15.081J/6.251J Introduction to Mathematical Programming

Lecture 10: Duality Theory III

1 Outline

- Farkas lemma
- Asset pricing
- Cones and extreme rays
- Representation of Polyhedra

2 Farkas lemma

Theorem:
Exactly one of the following two alternatives hold:

1. $\exists x \geq 0$ s.t. $A x=b$.
2. $\exists \boldsymbol{p}$ s.t. $\boldsymbol{p}^{\prime} \boldsymbol{A} \geq \mathbf{0}^{\prime}$ and $\boldsymbol{p}^{\prime} \boldsymbol{b}<0$.

2.1 Proof

" $\boldsymbol{b}^{\prime \prime}$ If $\exists \boldsymbol{x} \geq \mathbf{0}$ s.t. $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, and if $\boldsymbol{p}^{\prime} \boldsymbol{A} \geq \mathbf{0}^{\prime}$, then $\boldsymbol{p}^{\prime} \boldsymbol{b}=\boldsymbol{p}^{\prime} \boldsymbol{A x} \geq 0$
" \Leftarrow " Assume there is no $\boldsymbol{x} \geq \mathbf{0}$ s.t. $\boldsymbol{A x}=\boldsymbol{b}$

$$
\begin{aligned}
(P) \max & \boldsymbol{0}^{\prime} \boldsymbol{x} & (D) \min & \boldsymbol{p}^{\prime} \boldsymbol{b} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} & \text { s.t. } & \boldsymbol{p}^{\prime} \boldsymbol{A} \geq \mathbf{0}^{\prime} \\
& \boldsymbol{x} \geq \mathbf{0} & &
\end{aligned}
$$

(P) infeasible $\Rightarrow(\mathrm{D})$ either unbounded or infeasible
Since $\boldsymbol{p}=\mathbf{0}$ is feasible $\Rightarrow(\mathrm{D})$ unbounded
$\Rightarrow \exists \boldsymbol{p}: \quad \boldsymbol{p}^{\prime} \boldsymbol{A} \geq \mathbf{0}^{\prime}$ and $\boldsymbol{p}^{\prime} \boldsymbol{b}<0$

3 Asset Pricing

- n different assets
- m possible states of nature
- one dollar invested in some asset i, and state of nature is s, we receive a payoff of $r_{s i}$
- $m \times n$ payoff matrix:

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
r_{11} & \ldots & r_{1 n} \\
\vdots & \ddots & \vdots \\
r_{m 1} & \ldots & r_{m n}
\end{array}\right]
$$

- x_{i} : amount held of asset i. A portfolio of assets is $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$.
- A negative value of x_{i} indicates a "short" position in asset i : this amounts to selling $\left|x_{i}\right|$ units of asset i at the beginning of the period, with a promise to buy them back at the end. Hence, one must pay out $r_{s i}\left|x_{i}\right|$ if state s occurs, which is the same as receiving a payoff of $r_{s i} x_{i}$
- Wealth in state s from a portfolio \boldsymbol{x}

$$
w_{s}=\sum_{i=1}^{n} r_{s i} x_{i} .
$$

- $\boldsymbol{w}=\left(w_{1}, \ldots, w_{m}\right), \boldsymbol{w}=\boldsymbol{R} \boldsymbol{x}$
- p_{i} : price of asset $i, \boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$
- Cost of acquiring \boldsymbol{x} is $\boldsymbol{p}^{\prime} \boldsymbol{x}$.

3.1 Arbitrage

- Central problem: Determine p_{i}
- Absence of arbitrage: no investor can get a guaranteed nonnegative payoff out of a negative investment. In other words, any portfolio that pays off nonnegative amounts in every state of nature, must have nonnegative cost.

$$
\text { if } \boldsymbol{R} \boldsymbol{x} \geq \mathbf{0}, \text { then } \boldsymbol{p}^{\prime} \boldsymbol{x} \geq 0
$$

- Theorem: The absence of arbitrage condition holds if and only if there exists a nonnegative vector $\boldsymbol{q}=\left(q_{1}, \ldots, q_{m}\right)$, such that the price of each asset i is given by

$$
p_{i}=\sum_{s=1}^{m} q_{s} r_{s i} .
$$

- Applications to options pricing

4 Cones and extreme rays

4.1 Definitions

- A set $C \subset \Re^{n}$ is a cone if $\lambda \boldsymbol{x} \in C$ for all $\lambda \geq 0$ and all $\boldsymbol{x} \in C$
- A polyhedron of the form $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \mathbf{0}\right\}$ is called a polyhedral cone

4.2 Applications

- $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}, \boldsymbol{y} \in P$
- The recession cone at \boldsymbol{y}

$$
R C=\left\{\boldsymbol{d} \in \Re^{n} \mid \boldsymbol{y}+\lambda \boldsymbol{d} \in P, \forall \lambda \geq 0\right\}
$$

- It turns out that

$$
R C=\left\{\boldsymbol{d} \in \Re^{n} \mid \boldsymbol{A d} \geq \mathbf{0}\right\}
$$

- $R C$ independent of \boldsymbol{y}

4.3 Extreme rays

A $\boldsymbol{x} \neq \mathbf{0}$ of a polyhedral cone $C \subset \Re^{n}$ is called an extreme ray if there are $n-1$ linearly independent constraints that are active at \boldsymbol{x}

4.4 Unbounded LPs

Theorem: Consider the problem of minimizing $\boldsymbol{c}^{\prime} \boldsymbol{x}$ over a polyhedral cone $C=$ $\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A}_{i}^{\prime} \boldsymbol{x} \geq 0, i=1, \ldots, m\right\}$ that has zero as an extreme point. The optimal cost is equal to $-\infty$ if and only if some extreme ray \boldsymbol{d} of C satisfies $\boldsymbol{c}^{\prime} \boldsymbol{d}<0$. Theorem: Consider the problem of minimizing $\boldsymbol{c}^{\prime} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$, and assume that the feasible set has at least one extreme point. The optimal cost is equal to $-\infty$ if and only if some extreme ray \boldsymbol{d} of the feasible set satisfies $c^{\prime} d<0$.
What happens when the simplex method detects an unbounded problem?

(a)

(b)

5 Resolution Theorem

$$
P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}
$$

be a nonempty polyhedron with at least one extreme point. Let $\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{k}$ be the extreme points, and let $\boldsymbol{w}^{1}, \ldots, \boldsymbol{w}^{r}$ be a complete set of extreme rays of P.

$$
Q=\left\{\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i}+\sum_{j=1}^{r} \theta_{j} \boldsymbol{w}^{j} \mid \lambda_{i} \geq 0, \theta_{j} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\} .
$$

Then, $Q=P$.

5.1 Example

$$
\begin{aligned}
x_{1}-x_{2} & \geq-2 \\
x_{1}+x_{2} & \geq 1 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Extreme points: $\boldsymbol{x}^{1}=(0,2), \boldsymbol{x}^{2}=(0,1)$, and $\boldsymbol{x}^{3}=(1,0)$.
- Extreme rays $\boldsymbol{w}^{1}=(1,1)$ and $\boldsymbol{w}^{2}=(1,0)$.
\bullet

$$
\boldsymbol{y}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\boldsymbol{x}^{2}+\boldsymbol{w}^{1}+\boldsymbol{w}^{2}
$$

5.2 Proof

- $Q \subset P$. Let $\boldsymbol{x} \in Q$:

$$
\boldsymbol{x}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i}+\sum_{j=1}^{r} \theta_{j} \boldsymbol{w}^{j}
$$

$\lambda_{i}, \theta_{j} \geq 0 \sum_{i=1}^{k} \lambda_{i}=1$.

- $\boldsymbol{y}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i} \in P$ and satisfies $\boldsymbol{A} \boldsymbol{y} \geq \boldsymbol{b}$.
- $\boldsymbol{A} \boldsymbol{w}^{j} \geq \mathbf{0}$ for every $j: \boldsymbol{z}=\sum_{j=1}^{r} \theta_{j} \boldsymbol{w}^{j}$ satisfies $\boldsymbol{A} \boldsymbol{z} \geq \mathbf{0}$.
- $\boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z}$ satisfies $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$ and belongs to P.

For the reverse, assume there is a $\boldsymbol{z} \in P$, such that $z \notin Q$.

$$
\begin{array}{ll}
\max & \sum_{i=1}^{k} 0 \lambda_{i}+\sum_{j=1}^{r} 0 \theta_{j} \\
\text { s.t. } & \sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i}+\sum_{j=1}^{r} \theta_{j} \boldsymbol{w}^{j}=\boldsymbol{z} \\
& \sum_{i=1}^{k} \lambda_{i}=1 \\
& \\
& \lambda_{i} \geq 0, \\
& \theta_{j} \geq 0, \quad i=1, \ldots, k, \\
& j=1, \ldots, r,
\end{array}
$$

Is this feasible?

- Dual

$$
\begin{array}{cll}
\min & \boldsymbol{p}^{\prime} \boldsymbol{z}+q \\
\text { s.t. } & \boldsymbol{p}^{\prime} \boldsymbol{x}^{i}+q \geq 0, & i=1, \ldots, k, \\
& \boldsymbol{p}^{\prime} \boldsymbol{w}^{j} \geq 0, & j=1, \ldots, r .
\end{array}
$$

- This is unbounded. Why?
- There exists a feasible solution (\boldsymbol{p}, q) whose $\operatorname{cost} \boldsymbol{p}^{\prime} \boldsymbol{z}+q<0$
- $\boldsymbol{p}^{\prime} \boldsymbol{z}<\boldsymbol{p}^{\prime} \boldsymbol{x}^{i}$ for all i and $\boldsymbol{p}^{\prime} \boldsymbol{w}^{j} \geq 0$ for all j.

$$
\begin{aligned}
\min & \boldsymbol{p}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}
\end{aligned}
$$

- If the optimal cost is finite, there exists an extreme point \boldsymbol{x}^{i} which is optimal. Since \boldsymbol{z} is a feasible solution, we obtain $\boldsymbol{p}^{\prime} \boldsymbol{x}^{i} \leq \boldsymbol{p}^{\prime} \boldsymbol{z}$, which is a contradiction.
- If the optimal cost is $-\infty$, there exists an extreme ray \boldsymbol{w}^{j} such that $\boldsymbol{p}^{\prime} \boldsymbol{w}^{j}<0$, which is again a contradiction

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

