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2 Projections of polyhedra 
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• πk : ℜ
n �→ ℜk projects x onto its first k coordinates: 

πk (x) = πk(x1, . . . , xn) = (x1, . . . , xk ). 

• 
Πk(S) = πk(x) | x ∈ S ;
 

Equivalently
 

Πk(S) = (x1, . . . , xk) there exist xk+1, . . . , xn 

s.t. (x1, . . . , xn) ∈ S . 

x1 

x2 

x3 

P 1 ( S ) 

P 2 ( S ) 

2.1 The Elimination Algorithm 

2.1.1 By example 
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•	 Consider the polyhedron
 

x1 + x2 ≥ 1
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x1 + x2 + 2x3 ≥ 2 

2x1 + 3x3 ≥ 3 

x1 − 4x3 ≥ 4 

−2x1 + x2 − x3 ≥ 5. 

• We rewrite these constraints 

0 ≥ 1 − x1 − x2 

x3 ≥ 1 − (x1/2) − (x2/2) 

x3 ≥ 1 − (2x1/3) 

−1 + (x1/4) ≥ x3 

−5 − 2x1 + x2 ≥ x3. 

• Eliminate variable x3, obtaing polyhedron Q 

0 ≥ 1 − x1 − x2 

−1 + x1/4 ≥ 1 − (x1/2) − (x2/2) 

−1 + x1/4 ≥ 1 − (2x1/3) 

−5 − 2x1 + x2 ≥ 1 − (x1/2) − (x2/2) 

−5 − 2x1 + x2 ≥ 1 − (2x1/3). 

2.2 The Elimination Algorithm 
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1. Rewrite j

n 
=1 aij xj ≥ bi in the form 

n−1 

ainxn ≥ − aij xj + bi, i = 1, . . . , m; 
j=1 

if ain =� 0, divide both sides by ain. By letting x = (x1, . . . , xn−1) that P 
is represented by: 

′ xn ≥ di + f ix, if ain > 0, 
′ dj + f j x ≥ xn, if ajn < 0, 

′ 0 ≥ dk + fkx, if akn = 0. 

2. Let Q be the polyhedron in ℜn−1 defined by: 

′ ′ dj + f j x ≥ di + f ix, if ain > 0 and ajn < 0, 
′ 0 ≥ dk + fkx, if akn = 0. 

Theorem:
 
The polyhedron Q constructed by the elimination algorithm is equal to the
 
projection Πn−1(P ) of P .
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2.3 Implications 

•	 Let P ⊂ ℜn+k be a polyhedron. Then, the set 

x ∈ ℜn 
� there exists y ∈ ℜk such that (x, y) ∈ P 


is also a polyhedron. 


•	 Let P ⊂ ℜn be a polyhedron and let A be an m × n matrix. Then, the
 
set Q = {Ax | x ∈ P} is also a polyhedron.
 

•	 The convex hull of a finite number of vectors is a polyhedron. 

2.4 Algorithm for LO 
′ •	 Consider min c x subject to x ∈ P . 

′ •	 Define a new variable x0 and introduce the constraint x0 = c x. 

•	 Apply the elimination algorithm n times to eliminate the variables x1, . . . , xn 

•	 We are left with the set 

′Q = x0 | there exists x ∈ P such that x0 = c x ,
 

and the optimal cost is equal to the smallest element of Q.
 

3 Optimality Conditions 

3.1 Feasible directions 

•	 We are at x ∈ P and we contemplate moving away from x, in the direction
 
of a vector d ∈ ℜn.
 

•	 We need to consider those choices of d that do not immediately take us
 
outside the feasible set.
 

•	 A vector d ∈ ℜn is said to be a feasible direction at x, if there exists a
 
positive scalar θ for which x + θd ∈ P .
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•	 x be a BFS to the standard form problem corresponding to a basis B. 

•	 xi = 0, i ∈ N , xB = B−1B. 

•	 We consider moving away from x, to a new vector x + θd, by selecting a
 
nonbasic variable xj and increasing it to a positive value θ, while keeping
 
the remaining nonbasic variables at zero.
 

•	 Algebraically, dj = 1, and di = 0 for every nonbasic index i other than j. 

•	 The vector xB of basic variables changes to xB + θdB . 

•	 Feasibility: A(x + θd) = B ⇒ Ad = 0. 

•	 0 = Ad = 
�n

i=1 Aidi = 
�m

i=1 AB(i)dB(i) + Aj = BdB + Aj ⇒ dB =
 

−B−1Aj .
 

•	 Nonnegativity constraints? 


–	 If x nondegenerate, xB > 0; thus xB + θdB ≥ 0 for θ is sufficiently 

small. 


–	 If xdegenerate, then d is not always a feasible direction. Why? 


•	 Effects in cost?
 
′ Cost change: c ′ d = cj − cB B

−1Aj This quantity is called reduced cost
 
cj of the variable xj .
 

3.2 Theorem 
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•	 x BFS associated with basis B 

•	 c reduced costs
 
Then
 

•	 If c ≥ 0 ⇒ x optimal 

•	 x optimal and non-degenerate ⇒ c ≥ 0 

3.3 Proof 

•	 y arbitrary feasible solution 

•	 d = y − x ⇒ Ax = Ay = b ⇒ Ad = 0 

⇒ BdB + 
i∈N 

⇒ dB = − 
i∈N 

⇒ c ′ d = c ′ B 
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Aidi = 0 

B−1Aidi 

dB + cidi 
i∈N 

Slide 12 
′ = (ci − cB B

−1Ai)di = cidi
 
i∈N i∈N
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• Since yi ≥ 0 and xi = 0, i ∈ N , then di = yi − xi ≥ 0, i ∈ N 

• c ′ d = c ′ (y − x) ≥ 0 ⇒ c ′ y ≥ c ′ x 

⇒ x optimal
 

(b) Your turn
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