Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS

by A. Megretski

Problem Set 3 Solutions¹

Problem 3.1

Find out which of the functions $V : \mathbf{R}^2 \to \mathbf{R}$,

- (a) $V(x_1, x_2) = x_1^2 + x_2^2;$
- (b) $V(x_1, x_2) = |x_1| + |x_2|;$
- (c) $V(x_1, x_2) = \max |x_1|, |x_2|;$

ARE VALID LYAPUNOV FUNCTIONS FOR THE SYSTEMS

- (1) $\dot{x}_1 = -x_1 + (x_1 + x_2)^3$, $\dot{x}_2 = -x_2 (x_1 + x_2)^3$; (2) $\dot{x}_1 = -x_2 - x_1(x_1^2 + x_2^2)$, $\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2)$;
- (3) $\dot{x}_1 = x_2 |x_1|, \dot{x}_2 = -x_1 |x_2|.$

The answer is: (b) is a Lyapunov function for system (3) - and no other valid pairs System/Lyapunov function in the list. Please note that, when we say that a Lyapunov function V is *defined* on a set U, then we expect that V(x(t)) should non-increase along all system trajectories in U. In the formulation of Problem 3.1, V is said to be defined on the whole phase space \mathbb{R}^2 . Therefore, V(x(t)) must be non-increasing along *all* system trajectories, in order for V to be a valid Lyapunov function.

To show that (b) is a valid Lyapunov function for (3), note first that system (3) is defined by an ODE with a Lipschitz right side, and hence has the uniqueness of solutions property. Now, every point $(x_1, x_2) \in \mathbf{R}^2$ with $x_1 = 0$ or $x_2 = 0$ is an equilibrium of (3). Hence V is automatically valid at those points. At every other point in \mathbf{R}^2 , V is

¹Version of October 10, 2003

differentiable, with $dV/dx = [\operatorname{sgn}(x_1); \operatorname{sgn}(x_2)]$ being the derivative. Hence $\nabla V(x)f(x) = x_1x_2 - x_1x_2 = 0$ at every such point, which proves that V(x(t)) is non-increasing (and non-decreasing either) along all non-equilibrium trajectories.

Below we list the "reasons" why no other pair yields a valid Lyapunov function. Of course, there are many other ways to show that.

For system (1) at x = (2,0), we have $\dot{x}_1 > 0$, $\dot{x}_2 < 0$, hence both $|x_1|$ and $|x_2|$ are increasing along system trajectories in a neigborhood of x = (2,0). Since all Lyapunov function candidates (a)-(c) increase when both $|x_1|$ and $|x_2|$ increase, (a)-(c) are not valid Lyapunov functions for system (1).

For system (2) at x = (0.5, -0.5), we have $\dot{x}_1 > 0$, $\dot{x}_2 < 0$, hence both $|x_1|$ and $|x_2|$ increase along system trajectories in a neighborhood of x = (0.5, -0.5).

For system (3) at x = (2, 1), we have $\dot{x} = (2, -2)$, hence both $x_1^2 + x_2^2$ and $\max(x_1, x_2)$ are increasing along system trajectories in a neighborhood of x = (2, 1).

Problem 3.2

Show that the following statement is not true. Formulate and prove a correct version: if $V : \mathbf{R}^n \mapsto \mathbf{R}$ is a continuously differentiable functional and $a : \mathbf{R}^n \mapsto \mathbf{R}^n$ is a continuous function such that

$$\nabla V(\bar{x})a(\bar{x}) \le 0 \quad \forall \ \bar{x}: \ V(\bar{x}) = 1, \tag{3.1}$$

then $V(x(t)) \leq 1$ for every solution $x: [0, \infty) \to \mathbf{R}^n$ of

$$\dot{x}(t) = a(x(t)) \tag{3.2}$$

with $V(x(0)) \leq 1$.

There are *two* important reasons why the statement is not true: first, $\nabla V(\bar{x})$ should be non-zero for all \bar{x} such that $V(\bar{x}) = 1$; second, solution of $\dot{x} = a(x)$ with initial condition $x(0) = \bar{x}_0$ such that $V(\bar{x}_0) = 1$ should be unique. Simple counterexamples based on these considerations are given by

$$V(x) = x^2 + 1, \ a(\bar{x}) = 1, \ x(t) = t,$$

and

$$V(x) = x + 1, \ a(\bar{x}) = 1.5\bar{x}^{1/3}, \ x(t) = t^{1.5}.$$

One correct way to fix the problem is by requiring a strict inequality in (3.1). Here is a less obvious correction.

Theorem 3.1 Let $V : \mathbf{R}^n \to \mathbf{R}$ be a continuously differentiable functional such that $\nabla V(\bar{x}) \neq 0$ for all \bar{x} satisfying $V(\bar{x}) = 1$, and let $a : \mathbf{R}^n \to \mathbf{R}^n$ be a locally Lipschitz function such that condition (3.1) holds. Then $V(x(t)) \leq 1$ for every solution $x : [t_0, t_\infty) \to \mathbf{R}^n$ of (3.2) with $V(x(0)) \leq 1$.

Proof It is sufficient to prove that for every $\bar{x}_0 \in \mathbf{R}^n$ satisfying the condition $V(\bar{x}_0) = 1$ there exists d > 0 such that $V(x(t)) \leq 1$ for $0 \leq t \leq d$ for the solution x(t) of (3.2) with $x(0) = \bar{x}_0$. Indeed, for $\epsilon \in (0, 1)$ define x^{ϵ} as a solution of equation

$$\dot{x}(t) = -\epsilon \nabla V(x(t))' + a(x(t)), \ x(0) = \bar{x}_0.$$
(3.3)

By the existence theorem, solutions x^{ϵ} are defined on a non-empty interval $t \in [0, d]$ which does not depend on ϵ . Note that

$$dV(x^{\epsilon}(t))/dt = \nabla V(x^{\epsilon}(t))(-\epsilon \nabla V(x^{\epsilon}(t))' + a(x^{\epsilon}(t))) \le -\epsilon \|\nabla V(x^{\epsilon}(t))\|^2 < 0$$

whenever $V(x^{\epsilon}(t)) = 1$, and hence the same inequality holds whenever $x^{\epsilon}(t)$ is close enough to the set $\{x : V(x) = 1\}$. Hence $V(x^{\epsilon}(t)) \leq 1$ for $t \in [0, d]$ for all ϵ . Now, continuous dependence on parameters implies that $x^{\epsilon}(t)$ converges for all $t \in [0, d]$ to x(t). Hence

$$V(x(t)) = \lim_{\epsilon \to 0} V(x^{\epsilon}(t)) \le 1.$$

Problem 3.3

The optimal minimal-time controller for the double integrator system with bounded control

$$\begin{cases} \dot{x}_1(t) = x_2(t), \\ \dot{x}_2(t) = u(t), \end{cases} \quad |u(t)| \le 1$$

HAS THE FORM

$$u(t) = -\operatorname{sgn}(x_1(t) + 0.5x_2(t)^2 \operatorname{sgn}(x_2(t))).$$

(a) FIND A LYAPUNOV FUNCTION $V : \mathbf{R}^2 \mapsto \mathbf{R}^2$ for the closed loop system, such that V(x(t)) is strictly decreasing along all solutions of system equations except the equilibrium solution $x(t) \equiv 0$.

The original problem set contained a typo: a "-" sign in the expression for u(t) was missing. For completeness, a solution which applies to this case is supplied in the next section.

A hint was given in the problem formulation, stressing that u is a *minimal time* control. What is important here is that it takes only finite time for for a system solution to reach the origin. Therefore, the amount of time it takes for the system to reach the origin can be used as a Lyapunov function. Let us verify this by inspection. System equations are Lipschitz continuous outside the curve

$$\Omega_0 = \{ x = [x_1; x_2] : x_1 = -0.5x_2 |x_2| \},\$$

Solving them explicitly (outside Ω) yields

$$x(t) = \begin{bmatrix} c_1 + c_2 t - 0.5t^2 \\ c_2 - t \end{bmatrix} \text{ for } x(t) \in \Omega_+ = \{x = [x_1; x_2] : x_1 > -0.5x_2 |x_2|\},$$
$$x(t) = \begin{bmatrix} c_1 + c_2 t + 0.5t^2 \\ c_2 + t \end{bmatrix} \text{ for } x(t) \in \Omega_- = \{x = [x_1; x_2] : x_1 < -0.5x_2 |x_2|\}.$$

In addition, no solutions with initial condition $x(0) = [-0.5r^2; r]$ or $x(0) = [0.5r^2; -r]$, where r > 0, exists, unless the sgn(·) function is understood as the set-valued sign

$$\operatorname{sgn}(y) = \begin{cases} \{1\}, & y > 0, \\ [-1,1], & y = 0, \\ \{-1\}, & y < 0, \end{cases}$$

in which case the corresponding solution trajectories lie in Ω_0 . Finally, there is an equilibrium solution $x(t) \equiv 0$.

The corresponding Lyapunov function (time it take to reach the origin) is now easy to calculate, and is given by

$$V(x) = \begin{cases} x_2 + 2\sqrt{x_2^2/2 + x_1}, & \text{for } x_1 + x_2|x_2|/2 \ge 0, \\ -x_2 + 2\sqrt{x_2^2/2 - x_1}, & \text{for } x_1 + x_2|x_2|/2 \le 0. \end{cases}$$

As expected, dV/dt = -1 along system trajectories, and x = 0 is the only global minimum of V.

(b) FIND OUT WHETHER THE EQUILIBRIUM REMAINS ASYMPTOTICALLY STABLE WHEN THE SAME CONTROLLER IS USED FOR THE PERTURBED SYSTEM

$$\begin{cases} \dot{x}_1(t) = x_2(t), \\ \dot{x}_2(t) = -\epsilon x_1(t) + u(t), \end{cases} \quad |u(t)| \le 1,$$

where $\epsilon > 0$ is small.

The Lyapunov function V(x) designed for the case $\epsilon = 0$ is not monotonically nonincreasing along trajectories of the perturbed system ($\epsilon > 0$). Indeed, when

$$x_1 = -0.5r^2 + r^8, \quad x_2 = r > 0,$$

we have

$$\dot{V}(x(t)) = -\epsilon x_1 - 1 - \frac{x_1 x_2}{\sqrt{0.5x_2^2 + x_1}},$$

which is positive when r > 0 is small enough.

However, the stability can be established for the case $\epsilon > 0$ using an alternative Lyapunov function. One such function is

$$V_1(x) = \begin{cases} \epsilon^2 x_2^2 + (1 + \epsilon^4 |x_1|)^2, & \text{for } |x_1| \ge x_2^2/2, \\ \epsilon^2 x_2^2 + (1 + \epsilon^4 x_2^2/2)^2, & \text{for } |x_1| \le x_2^2/2. \end{cases}$$

By considering the two regions $|x_1| \ge x_2^2/2$ and $|x_1| \le x_2^2/2$ separately, it is easy to see that $dV_1(x(t))/dt \le 0$, and $dV_1(x(t))/dt = 0$ only for

$$x(t) \in N = \{ [x_1; x_2] : |x_1| \ge x_2^2/2 \}.$$

Note that the origin is the only global minimum of V_1 . Also, V_1 is continuous and all level sets of V_1 are bounded. Hence, if a solution of the system equations does not converge to the origin as $t \to \infty$, it must have a limit point $\bar{x}_* \neq 0$ such that, for the solution $x_*(t)$ of the system equations with $x_*(0) = \bar{x}_*$,

$$V(x_*(t)) = V(\bar{x}_*) > \min_{\bar{x} \in \mathbf{R}^2} V(\bar{x}) \quad \forall \ t \ge 0.$$

This implies that $x_*(t) \in N$ for all $t \geq 0$. However, no solution except the equilibrium can remain forever in N. Hence the equilibrium x = 0 is globally asymptotically stable.

Using the fact that a non-equilibrium solution of system equations cannot stay forever in the region where $\dot{V}(x(t)) = 0$, in order to prove stability of the equilibrium as demonstrated above, is referred to as the *La Salle's invariance principle*. Essentially, the formulation and a proof of this popular general result are contained in the solution above.

Problem 3.3 with typo

The optimal minimal-time controller for the double integrator system with bounded control

$$\begin{cases} \dot{x}_1(t) = x_2(t), \\ \dot{x}_2(t) = u(t), \end{cases} \quad |u(t)| \le 1$$

HAS THE FORM

$$u(t) = \operatorname{sgn}(x_1(t) + 0.5x_2(t)^2 \operatorname{sgn}(x_2(t))).$$

(a) FIND A LYAPUNOV FUNCTION $V : \mathbf{R}^2 \mapsto \mathbf{R}^2$ for the closed loop system, such that V(x(t)) is strictly decreasing along all solutions of system equations except the equilibrium solution $x(t) \equiv 0$. The system is unstable (all solutions except $x(t) \equiv 0$ converge to infinity). However, this does not affect existence of strictly decreasing Lyapunov functions. For example,

$$V([x_1; x_2]) = \begin{cases} -x_2, & x_1 + 0.5x_2 |x_2| > 0, \\ -x_2, & x_1 + 0.5x_2 |x_2| = 0, & x_2 \ge 0, \\ x_2, & x_1 + 0.5x_2 |x_2| < 0, \\ x_2, & x_1 + 0.5x_2 |x_2| = 0, & x_2 \le 0. \end{cases}$$

To show that V is valid, note that the trajectories of this system are given by

$$x(t) = \left[\begin{array}{c} c_1 + c_2 t + 0.5t^2 \\ c_2 + t \end{array} \right]$$

when $x_1 + 0.5x_2|x_2| > 0$ or $x_1 + 0.5x_2|x_2| = 0$ and $x_2 \ge 0$, and by

$$x(t) = \left[\begin{array}{c} c_1 + c_2 t - 0.5t^2 \\ c_2 - t \end{array} \right]$$

when $x_1 + 0.5x_2|x_2| < 0$ or $x_1 + 0.5x_2|x_2| = 0$ and $x_2 \le 0$.

(b) FIND OUT WHETHER THE EQUILIBRIUM REMAINS ASYMPTOTICALLY STABLE WHEN THE SAME CONTROLLER IS USED FOR THE PERTURBED SYSTEM

$$\begin{cases} \dot{x}_1(t) = x_2(t), \\ \dot{x}_2(t) = -\epsilon x_1(t) + u(t), \end{cases} \quad |u(t)| \le 1,$$

where $\epsilon > 0$ is small.

As can be expected, the equilibrium of the perturbed system is unstable just as the equilibrium of the unperturbed one is. To show this, note that for

$$x \in K = \{ [x_1; x_2] : x_1 \in (0, 1/(2\epsilon)), x_2 \ge 0 \}$$

we have $\dot{x}_1 > 0$ and $\dot{x}_2 \ge 0.5$. Hence, a solution x = x(t) such that $x(0) \in K$ cannot satisfy the inequality |x(t)| < 1/(2e) for all $t \ge 0$.