15.081J/6.251J Introduction to Mathematical Programming

Lecture 9: Duality Theory II

1 Outline

- Strict complementary slackness
- Geometry of duality
- The dual simplex algorithm
- Duality and degeneracy

2 Strict Complementary Slackness

Assume that both problems have an optimal solution:

$$
\begin{array}{rlrl}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} & \max & \boldsymbol{p}^{\prime} \boldsymbol{b} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} & \text { s.t. } & \boldsymbol{p}^{\prime} \boldsymbol{A} \leq \boldsymbol{c}^{\prime} \\
& \boldsymbol{x} \geq \mathbf{0}, & \boldsymbol{p} \geq \mathbf{0}
\end{array}
$$

There exist optimal solutions to the primal and to the dual that satisfy

- For every j, either $x_{j}>0$ or $\boldsymbol{p}^{\prime} \boldsymbol{A}_{\boldsymbol{j}}<c_{j}$.
- For every i, we have either $\boldsymbol{a}_{\boldsymbol{i}}^{\prime} \boldsymbol{x}>b_{i}$ or $p_{i}>0$.

2.1 Example

$$
\begin{array}{cr}
\min & 5 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \geq 2 \\
& 2 x_{1}-x_{2} \geq 0 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

- Is $(2 / 3,4 / 3)$ strictly complementary?
- Which are all the strictly complementary solutions?

3 The Geometry of Duality

$$
\begin{aligned}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{a}_{i}^{\prime} \boldsymbol{x} \geq b_{i}, \quad i=1, \ldots, m \\
& \max \\
& \boldsymbol{p}^{\prime} \boldsymbol{b} \\
& \text { s.t. } \\
& \sum_{i=1}^{m} p_{i} \boldsymbol{a}_{i}=\boldsymbol{c} \\
& \\
& \boldsymbol{p} \geq \mathbf{0}
\end{aligned}
$$

4 Dual Simplex Algorithm

4.1 Motivation

- In simplex method $\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$
- Primal optimality condition

$$
\boldsymbol{c}^{\prime}-\boldsymbol{c}_{B}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{A} \geq \mathbf{0}^{\prime}
$$

same as dual feasibility

- Simplex is a primal algorithm: maintains primal feasibility and works towards dual feasibility
- Dual algorithm: maintains dual feasibility and works towards primal feasibility

$-\boldsymbol{c}_{B}^{\prime} \boldsymbol{x}_{B}$	\bar{c}_{1}	\ldots	\bar{c}_{n}
$x_{B(1)}$	\mid		\mid
\vdots	$\boldsymbol{B}^{-1} \boldsymbol{A}_{1}$	\ldots	$\boldsymbol{B}^{-1} \boldsymbol{A}_{n}$
$x_{B(m)}$	\mid		\mid

- Do not require $\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$
- Require $\overline{\boldsymbol{c}} \geq \mathbf{0}$ (dual feasibility)
- Dual cost is

$$
\boldsymbol{p}^{\prime} \boldsymbol{b}=\boldsymbol{c}_{B}^{\prime} \boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{c}_{B}^{\prime} \boldsymbol{x}_{B}
$$

- If $\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$ then both dual feasibility and primal feasibility, and also same cost \Rightarrow optimality
- Otherwise, change basis

4.2 An iteration

1. Start with basis matrix \boldsymbol{B} and all reduced costs ≥ 0.
2. If $\boldsymbol{B}^{-1} \boldsymbol{b} \geq 0$ optimal solution found; else, choose l s.t. $x_{B(l)}<0$.
3. Consider the l th row (pivot row) $x_{B(l)}, v_{1}, \ldots, v_{n}$. If $\forall i v_{i} \geq 0$ then dual optimal cost $=+\infty$ and algorithm terminates.
4. Else, let j s.t.

$$
\frac{\bar{c}_{j}}{\left|v_{j}\right|}=\min _{\left\{i \mid v_{i}<0\right\}} \frac{\bar{c}_{i}}{\left|v_{i}\right|}
$$

5. Pivot element $v_{j}: \boldsymbol{A}_{j}$ enters the basis and $\boldsymbol{A}_{B(l)}$ exits.

4.3 An example

$$
\min \quad x_{1}+x_{2}
$$

$$
\text { s.t. } \quad x_{1}+2 x_{2} \geq 2
$$

$$
x_{1} \geq 1
$$

$$
x_{1}, x_{2} \geq 0
$$

$$
\begin{array}{r|rrrr|}
\hline & x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 1 & 1 & 0 & 0 \\
x_{3}=\begin{array}{|rcccc|}
\hline-2 & -1 & -2^{*} & 1 & 0 \\
x_{4}= & -1 & -1 & 0 & 0
\end{array} \\
\hline
\end{array}
$$

$$
\begin{aligned}
\min & x_{1}+x_{2} & \max & 2 p_{1}+p_{2} \\
\mathrm{s.t.} & x_{1}+2 x_{2}-x_{3}=2 & \text { s.t. } & p_{1}+p_{2} \leq 1 \\
& x_{1}-x_{4}=1 & & 2 p_{1} \leq 1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 & & p_{1}, p_{2} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=\begin{array}{|r|crrr|}
\hline & x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1 & 1 / 2 & 0 & 1 / 2 & 0 \\
x_{4}= & 1 / 2 & 1 & -1 / 2 & 0 \\
-1 & -1^{*} & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

5 Duality and Degeneracy

- Any basis matrix \boldsymbol{B} leads to dual basic solution $\boldsymbol{p}^{\prime}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{\prime} \boldsymbol{B}^{-1}$.
- The dual constraint $\boldsymbol{p}^{\prime} \boldsymbol{A}_{j}=c_{j}$ is active if and only if the reduced cost \bar{c}_{j} is zero.
- Since \boldsymbol{p} is m-dimensional, dual degeneracy implies more than m reduced costs that are zero.
- Dual degeneracy is obtained whenever there exists a nonbasic variable whose reduced cost is zero.

5.1 Example

$$
\begin{aligned}
\min & 3 x_{1}+x_{2} & \max & 2 p_{1} \\
\text { s.t. } & x_{1}+x_{2}-x_{3}=2 & \text { s.t. } & p_{1}+2 p_{2} \leq 3 \\
& 2 x_{1}-x_{2}-x_{4}=0 & & p_{1}-p_{2} \leq 1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0, & & p_{1}, p_{2} \geq 0 .
\end{aligned}
$$

Equivalent primal problem

$$
\begin{array}{cc}
\min & 3 x_{1}+x_{2} \\
\text { s.t. } & x_{1}+x_{2} \geq 2 \\
& 2 x_{1}-x_{2} \geq 0 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

- Four basic solutions in primal: A, B, C, D.
- Six distinct basic solutions in dual: $A, A^{\prime}, A^{\prime \prime}, B, C, D$.
- Different bases may lead to the same basic solution for the primal, but to different basic solutions for the dual. Some are feasible and some are infeasible.

5.2 Degeneracy and uniqueness

- If dual has a nondegenerate optimal solution, the primal problem has a unique optimal solution.
- It is possible, however, that dual has a degenerate solution and the dual has a unique optimal solution.

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

