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Problem 2.1 

For each of the statements below decide whether it is true or false. 
For a true statement, sketch a proof. For a false statement, give a 
counterexample. 

(a)	 H2 norm of a stable finite order CT LTI state space model is never 
larger than 100 times its H-Infinity norm. 

This statement is false. To see this, consider the stable first order LTI CT system 
with transfer function 

1 
G(s) = Ga(s) = , 

s + a

where a > 0 is a real parameter. Then


1 1 
= sup G(j�) = sup = ,∈Ga∈� | | �

a2 + �2 a
��R ��R 

�

 

� �1/2 
1 

= e −2atdt =∈Ga∈H2 
0 

�
2a 

(we used the fact that ga(t) = e−at, where t √ 0, is the impulse response of Ga). 
Hence, as a � 0, H-Infinity norm of Ga becomes arbitrarily large relative the H2 
norm of Ga. 
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(b)	 H-Infinity norm of a stable finite order CT LTI state space model is 
never larger than 100 times its H2 norm. 

This statement is false. To see this, use Ga from (a) with a � →. 

(c)	 H2 norm of a stable finite order DT LTI state space model is never 
larger than 100 times its H-Infinity norm. 

The statement is true for SISO models, because
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 �
 1 


 � 

∈G∈ 2 = 
−� 

|G(ej�) 2d� ∀ max j�) 2 }d� = ∈G∈ 2 .H2	 �2� 
| 

2� 
−� � 

{|G(e | 

However, for MIMO systems, the statement is false. To see this, consider G = G(z) 
which is an n-by-n identity matrix: its H-Infinity norm equals 1 while the H2 norm 
equals 

�
n. 

(d)	 H-Infinity norm of a stable finite order DT LTI state space model is 
never larger than 100 times its H2 norm. 

This statement is false. To see this, consider the stable first order LTI DT system 
with transfer function 

1 
H(z) = Ha(z) = ,

1 − a/z


where a ≤ (0, 1) is a real parameter. Then


1 
= sup H(e = ,∈Ha∈� | j�)| 

1 − a
��R 

� �1/2 
�	 1 ∈Ha∈H2

2k = a = �
1 − a2 

k=0 

(we used the fact that ha[k] = ak, where k √ 0, is the impulse response of Ha). 
Hence, as a � 1, H-Infinity norm of Ha becomes arbitrarily large relative the H2 
norm of Ha. 

Problem 2.2 

For continuous time (non-LTI) systems Sa with scalar input f = f (t) and 
scalar output g = g(t), described below, find their L2 gains, as functions 
of parameter a > 0. Support your answer with arguments (typically, 
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to show that L2 gain of a system equals, say, 0.5, one has to find in-
put/output pairs of infinite energy (i.e. not converging to zero) for 
which the asymptotic (as time converges to infinity) output-to-input en
ergy ratio is arbitrarily close to 0.25 = 0.52 , and, in addition, to show 
that the asymptotic energy ratio cannot be larger than 0.5). 

(a)	 g(t) = a sin(f (t));


L2 gain equals a.


To see that the L2 gain cannot be larger, note that


sin(y) y| | ∀ | | 

for all real y. Hence 

 T	 
 T
 T 

2 g(t)| 2dt = a sin(f (t)) 2dt ∀ a |f (t) 2dt. 
0 

|
0 

| | 
0 

| 

To see that the L2 gain cannot be smaller, consider input f (t) ≥ e, where π > 0 is 
a small parameter. Then, for every � we have 


 T 
2 2 {�2 f (t) g(t) }dt = T (�2π2 − a 2 sin2(π)), 

0 
| | − | | 

which will converge to minus infinity as T � → unless 

2 sin2(π) √ 0.�2π2 − a 

Since this inequality must be satisfied for all π whenever � is larger than the L2 
2gain, we have �2 √ a . 

(b)	 g(t) = f (at) sin(t); 

For a ∀ 1 L2 gain equals 1/
�

a. For a > 1 the gain is infinite (and the system is

not causal).


To see that L2 gain does not exceed 1/
�

a for a ∀ 1, note that



 T 
 T 

g(t)| 2dt = |f (at) 2 sin2(t)dt 
0 

|
0 

| 
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	 T
 T 1 


 aT 

∀ 
0 

|f (at) 2dt = f (t) 2dt ∀ |f (t) 2dt.| 
a 0 

| | 
a 0 
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To see that L2 gain is not smaller than 1/
�

a for a ∀ 1, consider 

f (t) = 2 )� − π, (k + 1k−1/2 , t ≤ [(k + 1
2 )� + π], k ≤ {1, 2, . . . }, 

0, otherwise. 

(The main idea is that f (t) should be zero when sin(t) is not close to 1, and the | |
energy of f (t) on the interval [aT, T ] should converge to zero as T � →, while the 
total energy of f should be infinite.) Then 


 T 
 T
 T 
2 2{�2 f (t) g(t) 2 }dt ∀ �2 f (t) 2dt − cos (π)|f (at) 2dt 

0 
| | − | | 

0 
| | 

0 
| 


 T� 
cos2(π) 

�

 aT 

= �2 |f (t) 2dt + �2 f (t) 2dt,− 
a 0 

| 
aT 

| | 

which converges to −→ as T � → unless �2 √ cos2(π)/a. Since π > 0 can be 
arbitrarily small, g √ 1/a for a √ 1. 

To show that L2 gain is infinite for a > 1, consider 
k 

2 )� − π, (k + 1 r , t ≤ [(k + 1
2 )� + π], k ≤ {1, 2, . . . },

f (t) = 
0, otherwise, 

where r ∞ 1 is a parameter. It is easy to see that, when r � → is sufficiently large 
compared to �, the integrals 


 T 
2 {�2 f (t) g(t) 2 }dt 

0 
| | − | |


converge to minus infinity as T � →.


(c) g(t) = af (t) − f (t − 1) .| |
L2 gain equals 1 + a. 

To see that L2 gain does not exceed 1 + a, note that 
2 ax + y 2 ∀ (1 + a) a x + y 2 � x, y, | | | | | | 

and hence 

 T 
 T
 T 

g(t) 2dt ∀ (1 + a)a f (t)| 2dt + (1 + a) f (t − 1) 2dt 
0 

| | 
0 

|
0 

| | 

 T 
 

0 

∀ (1 + a)2 |f (t) 2dt + f (t)| 2dt. 
0 

| 
−1 

|

To see that L2 gain is not smaller than 1 + a, consider the case when f (t) ≥ −1, 
and hence g(t) ≥ −(1 + a). 
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Problem 2.3 

Continuous time signal q = q(t) is the output of a pure double integrator 
system with input f1 = f1(t), and g(t) = q(t) + bf2(t), where b > 0 is a known 
constant (do the calculations for b = 0.1 and b = 10). Find an LTI filter 
F = F (s) which takes g = g(t) as an input and outputs an estimate q̂ = q̂(t) 
of q = q(t), which is “good” in one of the following interpretations: 

(a) Assuming that f = [f1; f2] is white noise, minimize the asymptotic value 
of the variance of the estimation error e = q − q̂. 

(b) Minimize the L2 gain from f = [f1; f2] to the estimation error e = q − q̂
with accuracy 10 percent. 

For a system with state space equations 

ẋ(t) = A0 x(t) + B0 w(t)
1 

and sensor output 
y0(t) = C0 x(t) + D0 w(t),

2 21

a standard observer has the format 

x(t) = A0 ˆ ˆˆ̇ x(t) + L(C0 x(t) − y0(t)),2 

where matrix L is chosen in such way that A0 + LC0 is a Hurwitz matrix. Note that here 
2 

x̂ is a result of applying an LTI transformation to y. Hence 

d(t) = y0(t) − C0 x(t)ˆ
2 

is a result of applying an LTI transformation to y0(t), and, reciprocally, y0(t) is a result of 
applying an LTI transformation to d(t). Therefore, designing an LTI filter F with input 
y0 output v = F y0, to be an optimal estimate of a state component q(t) = C 0x(t) can be 

1 

reduced to designing an LTI filter Fd with input d(t) and output vd = Fdd, to be a good 
estimate of qd(t) = q(t) − C0x(t): the relation between vd and v will be ˆ

1 

v(t) = C0 x(t) + vd(t).ˆ
1 

The relation between w, d, and qd is given by 

ė = (A0 + LC
2

0)e + (B0 + LD0 
21

w, qd = C
1

0 e,
1 21

)w, d = C
2

0 e + D0 
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where e(t) = x(t) − x̂(t) plays the role of system state. The task of finding an optimal or 
suboptimal estimator for qd based on measuring d can be formulated as a standard LTI 
feedback optimization setup with 

0 0 0 0 0 0A = A0+LC
2 , B1 = B

1 +LD
21

, B2 = 0, C1 = C
1 , D11 = 0, D12 = I, C2 = C

2 , D21 = D
21

, D22 = 0. 

To implement the filter optimization approach using MATLAB, we use a design 
SIMULINK model ps2 3a.mdl, 

2 

y 

1 

e 

1/s^2 

plant 

(s+1)/(s^2+s+1) 

observer 

b 

Gain 

3 

u 

2 

w2 

1 

w1 

handled by M-function ps2 3.mdl: 

function [Fh2,Fhi,Eh2,Ehi]=ps2_3(b)

% function ps2_3(b)

%

% solution for Problem 2.3 in 6.245/Spring 2004


if nargin<1, b=1; end

assignin(’base’,’b’,b);

s=tf(’s’);

assignin(’base’,’s’,s);

load_system(’ps2_3a’);

[a,b,c,d]=linmod(’ps2_3a’);

close_system(’ps2_3a’);

[ar,br,cr,dr]=ssdata(minreal(ss(a,b,c,d)));

p=pck(ar,br,cr,dr);

nmeas=1;

ncon=1;
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ricmethd=2;

quiet=0;

[kh2,gh2]=h2syn(p,nmeas,ncon,ricmethd,quiet);

[ah2,bh2,ch2,dh2]=unpck(kh2);

[ag,bg,cg,dg]=unpck(gh2);

Kh2=ss(ah2,bh2,ch2,dh2);

G=(s+1)/(s^2+s+1);

disp(’H2 controller:’)

Fh2=tf(minreal(Kh2*(G-1)+G))

Eh2=tf(minreal(ss(ag,bg,cg,dg)));

gmin=0;

gmax=norm(Eh2,Inf);

tol=0.01;

epr=1e-10;

epp=1e-6;

[khinf,ghinf]=hinfsyn(p,nmeas,ncon,gmin,gmax,tol,ricmethd,epr,epp,quiet);

[ahi,bhi,chi,dhi]=unpck(khinf);

[ag,bg,cg,dg]=unpck(ghinf);

Ehi=tf(minreal(ss(ag,bg,cg,dg)));

Khi=ss(ahi,bhi,chi,dhi);

disp(’H-Infinity controller:’)

Fhi=tf(minreal(Khi*(G-1)+G))


Note the need for using minreal.m: MATLAB does not eliminate uncontrollable/unobservable 
states automatically. 


