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Problem Set 7 Solution 1 

Problem 7.1 

(a) A state-space representation for this problem is given by


1

ẋ = −ax + w2 + v 

ρ 
z1 = ρv 

z2 = x 

y = x + w1 

By making the change of variable u = ρv, the description becomes 

1 1 
ẋ = −ax + 

ρ 
w2 + 

ρ 
u 

z1 = u 

z2 = x 

y = x + w1 

which fits the form of the simplified H√ setup with 

A = −a B1 = 1/ρ B2 = 1 = 1/ρ C1 = 1 C2 = 1 

1Version of April 26, 2004 
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By virtue of the conditions derived by the Generalized Parrot’s Lemma, if a real 
number θ is an admissible value for the closed loop H√ norm for some stabilizing 
controller C(s), then the stabilizing solutions P and Q of the respective Riccati 
equations corresponding to the the abstract H2 optimization problems 

√ 

ẋ = −Ax − B1w θ2 w1
2 + θ2 C2x

2 C1x
2 dt � min 

0 
| | | | − | | 

√ 
2�̇ = −A→� − C1

→ q q + B2

→� 2 − θ−2 B→� 2 dt � min 
0 

| | | | | 1 | 

satisfy the conditions P > 0, Q > 0, and P > Q−1 . 

The corresponding Hamiltonian matrices HP and HQ are given by 

θ−2B1B1
→ −A→ C1

→C1−A 
= =HP θ2C2

→C2 − C1
→C1 A→ HQ B2B2

→ − θ−2B1B
→ A1 

which, for this particular example, reduce to 

a θ−2ρ−2 a 1 
= =HP θ2 − 1 −a 

HQ ρ−2(1 − θ−2) −a 

For the eigenvalues of HP and HcQ to not lie on the imaginary axis, θ must satisfy 
the condtion that θ > 1/

�
ρ2a2 + 1, in which case 

P = ρ2θ2(a + a2 + ρ−2(1 − θ−2)) Q = a + a2 + ρ−2(1 − θ−2) . 

Note that if a ≈ 0, P0 and Q0 are both necessarily positive definite. If however 
a < 0, then we require additionally that θ > 1. Hence, we have the following lower 
bound for the admissible values of θ: 

1 

θ > 
�

�2a2+1 
a ≈ 0 

. 
1 a < 0 

To satisfy the condition that P > Q−1, some algebraic manipulation shows that an 
equivalent constraint is given by 

a2 + ρ−2 − 1ρ−2θ−2) > 1 − ρθa. 

If a < 0, then we may safely square boths sides of the inequality without having 
to worry about whether the inequality flips. If a ≈ 0, the situation is a bit more 
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complicated since the right hand side could either be positive or negative. However, 
it should be clear that the for the smallest θ that makes the inequality true, the 
right-hand side is still positive, and, therefore, we can safely assume that, again, the 
inequality will not flip. 

By squaring both sides of the above inequality and solving the resulting quadratic 
inequality, we find that a necessary condition on θ is that 

θ > −aρ + 
�

a2ρ2 + 2 

for all values of a. It is straightforward to show that this lower bound is greater 
than the lower bounds imposed by the strict positivity of P and Q. Hence 

θ(a, ρ) = −aρ + 
�

a2ρ2 + 2. 

Note that the closed loop H√ norm is an increasing function of |a| when a < 0 
which intuitively reflects the need to exert extra control to stabilize the unstable 
pole at s = −a. 

(b) To find a suboptimal controller, we revert back to the Generalized Parrot’s Lemma. 
The quadratic form of interest here is given by 

θ2 w1
2+¯

P L Ax + B1w2 + B2u 
δ(f, g, v) = ¯ 2 2 2 | | θ2 |w2| −|C1x| −|u| −2 

x
x 
f 

→ 

L→ I � 

where 

x xf � 
f = g = v = � = ẋf LL→ = P − Q−1 

w2 w1 + C2x = y u 

(note that w1 and w2 are interchanged in comparison to what was seen in lecture 
since they are switched in the formulation of this problem). We which to find the 

Af Bfmatrix K = 
Cf Df 

such that δ(f, g,Kg) ≈ 0 for all f, g. As the structure 

of K indicates, this will be the system matrix corresponding to a suboptimal H√ 

controller which achieves closed-loop H√ norm strictly less than θ̄ for any value of 
θ̄ > θ(1, 1) = 4 − 2

�
3 � 0.7312. The matrix K is given explicitly by 

K = arg max min δ(f, g, v). 
v f 
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θ2 − 1 + 2P = ¯If we make the substiution w1 = y − C2x and also notice that ¯ θ−2P 2 

by virtue of the Riccati equation for P , then we find that the terms which are either 
linear of quadratic in x and w2 are given by 

2 2 p x − 2pxw2 + ¯ 2 θ2 y − Lxf + L�) − 2w2Lxf .θ2 w2 − 2x(pu + ¯

If we first minimize over w2 for fixed x, we obtain 

θ2 y − L(1 − P θ̄−2)xf + L�) − Lθ̄−2 xf .−2x(pu + ¯ 2 

In order for the minimum over x to exist, the coefficient of the x term must be 0, 
which constrains �: 

θ̄2 P 
� = (1 − P θ̄−2)xf − y − u. 

L L 
If we plug this expression into the remaining terms for δ(f, g, v), we find that the 
required maximation is 

P 
u� = arg max −u 2 − 2L(1 − )xf u 

u L2 

or namely 
P 

u� = L(1 − )xf . 
L2 

Hence, a suboptimal controller which achieves closed-loop H norm less than θ̄ is√ 

given by 
⎥ 

P 
⎥ 

P 
⎦⎦ 

θ̄2 

ẋf = 1 − 
θ̄2 

+ P 1 − 
L2 

xf − 
L 

y 
⎥ ⎦ 

P 
u = −L 1 − 

L2 
xf 

where 

P = θ̄2(1 + 2 − θ̄−2) Q = 1 + 2 − θ̄−2 L = P − Q−1 . 

Note that in the general case, we must substitute v = ρu, which will augment 
our above expressions slightly. However, since ρ = 1 in this case, the above is an 
expression for a suboptimal controller. 
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(c) Using MATLAB to check the above calculations, performing hinfsyn on the stan
dard original setup in terms of v for different values of the lumped parameter aρ 
yields an optimal cost which exactly matches the expression given for the maxi
mal lower bound given in part (a) for at least up to several decimal places. The 
MATLAB file ps7 1 1.m takes in values of a and ρ to show this. To verify that the 
controller of part (b) yields an appropriate suboptimal controller, see the MATLAB 
file ps7 1 2.m which takes in a value of � and computes the H norm of the re-√ 

sulting closed-loop transfer function. I chose values of � = 0.01, 0.1, and 1, which 
correspond to values of θ̄ = 0.7421, 0.8321, and 1.7321. After finding the corre
sponding closed-loop transfer function and evaluating the H√ norm, I found that 
the respective closed-loop norms were given by 0.7418, 0.8069, and 0.9069 (!). So, 
indeed, this suboptimal controller yields a closed loop norm to within the desired � 
accuracy. In fact, it seems that the θ(1, 1) + � bound is far from tight as � becomes 
large, which is great! 

Problem 2 

(a) A simple state-space description for G(s) is given by 

ẋ1 = 
−a 0 x1 1 � ⎤ x1 

0 −2a x2 
+

1 
w , y = 1 1 . 

ẋ2	 x2 

Because B = C → in this case, we find that the observability grammian Wo and 
controllability Grammian Wc are the same, and are given by 

1	 1 1 
2 3Wo = Wc = 1 1 . 

a 3 4 

The singular value decomposition of the Hankel operator is closely related to a 
singular value decomposition of (WoWc) 

1 
2 = Wo, which is given by 

� ⎡ 
0.7310 

� � 0 � �T 
0.8219 0.5696 0.8219 0.5696

� a ⎢ 
0.8219 � 0.019 ⎣ 

0.8219−0.5696 0 −0.5696 
a 

where T denotes transposition. If we denote the columns of the third matrix as wk 

and the corresponding singular values as δk then, according to the lecture notes, a 
selection of the corresponding vectors uk (t) and vk(t) are given by 

1 
2uk (t) =
 Ce AtW wk δ

−1 
k (t > 0)c 

1 
2vk (t) = δ−2B→e−A�tWoWk wk (t < 0)c 
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For the particular example here, we find that 

a a v1(t) = 
0.7310 (0.8219e−at + 0.5696e−2at) v2(t) = 

0.0190 (0.5696e−at + 0.8219e−2at) 
. 

u1(t) = v1(−t) u2(t) = v2(−t) 

Note that the singular vectors are scalar functions in this example, which follows 
from the fact that the system is single-input single-output. Because the vectors vk (t) 
are linear operators which act upon the input of they system, the singular vectors 
vk (t) are generally vector functions of time of length m, where m is the number of 
inputs. Likewise, the singular vectors uk (t) are generally vector functions of time of 
length p, where p is the number of outputs. 

(b) This problem was set-up in lecture (and in the lecture 9 notes) as an application of 
the (stronger) Generalized Parrot’s Lemma to the following quadratic form: 

Ax + Bw 2 2δ(f, g, v) = θ2 |w| − |Cx − yr − 2 
x 

→ 

p| 
xr � 

where 
� � � � 

xr � 
f = x g = v = � = ẋr . 

w yr 

As was proven in lecture, we may take the matrix p to be 

Wo Wo − θ2Wc
−1 

p = 
Wo − θ2W −1 Wo − θ2W−1 . 

c c 

(Actually, in lecture, the off-diagonal elements of the above matrix were taken to be 
the negative of how they appear now, but both forms are acceptable). Additionally, 
it was shown that condition (a) of the stronger version of Parrot’s Lemma can be 
satisfied if the equation 

WoBw + A→(Wo − θ2W −1)xr + (Wo − θ2W −1)� − C →yr = 0 c c 

has a solution (�, yr ) for every (w, xr ). Now, since the value of θ is equal to δ2, the 
matrix Wo − θ2W −1 is singular. Hence, to solve the above equation, it is sufficient c 

� ⎤ 
to set one of the parameters of � = �1 �2 to 0. Now the problem is reduced to 
solving the equation 

� ⎤ �1ω −C → = −A→(Wo − θ2W −1)xr − WoBw. cyr 
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Performing the calculations in MATLAB yields the state-space description

� � � � � � � � 

x1̇r 

x2̇r 
= 

−1.2574a 
0 

−0.8713a 
0 

x1r 

x2r 
− 

1.6502 
0 

w 
� � 

yr = 
� 
−1.1140 −0.7720 

⎤ x1r 

x2r 
− 0.0190w. 

Note that the uncontrollable second mode is removed when we compute the transfer 
function: 

1.8383
Ĝ(s) = + 0.019. 

s + 1.2574a 

Because the constant term does not affect the Hankel norm, it is unnecessary in the 
above expression. Note also in the above analysis that we could have set �2 to any 
linear function of the xr and w. In this case, the resulting state-space description 
would have an anticausal pole that we would manually need to remove by means 
of computing the transfer function and performing a partial fraction expansion. 
Choosing �2 = 0 in this case is computationally easier since it removes this extra

step.


Note further that, because of the non-invertibility of the ω matrix, there is no further

optimization to be performed once we find a solution for �, yr . Informally speaking,

this relates to the fact that we must use all of our parameters to find a solution which

makes the infimization over x feasible, leaving us no further degrees of freedom to

optimize over.


(c) Using the commands	 sysbal and hankmr in MATLAB yields a reduced transfer 
function that is exactly equal to the answer in part (b)! On one hand, this is 
somewhat surprising since Hankel optimal reduced models are not unique. On the 
other hand, one may argue that it is not surprising since we chose a natural choice 
for the variable �2. So, if the person who wrote the algorithm for hankmr at the 
Mathworks is smart (and it seems these days that this is a BIG if!), the algorithm 
would tend to choose this natural selection of �2 as well. 

Problem 7.3 

If we approximate the integral as a Riemann sum, we find that an approximate expression 
for G(s), which we will denote here as Ga(s) is given by 

1 
1 

n−1 
1 A 1 

n−1 
2+ k 

nGa(s) =	 = 
n (s − 1)(s + 1 + k ) s − 1 

− 
n s + 1 + k 

k=0	 n k=0 n 
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where n is a large number and A = 
n 
1 �n−1 1/(2 + k ). In order for the difference G(s) −k=0 n 

Ga(s) to be stable, the pole at s = 1 must be removed. If we write out the expression 
for G(s) explicitly rather than in terms of an integral, we find that this is equivalent to 
making the difference 

s+2Log 
s+1 A 

s − 1 
− 

s − 1 
bounded as s approaches 1. But this can only happen if A is equal to the residue of G(s) 
at s = 1 or, namely, ln(3/2). It is clear that since A is a finite sum of rational numbers, 
then A is not equal to ln(3/2). So, in order to make sure that the difference between G(s) 
and Ga(s) is stable, we must arbitrarily force the value of A to be ln(3/2). Note this will 
not increase the infinity norm of the error since as n grows unboundedly 

� 
11 

n−1 
1 dx 

lim = = ln(3/2) 
n 0 x + 2 

n 
n�√ 

k=0 
2 + k 

which means that, for n large enough, A is relatively close to ln(3/2) anyway. 
Now the procedure is as follows: we initially choose some very large value of n to make 

||G(s)−Ga(s)||√ much smaller than the bound of interest, which in this case is 0.02. Once 
we do this, we may then perform Hankel model order reduction on the stable part of Ga(s) 
(no hope of removing the unstable pole if we want the difference to be stable!), which we 
will refer to as Gas(s). If we denote the Hankel reduced model as Ĝas(s), then the overall 

ˆ Gas(s).low-order approximation G(s) is given by ln(3/2)/(s − 1) + ˆ

Function ps7 3 1.m takes in a parameter n and plots the magnitude of the frequency 
response of G(j�) − Ga(j�) to check the infinity norm of the difference for different values 
of n. Once a suitably large value of n is found, the function ps7 3 2.m which takes in 
as arguments n and a parameter k (which is the desired order of the reduced model of 

ˆthe stable part) can be used. This function creates the transfer function Gas(s) and plots 
|G(j�) − Ĝ(j�) in order to verify whether the reduced model satisfies the norm bound 
constraint ||G(s)

|
− ˆ < 0.02. The resulting transfer function G(s) is created and G(s)||√ 

ˆ

displayed. 
I found that the stable part of the approximation could be reduced all the way to 

the first order system and still be well within the desired bound. Running the command 
ps7 3 2(100,1) yields the transfer function 

G(s) = 
−0.001399s2 + 0.01058s + 0.9543ˆ

s2 + 0.3762s − 1.376 

which satisfies the norm bound constraint ||G(s) − ˆ < 0.0025, almost a factor of G(s)||√ 

ten better than our requirement! 


