Problem Set 5 (due March 10, 2004) ${ }^{1}$

Problem 5.1

Use KYP Lemma to find (analytically) the set of all $a \in \mathbf{R}$ such that the Riccati equation

$$
P A+A^{\prime} P=\left(C^{\prime}-P B\right)\left(C-B^{\prime} P\right)
$$

where (A, B) is controllable, (C, A) is observable, and

$$
C(s I-A)^{-1} B=(s+a)^{-1000},
$$

has a stabilizing solution $P=P^{\prime}$.

Problem 5.2

Using the generalized Parrot's theorem, write down an algorithm for finding matrix L which minimizes the largest eigenvalue of

$$
M=M(L)=\left[\begin{array}{cc}
\alpha & \beta+2 L \\
2 L^{\prime}+\beta^{\prime} & \gamma+L^{\prime} L
\end{array}\right]
$$

where $\alpha=\alpha^{\prime}, \beta$, and $\gamma=\gamma^{\prime}$ are given matrices.

[^0]
Problem 5.3

Use the KYP Lemma to write a MATLAB algorithm for checking that a given stable transfer function $G=G(s)$, available in a state space form, satisfies the condition

$$
|G(j \omega)|>1 \quad \forall \omega \in \mathbf{R} \cup\{\infty\}
$$

The algorithm should be exact, provided that the linear algebra operations involved (matrix multiplications, eigenvalue calculations, comparison of real numbers) are performed without numerical errors. In particular, checking that $\left|G\left(j \omega_{k}\right)\right|>1$ at a finite set of frequencies ω_{k} is not acceptable in this problem ${ }^{2}$.

[^1]
[^0]: ${ }^{1}$ Version of March 3, 2004

[^1]: ${ }^{2}$ Of course, frequency sampling may be acceptable in many practical applications

