commute at t = 3, but DO NOT DEFINE SAME STATE OF \mathcal{B} at t = 3.

To answer this and the following questions, let us begin with formulating necessary and sufficient conditions for two signals $z_1, z_2 \in \mathcal{B}$ to commute and to define same state of \mathcal{B} at a given time t.

For $w \in \mathcal{B}, t \in [0, \infty)$ let

$$w[t] = \begin{cases} \lim_{\tau \to t, \tau < t} w(\tau), & \text{if } t > 0, \\ w(0), & \text{if } t = 0 \end{cases}$$

be the left side limit value of w at t. Let

$$N_{+}(w,t) = \begin{cases} 0, & \text{if } w(t) = \lim_{\tau \to \infty} w(\tau), \\ 1, & \text{otherwise} \end{cases}$$

be the number of discontinuities of $w(\tau)$ between $\tau = t$ and $\tau = \infty$. Similarly, let

$$N_{-}(w,t) = \begin{cases} 0, & \text{if } w(0) = w[t], \\ 1, & \text{otherwise} \end{cases}$$

be the number of discontinuities of $w(\tau)$ between $\tau = 0$ and $\tau = t - 0$.

¹Version of October 2, 2003

Lemma 1.1 Signals $z_1, z_2 \in \mathcal{B}$ commute at time $t \in [0, \infty)$ if and only if $z_1(t) = z_2(t)$ and

$$N_{-}(z_{1},t) + N_{+}(z_{2},t) + |z_{2}(t) - z_{1}[t]| \le 1$$
(1.1)

and

$$N_{-}(z_{2},t) + N_{+}(z_{1},t) + |z_{1}(t) - z_{2}[t]| \le 1.$$
(1.2)

Proof First note that the "hybrid" signal z_{12} , obtained by "gluing" the past of z_1 (before time t) to the future of z_2 (from t to ∞), is a discrete time signal if and only if $z_1(t) = z_2(t)$. Moreover, since he discontinuities of z_{12} result from three causes: discontinuities of $z_1(\tau)$ before $\tau = t$, discontinuities of z_2 between $\tau = t$ and $\tau = \infty$, and the inequality between $z_1[t]$ and $z_1(t)$, condition (1.1) is necessary and sufficient for $z_{12} \in \mathcal{B}$ (subject to $z_1(t) = z_2(t)$). Similarly, considering the discontinuities of the other "hybrid" obtained by "gluing" the past of z_2 to the future of z_2 yields (1.2).

It follows immediately from Lemma 1.1 that signals $z_1, z_2 \in \mathcal{B}$ define same state of \mathcal{B} at time $t \in [0, \infty)$ if and only if

$$N_{-}(z_{1},t) = N_{-}(z_{2},t), \ D(z_{1},t) = D(z_{2},t), \ N_{+}(z_{1},t) = N_{+}(z_{2},t), \ z_{1}(t) = z_{2}(t),$$
(1.3)

where for $w \in \mathcal{B}$

$$D(w,t) = |w(t) - w[t]|$$

is the indicator of a discontinuity at t.

For $k \in \mathbf{Z}_+$ let $u_k \in \mathcal{B}$ be defined by

$$u_k(t) = \begin{cases} 0, & t < k, \\ 1, & t \ge k. \end{cases}$$

Then u_1 and u_0 commute but do not define same state of \mathcal{B} at time t = 3.

(b) GIVE AN EXAMPLE OF TWO different SIGNALS $w_1, w_2 \in \mathcal{B}$ WHICH DEFINE SAME STATE OF \mathcal{B} AT t = 4.

 u_1 and u_2 .

(c) FIND A TIME-INVARIANT DISCRETE-TIME FINITE STATE-SPACE "DIFFERENCE IN-CLUSION" MODEL FOR \mathcal{B} , I.E. FIND A finite SET X AND FUNCTIONS $g: X \mapsto$ $\{0,1\}, f: X \mapsto S(X)$, WHERE S(X) DENOTES THE SET OF ALL NON-EMPTY SUBSETS OF X, SUCH THAT A SEQUENCE $w(0), w(1), w(2), \ldots$ CAN BE OBTAINED BY SAMPLING A SIGNAL $w \in \mathcal{B}$ IF AND ONLY IF THERE EXISTS A SEQUENCE $x(0), x(1), x(2), \ldots$ OF ELEMENTS FROM X SUCH THAT

$$x(t+1) \in f(x(t))$$
 and $w(t) = g(x(t))$ for $t = 0, 1, 2, ...$

(Figuring out which pairs of signals define same state of \mathcal{B} at a given time is one possible way to arrive at a solution.)

Condition (1.3) naturally calls for X to be the set of all possible combinations

$$x(t) = [N_{-}(w, t); N_{+}(w, t); D(w, t); w(t)].$$

Note that not more than one of the first three components can be non-zero at a given time instance, and hence the total number of possible values of x(t) is eight, which further reduces to four at t = 0, since

$$N_{-}(w,0) = D(w,0) = 0 \quad \forall \ w \in \mathcal{B}.$$

The dynamics of x(t) is given by

$$f([0;0;0;0]) = \{[0;0;0;0]\},\$$

$$f([0;0;0;1]) = \{[0;0;0;1]\},\$$

$$f([1;0;0;0]) = \{[1;0;0;0]\},\$$

$$f([1;0;0;1]) = \{[1;0;0;1]\},\$$

$$f([0;1;0;0]) = \{[1;0;0;1]\},\$$

$$f([0;1;0;1]) = \{[1;0;0;1]\},\$$

$$f([0;0;1;0]) = \{[0;0;1;0], [0;1;0;1]\},\$$

while g(x(t)) is simply the last bit of x(t).

This model is not the *minimal* state space model of \mathcal{B} . Note that last two bits of x(t+1), as well as w(t), depend only on the last two bits of x(t). Hence a model of \mathcal{B} with a two-bit state space $X_* = \{0, 1\} \times \{0, 1\}$ can be given by

$$f_*([0;0]) = \{[0;0]\}, \ f_*([0;1]) = \{[0;1]\}, \ f_*([1;0]) = \{[0;1], [1;0]\}, \ f_*([1;1]) = \{[0;0], [1;1]\},$$

and

$$g_*([x_1;x_2]) = x_2.$$

4

Problem 1.2

CONSIDER DIFFERENTIAL EQUATION

$$\ddot{y}(t) + \operatorname{sgn}(\dot{y}(t) + y(t)) = 0.$$

(a) WRITE DOWN AN EQUIVALENT ODE $\dot{x}(t) = a(x(t))$ for the state vector $x(t) = [y(t); \dot{y}(t)].$

$$a\left(\left[\begin{array}{c} \bar{x}_1\\ \bar{x}_2\end{array}\right]\right) = \left[\begin{array}{c} \bar{x}_2\\ -\mathrm{sgn}(\bar{x}_1 + \bar{x}_2)\end{array}\right].$$

(b) Find all vectors $\bar{x}_0 \in \mathbf{R}^2$ for which the ODE from (a) does not have a solution $x : [t_0, t_1] \mapsto \mathbf{R}^2$ (with $t_1 > t_0$) satisfying initial condition $x(t_0) = x_0$.

Solutions (forward in time) do not exist for

$$\bar{x}_0 \in X_0 = \left\{ \begin{bmatrix} \bar{x}_{01} \\ \bar{x}_{02} \end{bmatrix} \in \mathbf{R}^2 : \bar{x}_{01} + \bar{x}_{02} = 0, \ \bar{x}_{01} \in [-1,1], \ \bar{x}_{01} \neq 0 \right\}.$$

To show this, note first that, for

$$\bar{x}_{01} + \bar{x}_{02} \ge 0, \ \bar{x}_{02} > 1,$$

a solution is given by

$$x(t) = \begin{bmatrix} \bar{x}_{01} + t\bar{x}_{02} - t^2/2 \\ \bar{x}_{02} - t \end{bmatrix}, \ t \in [0, 2(\bar{x}_{02} - 1)].$$

Similarly, for

$$\bar{x}_{01} + \bar{x}_{02} \le 0, \ \bar{x}_{02} < -1,$$

a solution is given by

$$x(t) = \begin{bmatrix} \bar{x}_{01} + t\bar{x}_{02} + t^2/2 \\ \bar{x}_{02} + t \end{bmatrix}, \ t \in [0, 2(-\bar{x}_{02} - 1)].$$

Finally, for $\bar{x}_0 = 0$ there is the equilibrium solution $x(t) \equiv 0$.

Now it is left to prove that no solutions with $x(0) \in X_0$ exist. Assume that, to the contrary, $x : [0, \epsilon] \mapsto \mathbf{R}$ is a solution with $\epsilon > 0$ and x(0) = [-t, t] for some $t \in [-1, 1], t \neq 0$. Without loss of generality, assume that $0 < t \leq 1$.

Since x is continuous, there exist $\delta \in (0, \epsilon)$ such that $x_2(t) > 0$ for all $t \in [0, \delta]$. Let t_0 be the argument of minimum of $x_1(t) + x_2(t)$ for $t \in [0, \delta]$. If $x_1(t_0) + x_2(t_0) < 0$ then $x_2(t) - \operatorname{sgn}(x_1(t) + x_2(t)) \ge 1$ for t in a neighborhood of t_0 , which contradicts

the assumption that t_0 is an argument of a minimum. Hence $x_1(t) + x_2(t) \ge 0$ for all $t \in [0, \delta]$. Moreover, since x_1 is an integral of $x_2 > 0$, $x_1(t)$ is strictly monotonically non-increasing on $[0, \delta]$, and hence $x_1(t) > -1$ for all $t \in (0, \delta]$.

Let t_0 be the argument of maximum of $x_1(t) + x_2(t)$ on $[0, \delta]$. If $x_1(t_0) + x_2(t_0) > 0$ then $x_1(t) + x_2(t) > 0$ in a neighborhood of t_0 . Combined with $x_1(t) > -1$, this yields

$$d(t) = x_2(t) - \operatorname{sgn}(x_1(t) + x_2(t)) < -x_1(t) - \operatorname{sgn}(x_1(t) + x_2(t)) < 1 - 1 = 0.$$

Since $x_1 + x_2$ is an integral of d, this contradicts the assumption that t_0 is an argument of a maximum. Hence $x_1(t) + x_2(t) = 0$ for $t \in [0, \delta]$, which implies that $x_2(t)$ is a constant. Hence $x_1(t)$ is a constant as well, which contradicts the strict monotonicity of $x_1(t)$.

(c) Define a semicontinuous convex set-valued function η : $\mathbf{R}^2 \mapsto 2^{\mathbf{R}^2}$ such that $a(\bar{x}) \in \eta(\bar{x})$ for all x. Make sure the sets $\eta(\bar{x})$ are the smallest possible subject to these constraints.

First note that $a([\bar{x}_1, \bar{x}_2])$ converges to $[\bar{x}_2^0; 1]$ as $\bar{x}_2 \to \bar{x}_2^0$ within the open half plane $\bar{x}_1 + \bar{x}_2 < 0$. Similarly, $a([\bar{x}_1, \bar{x}_2])$ converges to $[\bar{x}_2^0; -1]$ as $\bar{x}_2 \to \bar{x}_2^0$ subject to $\bar{x}_1 + \bar{x}_2 > 0$. Hence one must have $\eta(\bar{x}) \supset \eta_0(\bar{x})$, where

$$\eta_0 \left(\begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} \right) = \left\{ \begin{bmatrix} \bar{x}_2 \\ -t \end{bmatrix} : t \in \nu(\bar{x}_1 + \bar{x}_2) \right\},\$$
$$\nu(y) = \left\{ \begin{array}{ll} \{1\}, & y > 0, \\ \{-1\}, & y < 0, \\ [-1,1], & y = 0. \end{array} \right.$$

On the other hand, it is easy to check that the compact convex set-valued function η_0 is semicontinuous. Hence $\eta = \eta_0$.

(d) FIND EXPLICITLY ALL SOLUTIONS OF THE DIFFERENTIAL INCLUSION $\dot{x}(t) \in \eta(x(t))$ SATISFYING INITIAL CONDITIONS $x(0) = x_0$, WHERE x_0 ARE THE VECTORS FOUND IN (B). SUCH SOLUTIONS ARE CALLES *sliding modes*.

The proof in (b) can be repeated to show that all such solutions will stay on the hyperplane $x_1(t) + x_2(t) = 0$. Hence

$$x_1(t) = x_1(0)e^{-t}, \quad x_2(t) = x_2(0)e^{-t}.$$

(e) Repeat (c) for $a: \mathbf{R}^2 \mapsto \mathbf{R}^2$ defined by

$$a([x_1; x_2]) = [\operatorname{sgn}(x_1); \operatorname{sgn}(x_2)]$$

$$\eta\left(\left[\begin{array}{c} \bar{x}_1\\ \bar{x}_2\end{array}\right]\right) = \left\{\left[\begin{array}{c} c_1\\ c_2\end{array}\right]: c_1 \in \nu(\bar{x}_1), c_2 \in \nu(\bar{x}_2)\right\}.$$

Problem 1.3

For the statements below, state whether they are true or false. For true statements, give a *brief* proof (can refer to lecture notes or books). For false statements, give a counterexample.

(a) All maximal solutions of ODE $\dot{x}(t) = \exp(-x(t)^2)$ are defined on the whole time axis $\{t\} = \mathbf{R}$.

This statement is **true**. Indeed, a maximal solution x = x(t) is defined on an interval with a finite bound t_* only when $|x(t)| \to \infty$ as $t \to t_*$. However, x(t) is an integral of a function not exceeding 1 by absolute value. Hence $|x(t) - x(t_0)| \le |t - t_0|$ for all t, and therefore |x(t)| cannot approach infinity on a finite time interval.

(b) All solutions $x: \mathbf{R} \mapsto \mathbf{R}$ of the ODE

$$\dot{x}(t) = \begin{cases} x(t)/t, & t \neq 0, \\ 0, & t = 0 \end{cases}$$

ARE SUCH THAT x(t) = -x(-t) FOR ALL $t \in \mathbf{R}$.

This statement is **false**. Indeed, for every pair $c_1, c_2 \in \mathbf{R}$ the function

$$x(t) = \begin{cases} c_1 t, & t \le 0, \\ c_2 t, & t > 0 \end{cases}$$

is a solution of the ODE, which can be verified by checking that

$$x(t_2) - x(t_1) = \int_{t_1}^{t_2} \frac{x(t)}{t} dt \quad \forall \ t_1, t_2.$$

(c) IF CONSTANT SIGNAL $w(t) \equiv 1$ BELONGS TO A SYSTEM BEHAVIOR SET \mathcal{B} , BUT CONSTANT SIGNAL $w(t) \equiv -1$ DOES NOT THEN THE SYSTEM IS NOT LINEAR. This statement is **true**. Indeed, if \mathcal{B} is linear then $cw \in \mathcal{B}$ for all $c \in \mathbf{R}$, $w \in \mathcal{B}$.

With c = -1 this means that, for a linear system, $w \in \mathcal{B}$ if and only if $-w \in \mathcal{B}$.