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Problem 8.1 

For the standard LTI feedback design setup defined by equations 
⎡ � ⎡ � 
x(t) ẋ(t) 

ẋ(t) = ax(t) + u(t) + w1(t), z(t) = 
u(t) 

, y = 
x(t) + w2(t) 

, 

where a � R is a parameter, find matrices T0, T1, T2 defining a valid Q-

parameterization of all closed loop transfer matrices T : w � z which 
can be achieved while using a finite order stabilizing dynamic feedback 
u = Ky. 

This state space model has matrix coefficients 
⎡ � ⎡ � 

⎥ ⎦ 1 a 
A = a, B1 = 1 0 , B2 = 1, C1 = , C2 = 

0 1 
, 

⎡ � ⎡ � ⎡ � ⎡ � 
0 0 0 1 0 1 

D11 = , D12 = , D21 = , D22 = . 
0 0 1 0 1 0


Since D22 →
= 0, consider the case when K is strictly proper. Then the set of all 
achievable closed loop transfer matrices will not change when D22 is replaced by zero. 
Indeed, for a strictly proper K = K(s), 

u = K(C2x + D21w + D22u) 
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is equivalent to 
ˆu = K(C2x+ D21w), 

where 
K = (I − KD22)

−1K, K = K(I + ˆˆ ˆ KD22)
−1 ,


ˆ
and K is strictly proper whenever K is strictly proper. 
To apply the Q-parameterization theorem of Lecture 10, take F,L such that A+ B2F 

and A+ LC2 are Hurwitz matrices, for example, 

F = −1 − a, L = [−1 − 1], 

which yields 
A+ B2F = A+ LC2 = −1. 

Then the explicit formulae for the transfer matrices T0, T1, T2 in 

Twz = T0 + T1QT2, Q − stable, proper 

yield 

T0(s) = 

� 
1 

s+1 

− 1+a 
s+1 

− 1+a 
(s+1)2 

− 1+a 
s+1 + (1+a)2 

(s+1)2 

� 

, T1(s) = 

⎡ 
1 

s+1 
1 − 1+a 

s+1 

� 

, T2(s) = 

⎡ 
1 
0 

− a 
s+1 
s 

s+1 

� 

. 

Problem 8.2 

For the standard discrete time LTI feedback design setup defined by equa

tions 
⎡ � 
ax[k] 

x[k + 1] = −x[k] + u[k] + w1[k], z[k] = , y[k] = x[k] + w2[k], u[k] 

where a > 0 is a parameter, find the H2 optimal feedbacl law by using a 
Tustin transformation to an equivalent continuous time problem. Also 
give explicit expressions for the equivalent CT setup, and for the cor

responing CT H2 optimal feedback. 
As in most discrete time formulations, this H2 optimization setuo has at least two 

different interpretations: the one in which only strictly causal controllers are allowed (i.e. 
u[k] is allowed to depend on y[k − 1], y[k − 1], . . . ), and the one with an arbitrary causal 
controller (u[k] depends on y[k], y[k − 1], . . . ). Below, a solution for the second case is 
presented. 
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First, since there is an open loop pole at z = −1, we introduce the new control variable 

v[k] = u[k] − y[k] = u[k] − x[k] − w2[k]. 

The new system equations will have the form 
⎡ � 

ax[k] 
x[k + 1] = w1[k] + w2[k] + v[k], z[k] = , y[k] = x[k] + w2[k]. x[k] + w2[k] + v[k] 

Then, in order to reduce the problem to that of desining a strictly causal controller, 
introduce the new sensor output 

ȳ[k] = y[k + 1] = x[k + 1] + w2[k + 1] = w1[k] + w2[k] + v[k] + w2[k + 1]. 

Since the equations now depend on both w2[k] and w2[k + 1], we introduce an additional 
system state x2[k] = w2[k], and a modified noise vector 

⎡ � ⎡ � 
f1[k] w1[k]

f [k] = = . 
f2[k] w2[k + 1] 

Now system equations have the form 
⎡ � ⎡ � ⎡ � 
x1[k + 1] x2[k] + f1[k] + v[k] ax1[k]= , z[k] = , ȳ[k] = x2[k]+f1[k]+f2[k]+v[k], x2[k + 1] f2[k] x1[k] + x2[k] + v[k] 

where x1[k] = x[k]. Here D11 = 0. To make sure that the transfer matrix from control to 
sensor is zero at z = −1, use D22 = 0, which means introducing a new sensor variable 

y�[k] = ȳ[k] − v[k] = x2[k] + f1[k] + f2[k]. 

Now the open loop plant transfer matrix is 
⎤ � 

a a a 
2z z z 

1 z+1 z+1P DT (z) = � 
z 2 

⎣ . 
z z 

1 z+1 0 
z 

Applyin the Tustin transform 

1 + s z − 1 
z = , s = ,

1 − s z + 1 



� 
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� 

� 

� 
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yields a continuous time plant 
⎤ � 

1−s (1−s)2 1−s a 
1+s a 

(1+s)2 a 
1+s 

� 1−s 2 1−s 2 ⎢ 
⎣ .P (s) = 

� 1+s (1+s)2 1+s 

1 2 0
1+s 

After dividing Pf z(s) by 1 − s and multiplying Pvy(s) by 1 − s, we get 
⎤ � 

a a(1−s) 1−s 
1+s (1+s)2 a 

1+s 
2� 1 2 ⎢ 

⎣ .P̂ (s) = 
� 1+s (1+s)2 1+s 

1 2 0
1+s 

A state space model of this CT plant is given by 
⎡ � ⎡ � ⎡ � 
ẋ1(t) −x1(t) + 2x2(t) + f1(t) + 2v(t) a(x1(t) − x2(t) − v(t))

= , z(t) = , y(t) = f1(t)+2x2(t). ẋ2(t) −x2(t) + f2(t) x1(t) 

To solve the corresponding standard CT H2 optimization problem, consider the asso
ciated full information abstract H2 optimization: 

⎡ � ⎡ � 
ẋ1 −x1 + 2x2 + 2u � 

2 2= , {|x1|
2 + a |u + x2 − x1| }dt � min . 

ẋ2 −x2 0 

With a modified control vector 
ũ = u + x2 − x1, 

the problem can be re-written in an equivalent one-dimensional form 

ẋ1 = x1 + 2˜ 2 u|2}dt � min .u, {|x1|
2 + a |˜

0 

The optimal controller is given by 

u = −gf x1 − x2, 

where 
1 1 1 2pf 

gf = + − = 1 − ,
24 a2 2 a

and 
2 2 4a a a

pf = + + 
4 4 16 
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is the stabilizing solution of the associated Riccati equation 

2 2a
p 2 − 

a
p − = 0. 

2 4 

Similarly, consider the associated state estimation abstract H2 optimization: 
⎡ � ⎡ � 
�̇1 −�1 

� 
2

�̇2 
=

2�1 − �2 + 2q
, 

0 
{|�1 + q|2 + |�2| }dt � min . 

With a modified control vector 
q̃ = �1 + q, 

the problem can be re-written in an equivalent one-dimensional form 

�̇2 = −�2 + 2q̃, {|�2|
2 + |q̃|2}dt � min . 

0 

The optimal controller is given by 

q = −�1 − ge�2, 

where 
1 1 

ge = + 1 − = 2pe,
4 2 

and 
1 1 1 

pe = − + + 
4 4 16 

is the stabilizing solution of the associated Riccati equation 

1 12 p + p − = 0. 
2 4 

The optimal CT controller K CT has state space model 
⎡ � ⎡ � ⎡ � 

d ˆ x1 + 2ˆx1 −ˆ x2 + 2u 1 
= − (2ˆ x1 − ˆx2 − y), u = −gf ˆ x2,ˆ x2 gedt x2 −ˆ

which corresponds to controller transfer function 

KCT (s) = − 
gf (s + 1) + ge(s + 1 + 2gf ) 

. 
(s + 1 + 2gf )(s + 1 + 2ge) 
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ˆThe inverse Tustin transform K(z) of (1 − s)KCT (s) is given by 

ˆ 2zgf + ge(2z + gf (z + 1)) 
K(z) = − . 

(2z + gf (z + 1))(2z + ge(z + 1)) 

Due to the changes of control and sensor variables introduced in the original setup, the 
true optimal controller (with input y[k] and output u[k]) is given by 

ˆzK(z)
K(z) = 1 + 

1 + ˆ
, 

K(z) 

which yields 
4z − gegf

K(z) = . 
(2 + ge)(2 + gf )z + gegf 

Problem 8.3 

Consider a system described by the hyperbolic partial differential equation 

vt = vxx + rv, v(0, t) = 0, y(t) = v(1, t) + w(t), u(t) = vx(1, t), 

where v = v(x, t), for fixed time, is a function of the spatial parameter x � [0, 1], vt denotes 
the time derivative of v, vxx denotes the double spatial derivative of v, and r > 0 is a 
given parameter. The control action is the Dirichlet boundary condition u(t) = vx(1, t), 
while a noisy measurement of y(t) = v(1, t) + w(t) is used as the sensor signal. 

(a) Find an analytical expression for the transfer function P = Pr (s) from u to y. 

(b) For r = 1, find a good low order rational approximation P̂1 of P1, such that � = 
P1 − P̂1 is stable, together with an upper bound ���� < �. 

(c) Using the results from (b), small gain theorem, and H-Infinity optimization, design 
a finite order stabilizing feedback u = Ky for the original system, while trying to 
provide an upper bound for the closed loop H-Infinity norm �Twu� which is as small 
as possible. Note that this will only be possible when � is small enough. 


