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Problem 5.1 

Use KYP Lemma to find (analytically) the set of all a ∀ R such that the 
Riccati equation 

P A + A�P = (C � − PB)(C − B�P ), 

where (A, B) is controllable, (C, A) is observable, and 

B = (s + a)−1000C(sI − A)−1 , 

has a stabilizing solution P = P � . 
This is a Riccati equation of the form 

� + P � + � �P = P αP, 

where 
� = −C �C, � = A + BC, α = BB � . 

Since the pair (A, B) is controllable, so is the pair (A + BC, B). According to the KYP 
Lemma, a stabilizing solution of the Riccati equation exists if and only if 

|w|2 − |Cx|2 ∞ 0 for jβx = (A + BC)x + Bw, β ∀ R. 

Substitution v = w + Cx yields an equivalent condition 

|v|2 − 2Re(v Cx) ∞ 0 for jβx = Ax + Bv, β ∀ R. 

1Version of April 26, 2004 
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Again, according to the KYP lemma,this is equivalent to 

1 > Re G(jβ) � β ∀ R, G(s) = C(sI − A)−1B. 

Since the maximal real part of G(jβ) is achieved at β = 0, a stabilizing solution of the 
> 20.001Riccati equation exists if and only if |a| . 

Problem 5.2 

Using the generalized Parrot’s theorem, write down an algorithm for 
finding matrix L which minimizes the largest eigenvalue of 

� � + 2L 
M = M(L) = 

2L� + �� α + L�L
, 

where � = �� , �, and α = α � are given matrices. 
First, let us find the lower bound �� for the functional to be minimized. Note that 

�max(M(L)) < r if nd only if the quadratic form 

� � � 2λr (w, u, y) = w �w + 2Re w (�y + 2u) + y αy + |u|2 − r(|w| + |y|2) 

is negative definite for u = Ly. Conditions for existence of such L are given by the 
generalized Parrot’s theorem (which can be applied because λr is convex with respect to 
u): 

(a) � < rI (i.e. λr (w, 0, 0) ≤ 0); 

� − 4I b 
(b) < rI (i.e. the minimum of λr (w, u, y) with respect to u is negative 

�� α 
definite). 

Hence 
� 
� ��� 

�� = max �max(�), �max 
� − 4I 

�� 
b 
α 

. 

Now, for r = ��, let u� = c1y + c2w be the argument of minimum of λr (w, u, y) with 
respect to u (it is easy to see that, in our case, c1 = 0 and c2 = −2). Let 

λ
r 
�(w, y) = λr (w, c1y + c2w, y) = w �w + 2Re w �y + y αy − 4|w|2 − ��(|w|2 + |y|2) 

be the minimum itself. Let w� = c3y be the argument of maximum of λ
r 
�(w, y) with 

respect to w (since � < ��I, λ
r 
�(w, y) is strictly concave with respect to w, hence a unique 

maximum is well defined). It is easy to see that, in our case, 

c3 = (4I + ��I − �)−1�. 
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To complete a solution, let us prove that 

L = L� = c1 + c2c3 = −2(4I + ��I − �)−1� 

is an optimal value of L. Indeed, according to the way c1, c2, c3 are defined, 

λr (w, u, y) = |u − c1y − c2w|2 − (w − c3y)�(4I + ��I − �)(w − c3y) + λ��(y),
r 

where 

λ��(y) = max λ
r 
�(w, y) = max min λr (w, u, y) = y (α − ��I + ��(4I + ��I − �)−1�)y � 0. 

r 
w w u 

When u = (c1 + c2c3)y, we have 

� I)w+λ��λr (w, u, y) = |c2(w−c3y)|2−(w−c3y)�(4I+��I−�)(w−c3y)+λ��(y) = w (�−�� (y) � 0. 
r r 

Problem 5.3 

Use the KYP Lemma to write a MATLAB algorithm for checking that a 
given stable transfer function G = G(s), available in a state space form, 
satisfies the condition 

|G(jβ)| > 1 � β ∀ R � {∪}. 

The algorithm should be exact, provided that the linear algebra op
erations involved (matrix multiplications, eigenvalue calculations, com
parison of real numbers) are performed without numerical errors. In 
particular, checking that |G(jβk )| > 1 at a finite set of frequencies βk is 
not acceptable in this problem2 . 

Assume that a minimal state space model of G is given by 

 

A B 
G := . 

C D 

Note that condition |G(jβ)|2 > 1 is equivalent to 

|Cx + Dw|2 − |w|2 

being positive definite subject to jβx = Ax + Bw for all real β, including β = ∪, in 
which case the linear constraint takes the form x = 0. According to the KYP Lemma, 

2Of course, frequency sampling may be acceptable in many practical applications 
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this is equivalent to the inequality D�D > I plus the existence of a stabilizing solution 
P = P � of the Riccati equation 

� + P� + � �P = PαP, 

where 

� = C �(I − D(D�D − I)−1D�)C, � = A − B(D�D − I)−1D�C, α = B(D�D − I)−1B� . 

The second condition is equivalent to the absence of purely imaginary eigenvalues of the 
associated Hamiltonian matrix 

� � 
� α 

H = . 
� −� 

The M-function ps5 3.m implements the algorithm. When its argument d is less than 
one, it either reports the “D condition” D�D > I is not satisfied, or produces a very 
small (numerically indistinguishable from zero) minimal absolute value of the real part of 
eigenvalues of the associated Hamiltonian matrix. 


