
� 

+ � 

Massachusetts Institute of Technology 

Department of Electrical Engineering and Computer Science 

6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS 

by A. Megretski 

Problem Set 2 Solutions1 

Problem 2.1 

Consider the feedback system with external input r = r(t), a causal linear 
time invariant forward loop system G with input u = u(t), output v = v(t), 

a)−1/2e−t, where ¯and impulse response g(t) = 0.1�(t) + (t + ̄ a 0 is a parameter, →
and a memoryless nonlinear feedback loop u(t) = r(t) + π(v(t)), where π(y) = 
sin(y). It is customary to require well-posedness of such feedback models, 
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Figure 2.1: Feedback setup for Problem 2.1 

which will usually mean existence and uniqueness of solutions v = v(t), 
u = u(t) of system equations 

⎬ t 

v(t) = 0.1u(t) + h(t − δ )u(δ )dδ, u(t) = r(t) + π(v(t)) 
0 

on the time interval t ≤ [0, ⊂) for every bounded input signal r = r(t). 
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(a)	 Show how Theorem 3.1 from the lecture notes can be used to prove 
well-posedness in the case when ā > 0.


In terms of the new signal variable


y(t) = v(t) − 0.1π(v(t)) − 0.1r(t) 

system equations can be re-written as 
⎬ t 

y(t) = h(t − δ)[r(δ) + �(y(δ) + 0.1r(δ))]dδ, 
0 

where 
−t(t + a)−1/2e , t 0 

h(t) =	
→

0,	 otherwise, 

and � : R ∞� R is the function which maps z ≤ R into π(q), with q being the 
solution of 

q − 0.1π(q) = z. 

Since π is continuously differentiable, and its derivative ranges in [−1, 1], � is con
tinuously differentiable as well, and its derivative ranges between 1/1.1 and 1/0.9. 

For every constant T ≤ [0, ⊂), the equation for y(t) with t T can be re-written → 
as 

⎬ t 

y(t) = y(T ) + aT (y(δ), δ, t)dδ, 
T 

where

aT (¯
y, δ, t) = h(t − δ)[r(δ) + �(y(δ) + 0.1r(δ))] + hT (t), 

⎬ T 

hT (t) = ḣ(t − δ)[r(δ) + �(y(δ) + 0.1r(δ))]dδ. 
0 

When parameter a takes a positive value, function a = aT satisfies conditions of ¯
Theorem 3.1 with X = Rn, ¯ a) being a x0 = y(T ), r = 1, and t0 = T , with K = K(¯

function of ¯
a = 0, and ≥

M = MT = M0(a)(1 + max y(t) ). 
t�[0,T ] 

| |

Hence a solution y = y(·) defined on an interval t ≤ [0, T ] can be extended in a 
unique way to the interval t ≤ [0, T+], where 

T+ − T = min{1/MT , 1/(2K)}, 

and

max y(t) √ MT (T+ − T ) + max y(t) ).


t�[0,T+ ] 
| |	

t�[0,T ] 
| |
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Starting with T = T (0) = 0, for k = 0, 1, 2, . . . define T (k + 1) as the T+ calculated 
for T = T (k). To finish the proof of well posedness, we have to show that T (k) � ⊂ 

. Indeed, since as k � ⊂

MT (k)(T (k + 1) − T (k)) = MT (k) min{1/MT (k), 1/(2K)} √ 1, 

MT (k) grows not faster than linearly with k. Hence T (k + 1) − T (k) decrease not 
faster than c/k, and therefore T (k) � ⊂ as k � ⊂. 

(b)	 Propose a generalization of Theorem 3.1 which can be applied when 
ā = 0 as well. 

An appropriate generalization, relying on integral time-varying bounds for a and its 
increments, rather than their maximal values, is suggested at the end of proof of 
Theorem 3.1 in the lecture notes. 

Problem 2.2 

Read the section of Lecture 4 handouts on limit sets of trajectories of 
ODE (it was not covered in the classroom). 

(a) Give an example of a continuously differentiable function a : R2 

R2	
∞�

, and a solution of ODE 

ẋ(t) = a(x(t)),	 (2.1) 

for which the limit set consists of a single trajectory of a non-
periodic and non-equilibrium solution of (2.1). 

The limit trajectory should be that of a maximal solution x : (t1, t2) ∞� R2 such 
that x(t) � ⊂ as t � t1 or t � t2.|	 |
To construct a system with such limit trajectory, start with a planar ODE for which 
every solution, except the equilibrium solution at the origin, converges to a periodic 
solution which trajectory is the unit circle. Considering R2 as the set of all complex 
numbers, one such ODE can be written as 

ż(t) = (1 − z(t) + j) z(t) z(t), where j = 
�
−1,| | | |

where every solution with z(0) = 0 converges to the trajectory of periodic solution ≥
z0(t) = ejt . Now apply the substitution 

1 
z = + 1, 

w 

which moves the point z = 1 to w = ⊂ (and also moves z = ⊂ to w = 0). For the 
resulting system 

ẇ(t) = −w(t)(1 + w(t))(1 + j − (1 + w(t))/w(t) ) (1 + w(t))/w(t) , (2.2)|	 | | |
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every solution w(·) with w(0) = 0 will have the straight line passing through the 
points w = −1/2 and w = 1/(j

≥
− 1) (trajectory of the solution w0(t) = 1/(ejt − 1), 

defined for t ≤ (0, 2�)), as its limit set. However, the right side of (2.2) is not a 
continuously differentiable function of w: there is a discontinuity at w = 0. To fix 
this problem, multiply the right side by the real number |w(t) 4, which yields |

a(w) = −w(1 + w)((1 + j) w 2 (1 + w)w ) (1 + w)w .|	 | − | | | |

For the resulting system, every trajectory except the equilibrium at w = 0 has the 
same limit set as defined before. 

Rn(b) Give an example of a continuously differentiable function a : ∞�
Rn, and a bounded solution of ODE (2.1), for which the limit set con
tains no equilibria and no trajectories of periodic solutions. 

It is possible to do this with a 4th order linear time-invariant system with purely 
imaginary poles: 

ẋ1(t) = x2(t), 

ẋ2(t) = −x1(t), 

ẋ3(t) = �x4(t), 

ẋ4(t) = −�x3(t). 

The solution 
⎫ ⎢


sin(t)

⎧�	 cos(t) 

� ⎧x(t) = 
�	 sin(�t) ⎨ 

cos(�t) 

of this ODE has the limit set 
�	 ⎩⎫ ⎢ 
⎥ sin(t1)	 ⎥ 
⎥	 ⎥ 
⎣	 ⎦ 

⎧�	 cos(t1)� = � ⎧ : t1, t2 ≤ R . 
⎥

� sin(t2) ⎨ ⎥ 
⎥	 ⎥ 
⎤	 ⎪

cos(t2) 

Indeed, since � is not a rational number, every real number can be approximated 
arbitrarily well by 2�k − 2q where k, q are arbitrarily large positive integers. Hence 
the difference between t1 + 2�k and t2/� + 2q can be made arbitrarily small for every 
given pair t1, t2 ≤ R. For t = t1 + 2�k this implies that 

sin(t) = sin(t1), cos(t) = cos(t1), sin(�t) � sin(t2+2�q) = sin(t2), cos(�t) � cos(t2). 
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Every solution with x(0) in � has the form 
⎫ ⎢ 

sin(t + t1) 
⎧� cos(t + t1) 

� ⎧x(t) = 
� sin(�t + t2) ⎨ , 

cos(�t + t2) 

and hence is not periodic. 

An example with n = 3 is also possible. However, such example would require more 
work, since it cannot be given by a linear system. 

(c) Use Theorem 4.3 from the lecture notes to derive the Poincare-
Bendixon	 theorem: if a set X ≈ R2 is compact (i.e. closed and bounded), 

x) ≤ X for all t 0 and ¯positively invariant for system (2.1) (i.e. x(t, ¯ → x ≤ X), and 
contains no equilibria, then the limit set of every solution starting in X is a closed 
orbit (i.e. the trajectory of a periodic solution). Assume that a : R2 ∞� R2 is 
continuously differentiable. 

Let x0 : (t1, t2) ∞� R2 be a maximal solution of (2.1) such that t1 < 0 < t2 and 
x(0) ≤ X. Then, by the invariance of X, x(t) ≤ X for all t 0. Hence x(t) is →
bounded for t → 0, and hence t2 = Appllying Theorem 4.3 to x0, note first that ⊂. 
scenario (a) cannot take place (since x(t) is bounded for t → 0). On the other hand, 
scenario (c) also cannot take place. Indeed, otherwise let x1 : (t1 

1, t
1 be a 

maximal solution of (2.1) such that x1(t) is a limit point of x0(·) for all t ≤ (t1 2). 
2) ∞� R2

1, t
1 

Since X is closed and x0(t) ≤ X for t → 0, all limit points of x0 lie in X. Hence 
x1(t) is in X, and t1 = ⊂. According to scenario (c), the limit 2 

x̄ = lim x1(t) 
t�� 

exists, which implies a(x̄) = 0, contradicting the assumptions. Hence only scenario 
(b) takes place, which is what we had to prove. 

Problem 2.3 

Use the index theory to prove the following statements. 

(a) If n > 1 is even and F : Sn is continuous then there exists x ≤ Sn∞� Sn 

such that x = F (x) or x = −F (x). 

Assume, to the contrary, that x = F (x) and −x = F (x) for all x ≤ Sn . Then≥ ≥

H(x, t) = 
(2t − 1)x + t(1 − t)F (x) 
(2t − 1)x + t(1 − t)F (x)| | 

is a continuous homotopy between H(x, 0) = −x and H(x, 1) = x. Since index 
of the map x ∞� −x equals (−1)n+1 , and index of the map x x equals 1, a∞�
contradiction results. 
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(b) The equations for the harmonically forced nonlinear oscillator 

ÿ(t) + ẏ(t) + (1 + y(t)2)y(t) = 100 cos(t) 

have at least one 2�-periodic solution. Hint: Show first that, for 

V (t) = ẏ(t)2 + y(t)2 + y(t) ̇y(t) + 0.5y(t)4 , 

the inequality 
c1V (t) + c2,V̇ (t) √ −

where c1, c2 are some positive constants, holds for all t. 

Differentiating V (t) along a system solution y = y(t) yields, for w(t) = 100 cos(t), 

−y 2 − yẏ − ˙2 4V̇ = y − y + 2( ̇y + y/2)w 
2 = −0.5V − 0.5( ̇y + y/2)2 + 2( ̇y + y/2)w − 3/8y 

2 = −0.5V + 2w 2 − 0.5( ̇y + y/2 + 2w)2 − 3/8y


√ −0.5V + 20000.


Hence the derivative of

r(t) = e 0.5t(V (t) − 40000) 

is non-positive at all times, i.e. r = r(t) is monotonically non-increasing. 

Consider the function G0 : R2 which maps the vector of initial conditions ∞� R2 

x(0) = [y(0); ẏ(0)] to the vector x(T ) = [y(T ); ẏ(T )], where T = 2�k and k > 0 is 
an integer parameter to be chosen later. By continuity of dependence of solutions 
of ODE on parameters, G0 is continuous. Also, since 

4V (t) √ 3 x(t) 2 + 0.5 x(t)| √ |x(t) 4 + 5,| | | | 

it follows that 

0.5T e (V (T ) − 40000) √ V (0) − 40000 √ x(0) 4 ,| | 

which implies 
4V (T ) √ 40000 + e −�k x(0) .| | 

Since V (t) → 0.5 x(t) 2, it follows that | |
4 x(T ) √ 80000 + 2e −�k( x(0) − 39995).| | | |


Hence, if x(0) √ 300 and
| |

log(2) + 4 log(30) 
k → 

� 
� 4.55 
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then x(T ) √ 300.| | 
Now consider the function G : B2 ∞� B2, where B2 is the unit ball in R2, defined 
by 

G(¯ x)/300.x) = G0(300¯

The function satisfies the conditions of the Brower’s fixed point theorem, and hence 
there exists ¯ x) = ¯x ≤ B2 such that G(¯ x. By the definition of G, the solution of the 
nonlinear oscillator equations with 

⎭ ⎡ 
y(0) 

= 300x̄ 
ẏ(0) 

will be periodic with period T = 10�. 


