15.081J/6.251J Introduction to Mathematical Programming

Lecture 4: Geometry of Linear Optimization III

1 Outline

1. Projections of Polyhedra
2. Fourier-Motzkin Elimination Algorithm
3. Optimality Conditions

2 Projections of polyhedra

- $\pi_{k}: \Re^{n} \mapsto \Re^{k}$ projects \boldsymbol{x} onto its first k coordinates:

$$
\pi_{k}(\boldsymbol{x})=\pi_{k}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}\right)
$$

\bullet

$$
\Pi_{k}(S)=\left\{\pi_{k}(\boldsymbol{x}) \mid \boldsymbol{x} \in S\right\} ;
$$

Equivalently

$$
\Pi_{k}(S)=\left\{\left(x_{1}, \ldots, x_{k}\right) \mid \text { there exist } x_{k+1}, \ldots, x_{n}\right.
$$

$$
\text { s.t. } \left.\left(x_{1}, \ldots, x_{n}\right) \in S\right\} .
$$

2.1 The Elimination Algorithm

2.1.1 By example

- Consider the polyhedron

$$
x_{1}+x_{2} \geq 1
$$

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & \geq 2 \\
2 x_{1}+3 x_{3} & \geq 3 \\
x_{1}-4 x_{3} & \geq 4 \\
-2 x_{1}+x_{2}-x_{3} & \geq 5 .
\end{aligned}
$$

- We rewrite these constraints

$$
\begin{aligned}
0 & \geq 1-x_{1}-x_{2} \\
x_{3} & \geq 1-\left(x_{1} / 2\right)-\left(x_{2} / 2\right) \\
x_{3} & \geq 1-\left(2 x_{1} / 3\right) \\
-1+\left(x_{1} / 4\right) & \geq x_{3} \\
-5-2 x_{1}+x_{2} & \geq x_{3} .
\end{aligned}
$$

- Eliminate variable x_{3}, obtaing polyhedron Q

$$
\begin{aligned}
0 & \geq 1-x_{1}-x_{2} \\
-1+x_{1} / 4 & \geq 1-\left(x_{1} / 2\right)-\left(x_{2} / 2\right) \\
-1+x_{1} / 4 & \geq 1-\left(2 x_{1} / 3\right) \\
-5-2 x_{1}+x_{2} & \geq 1-\left(x_{1} / 2\right)-\left(x_{2} / 2\right) \\
-5-2 x_{1}+x_{2} & \geq 1-\left(2 x_{1} / 3\right) .
\end{aligned}
$$

2.2 The Elimination Algorithm

1. Rewrite $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$ in the form

$$
a_{i n} x_{n} \geq-\sum_{j=1}^{n-1} a_{i j} x_{j}+b_{i}, \quad i=1, \ldots, m
$$

if $a_{i n} \neq 0$, divide both sides by $a_{i n}$. By letting $\overline{\boldsymbol{x}}=\left(x_{1}, \ldots, x_{n-1}\right)$ that P is represented by:

$$
\begin{aligned}
x_{n} & \geq d_{i}+\boldsymbol{f}_{i}^{\prime} \overline{\boldsymbol{x}}, & & \text { if } a_{i n}>0 \\
d_{j}+\boldsymbol{f}_{j}^{\prime} \overline{\boldsymbol{x}} & \geq x_{n}, & & \text { if } a_{j n}<0 \\
0 & \geq d_{k}+\boldsymbol{f}_{k}^{\prime} \overline{\boldsymbol{x}}, & & \text { if } a_{k n}=0
\end{aligned}
$$

2. Let Q be the polyhedron in \Re^{n-1} defined by:

$$
\begin{array}{rlr}
d_{j}+\boldsymbol{f}_{j}^{\prime} \overline{\boldsymbol{x}} \geq d_{i}+\boldsymbol{f}_{i}^{\prime} \overline{\boldsymbol{x}}, & \text { if } a_{i n}>0 \text { and } a_{j n}<0, \\
0 \geq d_{k}+\boldsymbol{f}_{k}^{\prime} \overline{\boldsymbol{x}}, & \text { if } a_{k n}=0 .
\end{array}
$$

Theorem:
The polyhedron Q constructed by the elimination algorithm is equal to the projection $\Pi_{n-1}(P)$ of P.

2.3 Implications

- Let $P \subset \Re^{n+k}$ be a polyhedron. Then, the set

$$
\left\{\boldsymbol{x} \in \Re^{n} \mid \text { there exists } \boldsymbol{y} \in \Re^{k} \text { such that }(\boldsymbol{x}, \boldsymbol{y}) \in P\right\}
$$

is also a polyhedron.

- Let $P \subset \Re^{n}$ be a polyhedron and let \boldsymbol{A} be an $m \times n$ matrix. Then, the set $Q=\{\boldsymbol{A} \boldsymbol{x} \mid \boldsymbol{x} \in P\}$ is also a polyhedron.
- The convex hull of a finite number of vectors is a polyhedron.

2.4 Algorithm for LO

- Consider min $\boldsymbol{c}^{\prime} \boldsymbol{x}$ subject to $\boldsymbol{x} \in P$.
- Define a new variable x_{0} and introduce the constraint $x_{0}=\boldsymbol{c}^{\prime} \boldsymbol{x}$.
- Apply the elimination algorithm n times to eliminate the variables x_{1}, \ldots, x_{n}
- We are left with the set

$$
Q=\left\{x_{0} \mid \text { there exists } \boldsymbol{x} \in P \text { such that } x_{0}=\boldsymbol{c}^{\prime} \boldsymbol{x}\right\}
$$

and the optimal cost is equal to the smallest element of Q.

3 Optimality Conditions

3.1 Feasible directions

- We are at $\boldsymbol{x} \in P$ and we contemplate moving away from \boldsymbol{x}, in the direction of a vector $\boldsymbol{d} \in \Re^{n}$.
- We need to consider those choices of \boldsymbol{d} that do not immediately take us outside the feasible set.
- A vector $\boldsymbol{d} \in \Re^{n}$ is said to be a feasible direction at \boldsymbol{x}, if there exists a positive scalar θ for which $\boldsymbol{x}+\theta \boldsymbol{d} \in P$.

- \boldsymbol{x} be a BFS to the standard form problem corresponding to a basis \boldsymbol{B}.
- $x_{i}=0, i \in N, \boldsymbol{x}_{B}=\boldsymbol{B}^{-1} \boldsymbol{B}$.
- We consider moving away from \boldsymbol{x}, to a new vector $\boldsymbol{x}+\theta \boldsymbol{d}$, by selecting a nonbasic variable x_{j} and increasing it to a positive value θ, while keeping the remaining nonbasic variables at zero.
- Algebraically, $d_{j}=1$, and $d_{i}=0$ for every nonbasic index i other than j.
- The vector \boldsymbol{x}_{B} of basic variables changes to $\boldsymbol{x}_{B}+\theta \boldsymbol{d}_{B}$.
- Feasibility: $\boldsymbol{A}(\boldsymbol{x}+\theta \boldsymbol{d})=\boldsymbol{B} \Rightarrow \boldsymbol{A d}=\mathbf{0}$.
- $\mathbf{0}=\boldsymbol{A} \boldsymbol{d}=\sum_{i=1}^{n} \boldsymbol{A}_{i} d_{i}=\sum_{i=1}^{m} \boldsymbol{A}_{B(i)} d_{B(i)}+\boldsymbol{A}_{j}=\boldsymbol{B} \boldsymbol{d}_{B}+\boldsymbol{A}_{j} \Rightarrow \boldsymbol{d}_{B}=$ $-B^{-1} \boldsymbol{A}_{j}$.
- Nonnegativity constraints?
- If \boldsymbol{x} nondegenerate, $\boldsymbol{x}_{B}>\mathbf{0}$; thus $\boldsymbol{x}_{B}+\theta \boldsymbol{d}_{B} \geq \mathbf{0}$ for θ is sufficiently small.
- If \boldsymbol{x} degenerate, then \boldsymbol{d} is not always a feasible direction. Why?
- Effects in cost?

Cost change: $\boldsymbol{c}^{\prime} \boldsymbol{d}=c_{j}-\boldsymbol{c}_{B}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{A}_{j}$ This quantity is called reduced cost \bar{c}_{j} of the variable x_{j}.

3.2 Theorem

- \boldsymbol{x} BFS associated with basis B
- $\overline{\boldsymbol{c}}$ reduced costs

Then

- If $\overline{\boldsymbol{c}} \geq \mathbf{0} \Rightarrow \boldsymbol{x}$ optimal
- \boldsymbol{x} optimal and non-degenerate $\Rightarrow \overline{\boldsymbol{c}} \geq \mathbf{0}$

3.3 Proof

- \boldsymbol{y} arbitrary feasible solution
- $d=y-x \Rightarrow A x=A y=b \Rightarrow A d=0$

$$
\begin{aligned}
& \Rightarrow \boldsymbol{B} \boldsymbol{d}_{B}+\sum_{i \in N} \boldsymbol{A}_{i} d_{i}=\mathbf{0} \\
& \begin{aligned}
\Rightarrow \boldsymbol{d}_{B}= & -\sum_{i \in N} \boldsymbol{B}^{-1} \boldsymbol{A}_{i} d_{i} \\
\Rightarrow \boldsymbol{c}^{\prime} \boldsymbol{d} & =\boldsymbol{c}_{B}^{\prime} \boldsymbol{d}_{B}+\sum_{i \in N} c_{i} d_{i} \\
& =\sum_{i \in N}\left(c_{i}-\boldsymbol{c}_{B}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{A}_{i}\right) d_{i}=\sum_{i \in N} \bar{c}_{i} d_{i}
\end{aligned}
\end{aligned}
$$

- Since $y_{i} \geq 0$ and $x_{i}=0, i \in N$, then $d_{i}=y_{i}-x_{i} \geq 0, i \in N$
- $c^{\prime} d=c^{\prime}(y-x) \geq 0 \Rightarrow c^{\prime} y \geq c^{\prime} x$
$\Rightarrow x$ optimal
(b) Your turn

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

