15.081J/6.251J Introduction to Mathematical Programming

Lecture 3: Geometry of Linear Optimization II

1 Outline

- BFS for standard form polyhedra
- Deeper understanding of degeneracy
- Existence of extreme points
- Optimality of Extreme Points
- Representation of Polyhedra

2 BFS for standard form polyhedra

- $\boldsymbol{A x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- $m \times n$ matrix \boldsymbol{A} has linearly independent rows
- $\boldsymbol{x} \in \Re^{n}$ is a basic solution if and only if $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, and there exist indices $B(1), \ldots, B(m)$ such that:
- The columns $\boldsymbol{A}_{B(1)}, \ldots, \boldsymbol{A}_{B(m)}$ are linearly independent
- If $i \neq B(1), \ldots, B(m)$, then $x_{i}=0$

2.1 Construction of BFS

Procedure for constructing basic solutions

1. Choose m linearly independent columns $\boldsymbol{A}_{B(1)}, \ldots, \boldsymbol{A}_{B(m)}$
2. Let $x_{i}=0$ for all $i \neq B(1), \ldots, B(m)$
3. Solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for $x_{B(1)}, \ldots, x_{B(m)}$

$$
\begin{gathered}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad \rightarrow \quad \boldsymbol{B} \boldsymbol{x}_{B}+\boldsymbol{N} \boldsymbol{x}_{N}=\boldsymbol{b} \\
\boldsymbol{x}_{N}=0, \quad \boldsymbol{x}_{B}=\boldsymbol{B}^{-1} \boldsymbol{b}
\end{gathered}
$$

2.2 Example 1

$$
\left[\begin{array}{lllllll}
1 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 6 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{r}
8 \\
12 \\
4 \\
6
\end{array}\right]
$$

- $\boldsymbol{A}_{4}, \boldsymbol{A}_{5}, \boldsymbol{A}_{6}, \boldsymbol{A}_{7}$ basic columns
- Solution: $\boldsymbol{x}=(0,0,0,8,12,4,6)$, a BFS
- Another basis: $\boldsymbol{A}_{3}, \boldsymbol{A}_{5}, \boldsymbol{A}_{6}, \boldsymbol{A}_{7}$ basic columns.
- Solution: $\boldsymbol{x}=(0,0,4,0,-12,4,6)$, not a BFS

2.3 Geometric intuition

2.4 Example 2

Slide 6 Slide 7

Standard form

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+s_{1} & =4 \\
x_{1}+s_{2} & =2 \\
x_{3}+s_{3} & =3 \\
3 x_{2}+x_{3}+s_{4} & =6 \\
x_{1}, x_{2}, x_{3}, s_{1}, \ldots, s_{4} & \geq 0
\end{array}
$$

- Using the definition for BFS in polyhedra in general form :
- Choose tight constraints: $\left.\begin{array}{ll}x_{1}+x_{2}+x_{3} & =4 \\ x_{3} & =3 \\ x_{2} & =0\end{array}\right\} \Rightarrow(1,0,3)$
- Check if $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \operatorname{span} \Re^{3}$ (they do)
- Using the definition for BFS in polyhedra in standard form :
- Pick the basic variables: $x_{1}, x_{3}, s_{2}, s_{3}: \boldsymbol{x}_{\boldsymbol{B}}=\left(x_{1}, x_{3}, s_{2}, s_{3}\right)$
- Pick the nonbasic variables: $x_{2}, s_{1}, s_{4}: \boldsymbol{x}_{N}=\left(x_{2}, s_{1}, s_{4}\right)$
- Partition A:

$$
\begin{gathered}
\boldsymbol{A}=\left[\begin{array}{ccccccc}
x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} & s_{4} \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
& 1 & 0 & 0 & 0 & 1 & 0 \\
0 \\
0 & 3 & 1 & 0 & 0 & 1 & 0 \\
& 0 & 0 & 1 & 0 & 0 & 0 \\
1
\end{array}\right]=[\boldsymbol{B}, \boldsymbol{N}] \\
\boldsymbol{B}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], \boldsymbol{N}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{B} \text { non-singular } \\
\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}, \boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b} \Rightarrow\left(\begin{array}{c}
x_{1} \\
x_{3} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
1 \\
3
\end{array}\right)
\end{gathered}
$$

3 Degeneracy for standard form polyhedra

3.1 Definition

- A BFS \boldsymbol{x} of $P=\left\{\boldsymbol{x} \in \Re^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{A}: n \times n, \boldsymbol{x} \geq 0\right\}$ is called degenerate if it contains more than $n-m$ zeros.
- \boldsymbol{x} is non-degenerate if it contains exactly $n-m$ zeros.

3.2 Example 2, revisited

- In previous example:

$$
\begin{array}{ll}
(2,2,0,0,0,3,0) \text { degenerate }: & n=7 \\
& m=4
\end{array}
$$

- More than $n-m=7-4=3$ zeros.
- Ambiguity about which are basic variables.
- $\left(x_{1}, x_{2}, x_{3}, x_{6}\right)$ one choice
- $\left(x_{1}, x_{2}, x_{6}, x_{7}\right)$ another choice

3.3 Extreme points and BFS

- Consider again the extreme point ($2,2,0,0,0,6,0$)
- How do we construct the basis?

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
0 \\
3 \\
\boldsymbol{A}_{1}
\end{array} \boldsymbol{A}_{2} \quad \begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\boldsymbol{A}_{6}
\end{array}\right.\right.
$$

- Columns in \mathcal{B} are linearly independent.
- $\operatorname{Rank}(\boldsymbol{A})=4$
- $|\mathcal{B}|=3<4$
- Can we augment \mathcal{B} ?
- Choices:
$-\mathcal{B}^{\prime}=\mathcal{B} \cup\left\{\boldsymbol{A}_{3}\right\} \quad$ basic variables $\quad x_{1}, x_{2}, x_{3}, x_{6}$
$-\mathcal{B}^{\prime}=\mathcal{B} \cup\left\{\boldsymbol{A}_{7}\right\} \quad$ basic variables $x_{1}, x_{2}, x_{6}, x_{7}$
- How many choices do we have?

3.4 Degeneracy and geometry

- Whether a BFS is degenerate may depend on the particular representation of a polyhedron.
- $P=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}-x_{2}=0, x_{1}+x_{2}+2 x_{3}=2, x_{1}, x_{2}, x_{3} \geq 0\right\}$.
- $n=3, m=2$ and $n-m=1$. $(1,1,0)$ is nondegenerate, while $(0,0,1)$ is degenerate.
- Consider the representation $P=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}-x_{2}=0, x_{1}+x_{2}+2 x_{3}=\right.$ $\left.2, x_{1} \geq 0, x_{3} \geq 0\right\} .(0,0,1)$ is now nondegenerate.

3.5 Conclusions

- An extreme point corresponds to possibly many bases in the presence of degeneracy.
- A basic feasible solution, however, corresponds to a unique extreme point.
- Degeneracy is not a purely geometric property.

4 Existence of extreme points

Note that $P=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1} \leq 1\right\}$ does not have an extreme point, while $P^{\prime}=\left\{\left(x_{1}, x_{2}\right): x_{1} \leq x_{2}, x_{1} \geq 0, x_{2} \geq 0\right\}$ has one. Why?

4.1 Definition

A polyhedron $P \subset \Re^{n}$ contains a line if there exists a vector $\boldsymbol{x} \in P$ and a nonzero vector $\boldsymbol{d} \in \Re^{n}$ such that $\boldsymbol{x}+\lambda \boldsymbol{d} \in P$ for all scalars λ.

4.2 Theorem

Suppose that the polyhedron $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{a}_{\boldsymbol{i}}{ }^{\prime} \boldsymbol{x} \geq b_{i}, i=1, \ldots, m\right\}$ is nonempty. Then, the following are equivalent:
(a) The polyhedron P has at least one extreme point.
(b) The polyhedron P does not contain a line.
(c) There exist n vectors out of the family $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{\boldsymbol{m}}$, which are linearly independent.

4.3 Corollary

- Polyhedra in standard form contain an extreme point.
- Bounded polyhedra contain an extreme point.

4.4 Proof

Let $P=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\} \neq \emptyset, \operatorname{rank}(\boldsymbol{A})=m$. If there exists a feasible solution in P, then there is an extreme point.
Proof

- Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{t}, 0, \ldots, 0\right)$, s.t. $\boldsymbol{x} \in P$. Consider $\boldsymbol{B}=\left\{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{t}\right\}$
- If $\left\{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{t}\right\}$ are linearly independent we can augment, to find a basis, and thus a BFS exists.
- If $\left\{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{t}\right\}$ are dependent

$$
d_{1} \boldsymbol{A}_{1}+\cdots+d_{t} \boldsymbol{A}_{t}=0 \quad\left(d_{i} \neq 0\right)
$$

- But $x_{1} \boldsymbol{A}_{1}+\cdots+x_{t} \boldsymbol{A}_{t}=\boldsymbol{b}$

$$
\Rightarrow\left(x_{1}+\theta d_{1}\right) \boldsymbol{A}_{1}+\cdots+\left(x_{t}+\theta d_{t}\right) \boldsymbol{A}_{t}=b
$$

- Consider $x_{j}(\theta)= \begin{cases}x_{j}+\theta d_{j} & j=1 \ldots t \\ 0 & \text { otherwise. }\end{cases}$

Clearly $\boldsymbol{A} \cdot \boldsymbol{x}(\theta)=\boldsymbol{b}$

$$
\begin{array}{llr}
\text { Let: } & \theta_{1}=\max _{d_{j}>0}\left\{-\frac{x_{j}}{d_{j}}\right\} & \left(\text { if all } d_{j} \leq 0\right) \\
& \theta_{2}=\min _{d_{j}>0}\left\{-\frac{x_{j}}{d_{j}}\right\} & \left(\text { if all } d_{j} \geq 0\right) \\
& \theta_{2}=+\infty \\
\text { For } & \theta_{1} \leq \theta \leq \theta_{2} & (\text { sufficiently small) } \\
& \boldsymbol{x}(\theta) \geq 0
\end{array}
$$

Slide 24
Since at least one $\left(d_{1}, \ldots, d_{t}\right) \neq \mathbf{0} \Rightarrow$ at least one from θ_{1}, θ_{2} is finite, say θ_{1}. But then $x\left(\theta_{1}\right) \geq 0$ and number of nonzeros decreased.

$$
x_{j}+\theta \cdot d_{j} \geq 0 \quad \Rightarrow \quad x_{j} \geq-\theta d_{j}
$$

4.5 Example 3

- $\boldsymbol{x}=\left(\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}\right)$
-

$$
\boldsymbol{B}=\left\{\binom{1}{1},\binom{1}{0},\binom{1}{0},\binom{0}{1}\right\}
$$

-

$$
1 \cdot\binom{1}{1}-\binom{1}{0}+0 \cdot\binom{1}{0}-\binom{0}{1}=\binom{0}{0}
$$

- Consider: $\boldsymbol{x}(\theta)=\left(\frac{1}{2}+\theta, \frac{1}{2}-\theta, 1, \frac{1}{2}-\theta\right)$ for $-\frac{1}{2} \leq \theta \leq \frac{1}{2}$.
- $x(\theta) \in P$.
- Note $\boldsymbol{x}\left(-\frac{1}{2}\right)=(0,1,1,1)$ and $\boldsymbol{x}\left(\frac{1}{2}\right)=(1,0,1,0)$.

5 Optimality of Extreme Points

5.1 Theorem

- Consider

$$
\begin{array}{ll}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}
\end{array}
$$

- P has no line and it has an optimal solution.

Then, there exists an optimal solution which is an extreme point of P.

5.2 Proof

- v optimal value of the $\operatorname{cost} \boldsymbol{c}^{\prime} \boldsymbol{x}$.
- Q : set of optimal solutions, i.e.,

$$
\boldsymbol{Q}=\left\{\boldsymbol{x} \mid \boldsymbol{c}^{\prime} \boldsymbol{x}=v, \quad \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}
$$

- $Q \subset P$ and P contains no lines, Q does not contain any lines, hence is has an extreme point \boldsymbol{x}^{*}.
- Claim: \boldsymbol{x}^{*} is an extreme point of P.
- Suppose not; $\exists \boldsymbol{y}, \boldsymbol{w} \neq \boldsymbol{x}^{*}: \quad \boldsymbol{x}^{*}=\lambda \boldsymbol{y}+(1-\lambda) \boldsymbol{w}, \quad \boldsymbol{y}, \boldsymbol{w} \in \boldsymbol{P}, 0<\lambda<1$.
- $v=\boldsymbol{c}^{\prime} \boldsymbol{x}^{*}=\lambda \boldsymbol{c}^{\prime} \boldsymbol{y}+(1-\lambda) \boldsymbol{c}^{\prime} \boldsymbol{w}$
- $\left.\begin{array}{l}\boldsymbol{c}^{\prime} \boldsymbol{y} \geq v \\ \boldsymbol{c}^{\prime} \boldsymbol{w} \geq v\end{array}\right\} \Rightarrow \boldsymbol{c}^{\prime} \boldsymbol{y}=\boldsymbol{c}^{\prime} \boldsymbol{w}=v \Rightarrow \boldsymbol{y}, \boldsymbol{w} \in \boldsymbol{Q}$
$\bullet \Rightarrow \boldsymbol{x}^{*}$ is NOT an extreme point of Q, CONTRADICTION.

6 Representation of Polyhedra

6.1 Theorem

A nonempty and bounded polyhedron is the convex hull of its extreme points.

MIT OpenCourseWare
http://ocw.mit.edu

$6.251 \mathrm{~J} / 15.081 \mathrm{~J}$ Introduction to Mathematical Programming

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

