Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski

Problem Set 7 Solutions ${ }^{1}$

Problem 7.1

A stable Linear system with a relay feedback excitation is modeled by

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B \operatorname{sgn}(C x(t)) \tag{7.1}
\end{equation*}
$$

where A is a Hurwitz matrix, B is a column matrix, C is a row matrix, and $\operatorname{sgn}(y)$ DENOTES THE SIGN NONLINEARITY

$$
\operatorname{sgn}(y)= \begin{cases}1, & y>0 \\ 0, & y=0 \\ -1, & y<0\end{cases}
$$

For $T>0$, A $2 T$-PERIODIC SOLUTION $x=x(t)$ OF (7.1) IS CALLED A regular unimodal limit cycle IF $C x(t)=-C x(t+T)>0$ FOR ALL $t \in(0, T)$, AND $C A x(0)>|C B|$.
(a) Derive a necessary and sufficient condition of exponential local STABILITY OF THE REGULAR UNIMODAL LIMIT CYCLE (ASSUMING IT EXISTS AND A, B, C, T are given).

Let Y denote the set of all $\bar{x} \in \mathbf{R}^{n}$ such that $C \bar{x}=0$.
Let $x_{0}=x(0)$. By assumptions, $C x(t)>0$ and $C x(-t)=C x(T-t+T)=$ $-C x(T-t)<0$ for $t \in(0, T)$. Hence $C x(0)=C x_{0}=0$, i.e. $x_{0} \in Y$.
Let $F: \mathbf{R} \times Y$ be defined by

$$
F(t, \bar{x})=e^{A t}\left(\bar{x}+A^{-1} B\right)-A^{-1} B
$$

[^0]By definition $F(\tau, \bar{x})$ is the value at $t=\tau$ of the solution $z=z(t)$ of the ODE $d z / d t=A z+B$. Since $F\left(t, x_{0}\right)>0$ for $t \in(0, T)$ and

$$
\frac{d F}{d t}(0, \bar{x})=C(A \bar{x}+B) \approx C\left(A x_{0}+B\right)>0
$$

whenever $\bar{x} \in Y$ is sufficiently close to x_{0}, we conclude that $F(t, \bar{x})>0$ for all $t \in(0, T)$ and for all $\bar{x} \in Y$ sufficiently close to x_{0}.
On the other hand,

$$
\frac{d C F}{d t}\left(T, x_{0}\right)=C(A x(T)+B)=-C A x_{0}+C B<0 .
$$

Hence, by the implicit mapping theorem, for $\bar{x} \in Y$ sufficiently close to x_{0} equation $C F(t, \bar{x})=0$ has a unique solution $\bar{t}=h(\bar{x})$ in a neigborhood of $t=T$.
Consider the map S defined for $x_{1} \in Y$ in a neigborhood of x_{0} by $S\left(x_{1}\right)=$ $F\left(h\left(x_{1}\right), x_{1}\right)$. Essentially, S is the Poincare map associated with the periodic solution $x=x(t)$. Local exponential stability of the trajectory of $x=x(t)$ is therefore equivalent to local exponential stability of the equilibrium x_{0} of S.
The differential of S at x_{0} is the composition of $e^{A T}$ and the projection on Y parallel to $A x(T)+B=B-A x_{0}$. In other words, the differential of S has matrix

$$
\dot{S}\left(x_{0}\right)=e^{A T}-\left[C\left(B-A x_{0}\right)\right]^{-1}\left(B-A x_{0}\right) C e^{A T}
$$

in the standard basis of \mathbf{R}^{n}. In order for the limit cycle $x=x(t)$ to be locally exponentially stable, all eigenvalues of this matrix should have absolute value smaller than 1.
(b) Use the result from (a) to find an example of system (7.1) with a Hurwitz matrix A and an unstable regular unimodal limit cycle.
The MATLAB code is provided in file hw7_1_6243_2003.m. To generate examples of unimodal lmit cycles, take a Hurwitz polynomial p and first constract A, B from a state space realization of transfer function $G(s)=1 / p(s)$. Use $T=1$, and find x_{0} from equation $F\left(T, x_{0}\right)=-x_{0}$, i.e.

$$
x_{0}=\left(I+e^{A T}\right)^{-1}\left(I-e^{A T}\right) A^{-1} B .
$$

Then construct C such that $C x_{0}=0, C B=1$, and $C A x_{0}=r$ where $r>1$ is a parameter to be tuned up to achieve instability of the limit cycle. Check whether the resulting trajectory $x=x(t)$ is indeed a unimodal limit cycle by verifying the inequality $C x(t)>0$ for $t \in(0, T)$ (this step is not necessary when $n=3$).
Numerical calculations show that using $n=3$ and $r \approx 1$ typically yields an unstable unimodal limit cycle as, for example, with

$$
p(s)=(s+1)^{3}, \quad r=1.5 .
$$

Problem 7.2

A LINEAR SYSTEM CONTROLLED BY MODULATION OF ITS COEFFICIENTS IS MODELED BY

$$
\begin{equation*}
\dot{x}(t)=(A+B u(t)) x(t), \tag{7.2}
\end{equation*}
$$

where A, B are fixed n-BY- n matrices, and $u(t) \in \mathbf{R}$ is A SCalar control.
(a) Is it possible for the system to be controllable over the set of all NON-ZERO VECTORS $\bar{x} \in \mathbf{R}^{n}, \bar{x} \neq 0$, WHEN $n \geq 3$? In OTHER WORDS, IS it POSSIBLE TO FIND MATRICES A, B WITH $n>2$ SUCH THAT FOR EVERY NONZERO \bar{x}_{0}, \bar{x}_{1} THERE EXIST $T>0$ AND A BOUNDED FUNCTION $u:[0, T] \mapsto \mathbf{R}$ SUCH THAT THE SOLUTION OF (7.2) WITH $x(0)=\bar{x}_{0}$ SATISFIES $x(T)=\bar{x}_{1}$?
The answer to this question is positive (examples exist for all $n>1$). One such example is given by

$$
A=0.5(\alpha+\beta), \quad B=I+0.5(\alpha-\beta)
$$

where

$$
\alpha=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right], \quad \beta=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

To show that the resulting system (7.2) is controllable over the set of non-zero states, note first that the auxiliary driftless system with three scalar controls

$$
\dot{x}=\alpha x u_{1}+\beta x u_{2}+x u_{3}
$$

satisfies the conditions of complete controllability for all $x \neq 0$. Indeed, the Lie bracket $g=\left[g_{1}, g_{2}\right]$ of the "linear" vector fields $g_{k}(x)=A_{k} x$ is given by $g(x)=A x$, where $A=\left[A_{1}, A_{2}\right]=A_{1} A_{2}-A_{2} A_{1}$ is the commutant of matrices A_{1} and A_{2}. Hence for $g_{1}(x)=\alpha x, g_{2}(x)=\beta x$, and $g_{3}=\left[g_{1}, g_{2}\right]$ we have $g_{3}(x)=\gamma x$, where

$$
\gamma=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Since the matrix

$$
\left[\begin{array}{llll}
x & \alpha x & \beta x & \gamma x
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{1} & -x_{3} \\
x_{2} & -x_{1} & x_{3} & x_{2} \\
x_{3} & x_{3} & -x_{2} & x_{1}
\end{array}\right]
$$

has full rank whenever $x=\left[x_{1} ; x_{2} ; x_{3}\right] \neq 0$, the auxiliary system is fully controllable for $x \neq 0$.

Since the auxiliary system is fully controllable for $x \neq 0$, it is also fully controllable using piecewise constant controls along the vector fields $x, \alpha x, \beta x$. Note that the flow along αx is given by $S_{\alpha}^{t}(x)=e^{\alpha t} x$. Since $e^{2 \pi \alpha}=I$, negative time flows along αx can be implemented using positive time flows. Same conclusion is also true for β. Since the flows along $(A+B) x=\alpha x+x$ and $(A-B) x=\beta x-x$ differ from the flows along αx and βx only in scaling of the trajectory, we conclude that for every non-zero $x_{1}, x_{2} \in \mathbf{R}^{3}$ there exists a (picewise constant) control u which moves x_{1} to ρx_{2} for some $\rho>0$. Therefore, for every non-zero $x_{1}, x_{2} \in \mathbf{R}^{3}$ there exists a (picewise constant) control u which moves x_{1} first to $\rho_{\alpha} x_{\alpha}$, then to $\rho_{\beta} x_{\beta}$, and then to ρx_{2}, where

$$
x_{\alpha}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad x_{\beta}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Note that the line

$$
\left\{c x_{\alpha}: \quad c \in \mathbf{R}\right\}
$$

is invariant for flow defined by te vector field $\alpha x+x$, and the flow moves points of this line monotonically from the origin. Similarly, the line

$$
\left\{c x_{\beta}: \quad c \in \mathbf{R}\right\}
$$

is invariant for flow defined by te vector field $\beta x-x$, and the flow moves points of this line monotonically to the origin. Hence, there also exists a piecewise constant control u which moves x_{1} first to $\rho_{\alpha} x_{\alpha}$, then to $c_{\alpha} \rho_{\alpha} x_{\alpha}$, then to $c_{\alpha} \rho_{\beta} x_{\beta}$, then to $c_{\beta} c_{\alpha} \rho_{\beta} x_{\beta}$ and then to $c_{\alpha} c_{\beta} \rho x_{2}$, where c_{α}, c_{β} are arbitrary positive numbers such that $c_{\alpha} \geq 1$ and $c_{\beta} \leq 1$. Selecting c_{α}, c_{β} in such a way that $c_{\alpha} c_{\beta} \rho=1$ yields a trajectory from x_{1} to x_{2}.
While the "theoretical" derivation above is easy to generalize to higher dimensions, there exists a rather simple explicit algorithm for moving from a given vector $x_{1} \neq 0$ to a given vector $x_{2} \neq 0$ using not more than five switches of the piecewise constant control value $u(t) \in\{-1,1\}$.
(b) Is it possible for the system to be full state feedback linearizable IN A NEIGBORHOOD OF SOME POINT $\bar{x}_{0} \in \mathbf{R}^{n}$ FOR SOME $n>2$?
The answer to this question is positive (examples exist for all $n \geq 1$).
To find an example, search for a linear output $y=C x$ of relative degree n. This requires

$$
C B \equiv 0, C A B \equiv 0, \ldots C A^{n-2} B=0, C A^{n-1} B \bar{x}_{0} \neq 0
$$

In particular, for $n=3$ one can take

$$
C=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right], B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \bar{x}_{0}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

Problem 7.3

A nonlinear ODE control model with control input u and controlled output y IS DEFINED BY EQUATIONS

$$
\begin{aligned}
\dot{x}_{1} & =x_{2}+x_{3}^{2} \\
\dot{x}_{2} & =\left(1-2 x_{3}\right) u+a \sin \left(x_{1}\right)-x_{2}+x_{3}-x_{3}^{2} \\
\dot{x}_{3} & =u \\
y & =x_{1}
\end{aligned}
$$

WHERE a IS A REAL PARAMETER.
(a) Output feedback linearize the system over a largest subset X_{0} of R^{3}.
For the new state vector $z=\left[z_{1} ; z_{2} ; z_{3}\right]$ let $z_{1}=y=x_{1}$. Since $d z_{1} / d t$ does not depend on u, let $z_{2}=d z_{1} / d t=x_{2}+x_{3}^{2}$. Since

$$
\dot{z}_{2}=u+a \sin \left(x_{1}\right)-x_{2}+x_{3}-x_{3}^{2}
$$

the relative degree of y equals two at all points $x \in \mathbf{R}^{3}$, and the modified conrol should be defined by

$$
v=u+a \sin \left(x_{1}\right)-x_{2}+x_{3}-x_{3}^{2}
$$

To define z_{3}, search for a scalar function of x_{1}, x_{2}, x_{3} for which the gradient is not parallel to $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ and is orthogonal to vector $\left[0 ; 1-2 x_{3} ; 1\right]$. One such function is

$$
z_{3}=x_{2}-x_{3}+x_{3}^{2}
$$

The system equations in terms of z_{1}, z_{2}, z_{3}, v are linear:

$$
\begin{aligned}
& \dot{z}_{1}=z_{2} \\
& \dot{z}_{2}=v \\
& \dot{z}_{3}=a \sin \left(z_{1}\right)-z_{3}
\end{aligned}
$$

(b) Design a (DYnamical) feedback controller with inputs $x(t), r(t)$, where $r=r(t)$ IS THE REFERENCE INPUT, SUCH THAT FOR EVERY BOUNDED $r=r(t)$ THE SYSTEM STATE $x(t)$ STAYS BOUNDED AS $t \rightarrow \infty$, AND $y(t) \rightarrow r(t)$ AS $t \rightarrow \infty$ WHENEVER $r=r(t)$ IS CONSTANT.
One such controller is given by

$$
u=-k_{p}\left(x_{1}-r\right)-k_{d}\left(x_{2}+x_{3}^{2}\right)-a \sin \left(x_{1}\right)+x_{2}-x_{3}+x_{3}^{2}
$$

where k_{p} and k_{d} are arbitrary positive constants, which is equivalent to

$$
v=-k_{p}\left(z_{1}-r\right)-k_{d} z_{2} .
$$

Since the corresponding equations for z_{1}, z_{2} are those of a stable LTI system, z_{1}, z_{2} remain bounded whenever r is bounded, and $z_{1} \rightarrow r$ when r is constant. Since $d z_{3} / d t+z_{3}=a \sin \left(z_{1}\right)$ is also bounded, z_{3} remains bounded as well. Since the transformation from z back to x, given by

$$
x_{1}=z_{1}, \quad x_{2}=z_{2}-\left(z_{2}-z_{3}\right)^{2}, \quad x_{3}=z_{2}-z_{3}
$$

is continuous, x is also bounded whenever r is bounded.
(c) Find all values of $a \in \mathbf{R}$ for which the open loop system is full state FEEDBACK LINEARIZABLE.

It is convenient to check the full state feedback linearizability conditions in n terms of the z state variable. Then

$$
f\left(\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
z_{2} \\
0 \\
a \sin \left(z_{1}\right)-z_{3}
\end{array}\right], \quad \dot{f}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
a \cos \left(z_{1}\right) & 0 & -1
\end{array}\right]
$$

and hence

$$
[f, g]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad[f,[f, g]]=\left[\begin{array}{c}
0 \\
0 \\
a \cos \left(z_{1}\right)
\end{array}\right]
$$

This means that the system is locally full state feedback linearizable (to a controllable system) whenever $a \cos \left(z_{1}\right) \neq 0$. For $a=0$ the system is an uncontrollable LTI system. For $a \neq 0$ and $z_{1} \neq 0$ the new coordinates

$$
p_{1}=z_{3}, \quad p_{2}=a \sin \left(z_{1}\right)-z_{3}, \quad p_{3}=a \cos \left(z_{1}\right) z_{2}-a \sin \left(z_{1}\right)+z_{3}
$$

and the new control variable

$$
w=a \cos \left(z_{1}\right) v-a \sin \left(z_{1}\right) z_{2}^{2}-a \cos \left(z_{1}\right) z_{2}+a \sin \left(z_{1}\right)-z_{3}
$$

linearize completely system equations.
(d) Try to design a dynamical feedback controller with inputs $y(t), r(t)$ which achieves the objectives from (b). Test your design by a comPUTER SIMULATION.
Since all nonlinear elements of the z equations are functions of the observable variable $y=z_{1}$, it is easy to construct a stable observer for the system:

$$
\begin{aligned}
\dot{\hat{z}}_{1} & =\hat{z}_{2}+k_{1}\left(y-\hat{z}_{1}\right), \\
\dot{\hat{z}}_{2} & =u+a \sin (y)-\hat{z}_{3}+k_{2}\left(y-\hat{z}_{1}\right), \\
\dot{\hat{z}}_{3} & =a \sin (y)-\hat{z}_{3},
\end{aligned}
$$

where k_{1}, k_{2} are arbitrary positive coefficients. With this observer, the control action can be defined by

$$
u=-k_{p}\left(\hat{z}_{1}-r\right)-k_{d} \hat{z}_{2}-a \sin \left(\hat{z}_{1}\right)+\hat{z}_{3} .
$$

[^0]: ${ }^{1}$ Version of November 12, 2003

