Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 3 Solutions ${ }^{1}$

Problem 3.1

Find out which of the functions $V: \mathbf{R}^{2} \rightarrow \mathbf{R}$,
(a) $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$;
(b) $V\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+\left|x_{2}\right|$;
(c) $V\left(x_{1}, x_{2}\right)=\max \left|x_{1}\right|,\left|x_{2}\right|$;
are valid Lyapunov functions for the systems
(1) $\dot{x}_{1}=-x_{1}+\left(x_{1}+x_{2}\right)^{3}, \dot{x}_{2}=-x_{2}-\left(x_{1}+x_{2}\right)^{3}$;
(2) $\dot{x}_{1}=-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right), \dot{x}_{2}=-x_{1}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$;
(3) $\dot{x}_{1}=x_{2}\left|x_{1}\right|, \dot{x}_{2}=-x_{1}\left|x_{2}\right|$.

The answer is: (b) is a Lyapunov function for system (3) - and no other valid pairs System/Lyapunov function in the list. Please note that, when we say that a Lyapunov function V is defined on a set U, then we expect that $V(x(t))$ should non-increase along all system trajectories in U. In the formulation of Problem 3.1, V is said to be defined on the whole phase space \mathbf{R}^{2}. Therefore, $V(x(t))$ must be non-increasing along all system trajectories, in order for V to be a valid Lyapunov function.

To show that (b) is a valid Lyapunov function for (3), note first that system (3) is defined by an ODE with a Lipschitz right side, and hence has the uniqueness of solutions property. Now, every point $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$ with $x_{1}=0$ or $x_{2}=0$ is an equilibrium of (3). Hence V is automatically valid at those points. At every other point in \mathbf{R}^{2}, V is

[^0]differentiable, with $d V / d x=\left[\operatorname{sgn}\left(x_{1}\right) ; \operatorname{sgn}\left(x_{2}\right)\right]$ being the derivative. Hence $\nabla V(x) f(x)=$ $x_{1} x_{2}-x_{1} x_{2}=0$ at every such point, which proves that $V(x(t))$ is non-increasing (and non-decreasing either) along all non-equilibrium trajectories.

Below we list the "reasons" why no other pair yields a valid Lyapunov function. Of course, there are many other ways to show that.

For system (1) at $x=(2,0)$, we have $\dot{x}_{1}>0, \dot{x}_{2}<0$, hence both $\left|x_{1}\right|$ and $\left|x_{2}\right|$ are increasing along system trajectories in a neigborhood of $x=(2,0)$. Since all Lyapunov function candidates (a)-(c) increase when both $\left|x_{1}\right|$ and $\left|x_{2}\right|$ increase, (a)-(c) are not valid Lyapunov functions for system (1).

For system (2) at $x=(0.5,-0.5)$, we have $\dot{x}_{1}>0, \dot{x}_{2}<0$, hence both $\left|x_{1}\right|$ and $\left|x_{2}\right|$ increase along system trajectories in a neigborhood of $x=(0.5,-0.5)$.

For system (3) at $x=(2,1)$, we have $\dot{x}=(2,-2)$, hence both $x_{1}^{2}+x_{2}^{2}$ and $\max \left(x_{1}, x_{2}\right)$ are increasing along system trajectories in a neigborhood of $x=(2,1)$.

Problem 3.2

Show that the following statement is not true. Formulate and prove a correct version: if $V: \mathbf{R}^{n} \mapsto \mathbf{R}$ is a continuously differentiable functional and $a: \mathbf{R}^{n} \mapsto \mathbf{R}^{n}$ is a continuous function such that

$$
\begin{equation*}
\nabla V(\bar{x}) a(\bar{x}) \leq 0 \quad \forall \bar{x}: V(\bar{x})=1, \tag{3.1}
\end{equation*}
$$

then $V(x(t)) \leq 1$ for every solution $x:[0, \infty) \rightarrow \mathbf{R}^{n}$ of

$$
\begin{equation*}
\dot{x}(t)=a(x(t)) \tag{3.2}
\end{equation*}
$$

with $V(x(0)) \leq 1$.
There are two important reasons why the statement is not true: first, $\nabla V(\bar{x})$ should be non-zero for all \bar{x} such that $V(\bar{x})=1$; second, solution of $\dot{x}=a(x)$ with initial condition $x(0)=\bar{x}_{0}$ such that $V\left(\bar{x}_{0}\right)=1$ should be unique. Simple counterexamples based on these considerations are given by

$$
V(x)=x^{2}+1, a(\bar{x})=1, x(t)=t
$$

and

$$
V(x)=x+1, a(\bar{x})=1.5 \bar{x}^{1 / 3}, x(t)=t^{1.5} .
$$

One correct way to fix the problem is by requiring a strict inequality in (3.1). Here is a less obvious correction.

Theorem 3.1 Let $V: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a continuously differentiable functional such that $\nabla V(\bar{x}) \neq 0$ for all \bar{x} satisfying $V(\bar{x})=1$, and let $a: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a locally Lipschitz function such that condition (3.1) holds. Then $V(x(t)) \leq 1$ for every solution $x:\left[t_{0}, t_{\infty}\right) \rightarrow \mathbf{R}^{n}$ of (3.2) with $V(x(0)) \leq 1$.

Proof It is sufficient to prove that for every $\bar{x}_{0} \in \mathbf{R}^{n}$ satisfying the condition $V\left(\bar{x}_{0}\right)=1$ there exists $d>0$ such that $V(x(t)) \leq 1$ for $0 \leq t \leq d$ for the solution $x(t)$ of (3.2) with $x(0)=\bar{x}_{0}$. Indeed, for $\epsilon \in(0,1)$ define x^{ϵ} as a solution of equation

$$
\begin{equation*}
\dot{x}(t)=-\epsilon \nabla V(x(t))^{\prime}+a(x(t)), x(0)=\bar{x}_{0} . \tag{3.3}
\end{equation*}
$$

By the existence theorem, solutions x^{ϵ} are defined on a non-empty interval $t \in[0, d]$ which does not depend on ϵ. Note that

$$
d V\left(x^{\epsilon}(t)\right) / d t=\nabla V\left(x^{\epsilon}(t)\right)\left(-\epsilon \nabla V\left(x^{\epsilon}(t)\right)^{\prime}+a\left(x^{\epsilon}(t)\right)\right) \leq-\epsilon\left\|\nabla V\left(x^{\epsilon}(t)\right)\right\|^{2}<0
$$

whenever $V\left(x^{\epsilon}(t)\right)=1$, and hence the same inequality holds whenever $x^{\epsilon}(t)$ is close enough to the set $\{x: V(x)=1\}$. Hence $V\left(x^{\epsilon}(t)\right) \leq 1$ for $t \in[0, d]$ for all ϵ. Now, continuous dependence on parameters implies that $x^{\epsilon}(t)$ converges for all $t \in[0, d]$ to $x(t)$. Hence

$$
V(x(t))=\lim _{\epsilon \rightarrow 0} V\left(x^{\epsilon}(t)\right) \leq 1
$$

Problem 3.3

The optimal minimal-time controller for the double integrator system WITH BOUNDED CONTROL

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t), \\
\dot{x}_{2}(t)=u(t),
\end{array} \quad|u(t)| \leq 1\right.
$$

HAS THE FORM

$$
u(t)=-\operatorname{sgn}\left(x_{1}(t)+0.5 x_{2}(t)^{2} \operatorname{sgn}\left(x_{2}(t)\right)\right)
$$

(a) Find a Lyapunov function $V: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ FOR THE ClOSED LOOP SYSTEM, SUCH That $V(x(t))$ IS Strictly decreasing along all solutions of system EQUATIONS EXCEPT THE EQUILIBRIUM SOLUTION $x(t) \equiv 0$.
The original problem set contained a typo: a "-" sign in the expression for $u(t)$ was missing. For completeness, a solution which applies to this case is supplied in the next section.
A hint was given in the problem formulation, stressing that u is a minimal time control. What is important here is that it takes only finite time for for a system solution to reach the origin. Therefore, the amount of time it takes for the system to reach the origin can be used as a Lyapunov function. Let us verify this by inspection. System equations are Lipschitz continuous outside the curve

$$
\Omega_{0}=\left\{x=\left[x_{1} ; x_{2}\right]: x_{1}=-0.5 x_{2}\left|x_{2}\right|\right\},
$$

Solving them explicitly (outside Ω) yields

$$
\begin{aligned}
& x(t)=\left[\begin{array}{c}
c_{1}+c_{2} t-0.5 t^{2} \\
c_{2}-t
\end{array}\right] \text { for } x(t) \in \Omega_{+}=\left\{x=\left[x_{1} ; x_{2}\right]: x_{1}>-0.5 x_{2}\left|x_{2}\right|\right\}, \\
& x(t)=\left[\begin{array}{c}
c_{1}+c_{2} t+0.5 t^{2} \\
c_{2}+t
\end{array}\right] \text { for } x(t) \in \Omega_{-}=\left\{x=\left[x_{1} ; x_{2}\right]: x_{1}<-0.5 x_{2}\left|x_{2}\right|\right\} .
\end{aligned}
$$

In addition, no solutions with initial condition $x(0)=\left[-0.5 r^{2} ; r\right]$ or $x(0)=\left[0.5 r^{2} ;-r\right]$, where $r>0$, exists, unless the $\operatorname{sgn}(\cdot)$ function is understood as the set-valued sign

$$
\operatorname{sgn}(y)= \begin{cases}\{1\}, & y>0 \\ {[-1,1],} & y=0 \\ \{-1\}, & y<0\end{cases}
$$

in which case the corresponding soltion trajectories lie in Ω_{0}. Finally, there is an equilibrium solution $x(t) \equiv 0$.
The corresponding Lyapunov function (time it take to reach the origin) is now easy to calculate, and is given by

$$
V(x)= \begin{cases}x_{2}+2 \sqrt{x_{2}^{2} / 2+x_{1}}, & \text { for } x_{1}+x_{2}\left|x_{2}\right| / 2 \geq 0 \\ -x_{2}+2 \sqrt{x_{2}^{2} / 2-x_{1}}, & \text { for } x_{1}+x_{2}\left|x_{2}\right| / 2 \leq 0 .\end{cases}
$$

As expected, $d V / d t=-1$ along system trajectories, and $x=0$ is the only global minimum of V.
(b) Find out whether the equilibrium remains asymptotically stable when THE SAME CONTROLLER IS USED FOR THE PERTURBED SYSTEM

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t), \\
\dot{x}_{2}(t)=-\epsilon x_{1}(t)+u(t), \quad|u(t)| \leq 1,
\end{array}\right.
$$

WHERE $\epsilon>0$ IS SMALL.
The Lyapunov function $V(x)$ designed for the case $\epsilon=0$ is not monotonically nonincreasing along trajectories of the perturbed system $(\epsilon>0)$. Indeed, when

$$
x_{1}=-0.5 r^{2}+r^{8}, \quad x_{2}=r>0
$$

we have

$$
\dot{V}(x(t))=-\epsilon x_{1}-1-\frac{x_{1} x_{2}}{\sqrt{0.5 x_{2}^{2}+x_{1}}}
$$

which is positive when $r>0$ is small enough.

However, the stability can be established for the case $\epsilon>0$ using an alternative Lyapunov function. One such function is

$$
V_{1}(x)= \begin{cases}\epsilon^{2} x_{2}^{2}+\left(1+\epsilon^{4}\left|x_{1}\right|\right)^{2}, & \text { for }\left|x_{1}\right| \geq x_{2}^{2} / 2 \\ \epsilon^{2} x_{2}^{2}+\left(1+\epsilon^{4} x_{2}^{2} / 2\right)^{2}, & \text { for }\left|x_{1}\right| \leq x_{2}^{2} / 2\end{cases}
$$

By considering the two regions $\left|x_{1}\right| \geq x_{2}^{2} / 2$ and $\left|x_{1}\right| \leq x_{2}^{2} / 2$ separately, it is easy to see that $d V_{1}(x(t)) / d t \leq 0$, and $d V_{1}(x(t)) / d t=0$ only for

$$
x(t) \in N=\left\{\left[x_{1} ; x_{2}\right]:\left|x_{1}\right| \geq x_{2}^{2} / 2\right\}
$$

Note that the origin is the only global minimum of V_{1}. Also, V_{1} is continuous and all level sets of V_{1} are bounded. Hence, if a solution of the system equations does not converge to the origin as $t \rightarrow \infty$, it must have a limit point $\bar{x}_{*} \neq 0$ such that, for the solution $x_{*}(t)$ of the system equations with $x_{*}(0)=\bar{x}_{*}$,

$$
V\left(x_{*}(t)\right)=V\left(\bar{x}_{*}\right)>\min _{\bar{x} \in \mathbf{R}^{2}} V(\bar{x}) \quad \forall t \geq 0 .
$$

This implies that $x_{*}(t) \in N$ for all $t \geq 0$. However, no solution except the equilibrium can remain forever in N. Hence the equilibrium $x=0$ is globally asymptotically stable.
Using the fact that a non-equilibrium solution of system equations cannot stay forever in the region where $\dot{V}(x(t))=0$, in order to prove stability of the equilibrium as demonstrated above, is referred to as the La Salle's invariance principle. Essentially, the formulation and a proof of this popular general result are contained in the solution above.

Problem 3.3 with typo

The optimal minimal-time controller for the double integrator system WITH BOUNDED CONTROL

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t), \\
\dot{x}_{2}(t)=u(t),
\end{array}|u(t)| \leq 1\right.
$$

HAS THE FORM

$$
u(t)=\operatorname{sgn}\left(x_{1}(t)+0.5 x_{2}(t)^{2} \operatorname{sgn}\left(x_{2}(t)\right)\right) .
$$

(a) Find a Lyapunov function $V: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ for the closed loop system, SUCH THAT $V(x(t))$ IS STRICTLY DECREASING ALONG ALL SOLUTIONS OF SYSTEM EQUATIONS EXCEPT THE EQUILIBRIUM SOLUTION $x(t) \equiv 0$.

The system is unstable (all solutions except $x(t) \equiv 0$ converge to infinity). However, this does not affect existence of strictly decreasing Lyapunov functions. For example,

$$
V\left(\left[x_{1} ; x_{2}\right]\right)= \begin{cases}-x_{2}, & x_{1}+0.5 x_{2}\left|x_{2}\right|>0 \\ -x_{2}, & x_{1}+0.5 x_{2}\left|x_{2}\right|=0, x_{2} \geq 0 \\ x_{2}, & x_{1}+0.5 x_{2}\left|x_{2}\right|<0 \\ x_{2}, & x_{1}+0.5 x_{2}\left|x_{2}\right|=0, x_{2} \leq 0\end{cases}
$$

To show that V is valid, note that the trajectories of this system are given by

$$
x(t)=\left[\begin{array}{c}
c_{1}+c_{2} t+0.5 t^{2} \\
c_{2}+t
\end{array}\right]
$$

when $x_{1}+0.5 x_{2}\left|x_{2}\right|>0$ or $x_{1}+0.5 x_{2}\left|x_{2}\right|=0$ and $x_{2} \geq 0$, and by

$$
x(t)=\left[\begin{array}{c}
c_{1}+c_{2} t-0.5 t^{2} \\
c_{2}-t
\end{array}\right]
$$

when $x_{1}+0.5 x_{2}\left|x_{2}\right|<0$ or $x_{1}+0.5 x_{2}\left|x_{2}\right|=0$ and $x_{2} \leq 0$.
(b) Find out whether the equilibrium remains asymptotically stable when THE SAME CONTROLLER IS USED FOR THE PERTURBED SYSTEM

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t), \\
\dot{x}_{2}(t)=-\epsilon x_{1}(t)+u(t),
\end{array} \quad|u(t)| \leq 1,\right.
$$

WHERE $\epsilon>0$ IS SMALL.
As can be expected, the equilibrium of the perturbed system is unstable just as the equilibrium of the unperturbed one is. To show this, note that for

$$
x \in K=\left\{\left[x_{1} ; x_{2}\right]: x_{1} \in(0,1 /(2 \epsilon)), x_{2} \geq 0\right\}
$$

we have $\dot{x}_{1}>0$ and $\dot{x}_{2} \geq 0.5$. Hence, a solution $x=x(t)$ such that $x(0) \in K$ cannot satisfy the inequality $|x(t)|<1 /(2 e)$ for all $t \geq 0$.

[^0]: ${ }^{1}$ Version of October 10, 2003

