Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 2 Solutions ${ }^{1}$

Problem 2.1

Consider the feedback system with external input $r=r(t)$, A Causal linear TIME INVARIANT FORWARD LOOP SYSTEM G WITH INPUT $u=u(t)$, OUTPUT $v=v(t)$, AND IMPULSE RESPONSE $g(t)=0.1 \delta(t)+(t+\bar{a})^{-1 / 2} e^{-t}$, WHERE $\bar{a} \geq 0$ IS A PARAMETER, AND A MEMORYLESS NONLINEAR FEEDBACK LOOP $u(t)=r(t)+\phi(v(t))$, WHERE $\phi(y)=$ $\sin (y)$. It is Customary to Require well-posedness of SUCH FEEDBACK models,

Figure 2.1: Feedback setup for Problem 2.1
WHICH WILL USUALLY MEAN EXISTENCE AND UNIQUENESS OF SOLUTIONS $v=v(t)$, $u=u(t)$ OF SYSTEM EQUATIONS

$$
v(t)=0.1 u(t)+\int_{0}^{t} h(t-\tau) u(\tau) d \tau, \quad u(t)=r(t)+\phi(v(t))
$$

ON THE TIME INTERVAL $t \in[0, \infty)$ FOR EVERY BOUNDED INPUT SIGNAL $r=r(t)$.

[^0](a) Show how Theorem 3.1 from the lecture notes can be used to prove WELL-POSEDNESS IN THE CASE WHEN $\bar{a}>0$.

In terms of the new signal variable

$$
y(t)=v(t)-0.1 \phi(v(t))-0.1 r(t)
$$

system equations can be re-written as

$$
y(t)=\int_{0}^{t} h(t-\tau)[r(\tau)+\theta(y(\tau)+0.1 r(\tau))] d \tau
$$

where

$$
h(t)= \begin{cases}(t+a)^{-1 / 2} e^{-t}, & t \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

and $\theta: \mathbf{R} \mapsto \mathbf{R}$ is the function which maps $z \in \mathbf{R}$ into $\phi(q)$, with q being the solution of

$$
q-0.1 \phi(q)=z
$$

Since ϕ is continuously differentiable, and its derivative ranges in $[-1,1], \theta$ is continuously differentiable as well, and its derivative ranges between $1 / 1.1$ and $1 / 0.9$.
For every constant $T \in[0, \infty)$, the equation for $y(t)$ with $t \geq T$ can be re-written as

$$
y(t)=y(T)+\int_{T}^{t} a_{T}(y(\tau), \tau, t) d \tau
$$

where

$$
\begin{aligned}
a_{T}(\bar{y}, \tau, t) & =h(t-\tau)[r(\tau)+\theta(y(\tau)+0.1 r(\tau))]+h_{T}(t), \\
h_{T}(t) & =\int_{0}^{T} \dot{h}(t-\tau)[r(\tau)+\theta(y(\tau)+0.1 r(\tau))] d \tau .
\end{aligned}
$$

When parameter \bar{a} takes a positive value, function $a=a_{T}$ satisfies conditions of Theorem 3.1 with $X=\mathbf{R}^{n}, \bar{x}_{0}=y(T), r=1$, and $t_{0}=T$, with $K=K(\bar{a})$ being a function of $\bar{a} \neq 0$, and

$$
M=M_{T}=M_{0}(a)\left(1+\max _{t \in[0, T]}|y(t)|\right) .
$$

Hence a solution $y=y(\cdot)$ defined on an interval $t \in[0, T]$ can be extended in a unique way to the interval $t \in\left[0, T_{+}\right]$, where

$$
T_{+}-T=\min \left\{1 / M_{T}, 1 /(2 K)\right\}
$$

and

$$
\left.\max _{t \in\left[0, T_{+}\right]}|y(t)| \leq M_{T}\left(T_{+}-T\right)+\max _{t \in[0, T]}|y(t)|\right)
$$

Starting with $T=T(0)=0$, for $k=0,1,2, \ldots$ define $T(k+1)$ as the T_{+}calculated for $T=T(k)$. To finish the proof of well posedness, we have to show that $T(k) \rightarrow \infty$ as $k \rightarrow \infty$. Indeed, since

$$
M_{T(k)}(T(k+1)-T(k))=M_{T(k)} \min \left\{1 / M_{T(k)}, 1 /(2 K)\right\} \leq 1,
$$

$M_{T(k)}$ grows not faster than linearly with k. Hence $T(k+1)-T(k)$ decrease not faster than c / k, and therefore $T(k) \rightarrow \infty$ as $k \rightarrow \infty$.
(b) Propose a generalization of Theorem 3.1 which can be applied when $\bar{a}=0$ AS WELL.
An appropriate generalization, relying on integral time-varying bounds for a and its increments, rather than their maximal values, is suggested at the end of proof of Theorem 3.1 in the lecture notes.

Problem 2.2

Read the section of Lecture 4 handouts on limit sets of trajectories of ODE (it was not covered in the classroom).
(a) Give an example of a continuously differentiable function $a: \mathbf{R}^{2} \mapsto$ \mathbf{R}^{2}, and a solution of ODE

$$
\begin{equation*}
\dot{x}(t)=a(x(t)) \tag{2.1}
\end{equation*}
$$

FOR WHICH THE LIMIT SET CONSISTS OF A SINGLE TRAJECTORY OF A NONPERIODIC AND NON-EQUILIBRIUM SOLUTION OF (2.1).
The limit trajectory should be that of a maximal solution $x:\left(t_{1}, t_{2}\right) \mapsto \mathbf{R}^{2}$ such that $|x(t)| \rightarrow \infty$ as $t \rightarrow t_{1}$ or $t \rightarrow t_{2}$.
To construct a system with such limit trajectory, start with a planar ODE for which every solution, except the equilibrium solution at the origin, converges to a periodic solution which trajectory is the unit circle. Considering \mathbf{R}^{2} as the set of all complex numbers, one such ODE can be written as

$$
\dot{z}(t)=(1-|z(t)|+j)|z(t)| z(t), \text { where } j=\sqrt{-1},
$$

where every solution with $z(0) \neq 0$ converges to the trajectory of periodic solution $z_{0}(t)=e^{j t}$. Now apply the substitution

$$
z=\frac{1}{w}+1
$$

which moves the point $z=1$ to $w=\infty$ (and also moves $z=\infty$ to $w=0$). For the resulting system

$$
\begin{equation*}
\dot{w}(t)=-w(t)(1+w(t))(1+j-|(1+w(t)) / w(t)|)|(1+w(t)) / w(t)| \tag{2.2}
\end{equation*}
$$

every solution $w(\cdot)$ with $w(0) \neq 0$ will have the straight line passing through the points $w=-1 / 2$ and $w=1 /(j-1)$ (trajectory of the solution $w_{0}(t)=1 /\left(e^{j t}-1\right)$, defined for $t \in(0,2 \pi))$, as its limit set. However, the right side of (2.2) is not a continuously differentiable function of w : there is a discontinuity at $w=0$. To fix this problem, multiply the right side by the real number $|w(t)|^{4}$, which yields

$$
a(w)=-w(1+w)\left((1+j)|w|^{2}-|(1+w) w|\right)|(1+w) w| .
$$

For the resulting system, every trajectory except the equilibrium at $w=0$ has the same limit set as defined before.
(b) Give an example of a continuously differentiable function $a: \mathbf{R}^{n} \mapsto$ \mathbf{R}^{n}, AND A bounded SOLUTION OF ODE (2.1), FOR WHICH THE LIMIT SET CONtains no Equilibria and no trajectories of periodic solutions.

It is possible to do this with a 4th order linear time-invariant system with purely imaginary poles:

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t), \\
\dot{x}_{2}(t) & =-x_{1}(t), \\
\dot{x}_{3}(t) & =\pi x_{4}(t), \\
\dot{x}_{4}(t) & =-\pi x_{3}(t) .
\end{aligned}
$$

The solution

$$
x(t)=\left[\begin{array}{c}
\sin (t) \\
\cos (t) \\
\sin (\pi t) \\
\cos (\pi t)
\end{array}\right]
$$

of this ODE has the limit set

$$
\Omega=\left\{\left[\begin{array}{c}
\sin \left(t_{1}\right) \\
\cos \left(t_{1}\right) \\
\sin \left(t_{2}\right) \\
\cos \left(t_{2}\right)
\end{array}\right]: \quad t_{1}, t_{2} \in \mathbf{R}\right\} .
$$

Indeed, since π is not a rational number, every real number can be approximated arbitrarily well by $2 \pi k-2 q$ where k, q are arbitrarily large positive integers. Hence the difference between $t_{1}+2 \pi k$ and $t_{2} / \pi+2 q$ can be made arbitrarily small for every given pair $t_{1}, t_{2} \in \mathbf{R}$. For $t=t_{1}+2 \pi k$ this implies that
$\sin (t)=\sin \left(t_{1}\right), \cos (t)=\cos \left(t_{1}\right), \sin (\pi t) \approx \sin \left(t_{2}+2 \pi q\right)=\sin \left(t_{2}\right), \cos (\pi t) \approx \cos \left(t_{2}\right)$.

Every solution with $x(0)$ in Ω has the form

$$
x(t)=\left[\begin{array}{c}
\sin \left(t+t_{1}\right) \\
\cos \left(t+t_{1}\right) \\
\sin \left(\pi t+t_{2}\right) \\
\cos \left(\pi t+t_{2}\right)
\end{array}\right],
$$

and hence is not periodic.
An example with $n=3$ is also possible. However, such example would require more work, since it cannot be given by a linear system.
(c) Use Theorem 4.3 from the lecture notes to derive the PoincareBENDIXON THEOREM: if a set $X \subset \mathbf{R}^{2}$ is compact (i.e. closed and bounded), positively invariant for system (2.1) (i.e. $x(t, \bar{x}) \in X$ for all $t \geq 0$ and $\bar{x} \in X$), and contains no equilibria, then the limit set of every solution starting in X is a closed orbit (i.e. the trajectory of a periodic solution). Assume that $a: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ IS CONTINUOUSLY DIFFERENTIABLE.
Let $x_{0}: \quad\left(t_{1}, t_{2}\right) \mapsto \mathbf{R}^{2}$ be a maximal solution of (2.1) such that $t_{1}<0<t_{2}$ and $x(0) \in X$. Then, by the invariance of $X, x(t) \in X$ for all $t \geq 0$. Hence $x(t)$ is bounded for $t \geq 0$, and hence $t_{2}=\infty$. Appllying Theorem 4.3 to x_{0}, note first that scenario (a) cannot take place (since $x(t)$ is bounded for $t \geq 0$). On the other hand, scenario (c) also cannot take place. Indeed, otherwise let $x_{1}:\left(t_{1}^{1}, t_{2}^{1}\right) \mapsto \mathbf{R}^{2}$ be a maximal solution of (2.1) such that $x_{1}(t)$ is a limit point of $x_{0}(\cdot)$ for all $t \in\left(t_{1}^{1}, t_{2}^{1}\right)$. Since X is closed and $x_{0}(t) \in X$ for $t \geq 0$, all limit points of x_{0} lie in X. Hence $x_{1}(t)$ is in X, and $t_{2}^{1}=\infty$. According to scenario (c), the limit

$$
\bar{x}=\lim _{t \rightarrow \infty} x_{1}(t)
$$

exists, which implies $a(\bar{x})=0$, contradicting the assumptions. Hence only scenario (b) takes place, which is what we had to prove.

Problem 2.3

Use the index theory to prove the following statements.
(a) IF $n>1$ Is even and $F: S^{n} \mapsto S^{n}$ IS CONTINUOUS THEN THERE EXISTS $x \in S^{n}$ SUCH THAT $x=F(x)$ OR $x=-F(x)$.
Assume, to the contrary, that $x \neq F(x)$ and $-x \neq F(x)$ for all $x \in S^{n}$. Then

$$
H(x, t)=\frac{(2 t-1) x+t(1-t) F(x)}{|(2 t-1) x+t(1-t) F(x)|}
$$

is a continuous homotopy between $H(x, 0)=-x$ and $H(x, 1)=x$. Since index of the map $x \mapsto-x$ equals $(-1)^{n+1}$, and index of the map $x \mapsto x$ equals 1 , a contradiction results.
(b) The equations for the harmonically forced nonlinear oscillator

$$
\ddot{y}(t)+\dot{y}(t)+\left(1+y(t)^{2}\right) y(t)=100 \cos (t)
$$

have at least one 2π-Periodic solution. Hint: Show first that, for

$$
V(t)=\dot{y}(t)^{2}+y(t)^{2}+y(t) \dot{y}(t)+0.5 y(t)^{4}
$$

THE INEQUALITY

$$
\dot{V}(t) \leq-c_{1} V(t)+c_{2}
$$

WHERE c_{1}, c_{2} ARE SOME POSITIVE CONSTANTS, HOLDS FOR ALL t.
Differentiating $V(t)$ along a system solution $y=y(t)$ yields, for $w(t)=100 \cos (t)$,

$$
\begin{aligned}
\dot{V} & =-y^{2}-y \dot{y}-\dot{y}^{2}-y^{4}+2(\dot{y}+y / 2) w \\
& =-0.5 V-0.5(\dot{y}+y / 2)^{2}+2(\dot{y}+y / 2) w-3 / 8 y^{2} \\
& =-0.5 V+2 w^{2}-0.5(\dot{y}+y / 2+2 w)^{2}-3 / 8 y^{2} \\
& \leq-0.5 V+20000 .
\end{aligned}
$$

Hence the derivative of

$$
r(t)=e^{0.5 t}(V(t)-40000)
$$

is non-positive at all times, i.e. $r=r(t)$ is monotonically non-increasing.
Consider the function $G_{0}: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ which maps the vector of initial conditions $x(0)=[y(0) ; \dot{y}(0)]$ to the vector $x(T)=[y(T) ; \dot{y}(T)]$, where $T=2 \pi k$ and $k>0$ is an integer parameter to be chosen later. By continuity of dependence of solutions of ODE on parameters, G_{0} is continuous. Also, since

$$
V(t) \leq 3|x(t)|^{2}+0.5|x(t)|^{4} \leq|x(t)|^{4}+5
$$

it follows that

$$
e^{0.5 T}(V(T)-40000) \leq V(0)-40000 \leq|x(0)|^{4}
$$

which implies

$$
V(T) \leq 40000+e^{-\pi k}|x(0)|^{4}
$$

Since $V(t) \geq 0.5|x(t)|^{2}$, it follows that

$$
|x(T)| \leq 80000+2 e^{-\pi k}\left(|x(0)|^{4}-39995\right)
$$

Hence, if $|x(0)| \leq 300$ and

$$
k \geq \frac{\log (2)+4 \log (30)}{\pi} \approx 4.55
$$

then $|x(T)| \leq 300$.
Now consider the function $G: B^{2} \mapsto B^{2}$, where B^{2} is the unit ball in \mathbf{R}^{2}, defined by

$$
G(\bar{x})=G_{0}(300 \bar{x}) / 300
$$

The function satisfies the conditions of the Brower's fixed point theorem, and hence there exists $\bar{x} \in B^{2}$ such that $G(\bar{x})=\bar{x}$. By the definition of G, the solution of the nonlinear oscillator equations with

$$
\left[\begin{array}{l}
y(0) \\
\dot{y}(0)
\end{array}\right]=300 \bar{x}
$$

will be periodic with period $T=10 \pi$.

[^0]: ${ }^{1}$ Version of October 8, 2003

