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1 Outline 
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•	 Overview and objectives 

•	 Weistrass Theorem 

•	 Separating hyperplanes theorem 

•	 Farkas lemma revisited 

•	 Duality theorem revisited 

2 Overview and objectives 
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•	 So far: Simplex −→ Duality −→ Farkas lemma 

•	 Disadvantages: specialized to LP, relied on a particular algorithm 

•	 Plan today: Separation (A Geometric property) −→ Farkas lemma −→

Duality


•	 Purely geometric, generalizes to general nonlinear problems, more funda

mental


3 Closed sets 
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•	 A set S ⊂ ℜn is closed if x1 , x2 , . . . is a sequence of elements of S that

converges to some x ∈ ℜn, then x ∈ S.


•	 Every polyhedron is closed. 

4 Weierstrass’ theorem 
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If f : ℜn �→ ℜ is a continuous function, and if S is a nonempty, closed, and 
bounded subset of ℜn, then there exists some x ∗ ∈ S such that f(x ∗) ≤ f(x) 
for all x ∈ S. Similarly, there exists some y ∗ ∈ S such that f(y ∗) ≥ f(x) for 
all x ∈ S. 
Note: Weierstrass’ theorem is not valid if the set S is not closed. Consider, 
S = {x ∈ ℜ | x > 0}, f(x) = x 

5 Separation 
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Theorem: Let S be a nonempty closed convex subset of ℜn and let x ∗ ∈ ℜn: 
x ∗ ∈/ S. Then, there exists some vector c ∈ ℜn such that c ′ x ∗ < c ′ x for all 
x ∈ S. 
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5.1 Proof 
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• Fix w ∈ S 

• B = x ||x − x ∗|| ≤ ||w − x ∗|| , 

• D = S ∩ B 

• D �= ∅, closed and bounded. Why? 

• Consider min ||x − x ∗|| 
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• By Weierstrass’ theorem there exists some y ∈ D such that 

||y − x ∗|| ≤ ||x − x ∗||, ∀ x ∈ D. 

• ∀x ∈ S and x ∈/ D, ||x − x ∗|| > ||w − x ∗|| ≥ ||y − x ∗||. 

• y minimizes ||x − x ∗|| ∀x ∈ S. 

• Let c = y − x ∗ 
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•	 x ∈ S. ∀λ satisfying 0 < λ ≤ 1, y + λ(x − y) ∈ S (S convex) 

•	 ||y − x ∗||2 ≤ ||y + λ(x − y) − x ∗||2 

= ||y − x ∗ ||2 + 2λ(y − x ∗ ) ′ (x − y) + λ2||x − y||2 

∗•	 2λ(y − x ) ′ (x − y) + λ2||x − y||2 ≥ 0. 

•	 Divide by λ, (y − x ∗) ′ (x − y) ≥ 0, i.e., 

∗ ∗ (y − x ) ′ x ≥ (y − x ) ′ y 
∗ ∗ ∗ ∗ = (y − x ) ′ x + (y − x ) ′ (y − x ) 
∗ ∗ 

>	 (y − x ) ′ x . 

∗ •	 c = y − x proves theorem 

6 Farkas’ lemma 
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Theorem: If Ax = b, x ≥ 0 is infeasible, then there exists a vector p such that 
p ′ A ≥ 0 ′ and p ′ b < 0. 

•	 S = y there exists x such that y = Ax, x ≥ 0 b ∈/ S. 

•	 S is convex; nonempty; closed;

S is the projection of {(x, y) | y = Ax, x ≥ 0} onto the y coordinates,

is itself a polyhedron and is therefore closed.


•	 b ∈/ S: ∃p such that p ′ b < p ′ y for every y ∈ S. 

•	 Since 0 ∈ S, we must have p ′ b < 0. 

•	 ∀Ai and ∀λ > 0, λAi ∈ S and p ′ b < λp ′ Ai 

•	 Divide by λ and then take limit as λ tends to infinity: p ′ Ai ≥ 0 ⇒ p ′ A ≥ 
0 ′ 

7 Duality theorem 
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min c ′ x	 max p ′ b 
s.t.	 Ax ≥ b s.t. p ′ A = c ′ 

p ≥ 0 

and we assume that the primal has an optimal solution x ∗ . We will show that 
the dual problem also has a feasible solution with the same cost. Strong duality 
follows then from weak duality. Slide 12 

•	 I = {i | a ′ 
i
x ∗ = bi} 

•	 We next show: if a
i

′ d ≥ 0 for every i ∈ I, then c ′ d ≥ 0 
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• a ′ 
i
(x ∗ + ǫd) ≥ aix ∗ = bi for all i ∈ I. 

• If i /∈ I, a ′ 
i
x ∗ > bi hence a ′ 

i
(x ∗ + ǫd) > bi. 

• x ∗ + ǫd is feasible 
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• By optimality x ∗ , c ′ d ≥ 0 

• By Farkas’ lemma 

c = piai. 
i∈I 

• For i /∈ I, we define pi = 0, so p ′ A = c ′ . 

• 
′ ′ ∗ ′ ∗ p b = pibi = piaix = c x , 

i∈I i∈I 
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