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•	 B. and Sim, The Price of Robustness, Operations Research, 2003. 

•	 B. and Sim, Robust Discrete optimization, Mathematical Programming,

2003.


2 Structure 
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Motivation • 

•	 Data Uncertainty 

•	 Robust Mixed Integer Optimization 

•	 Robust 0-1 Optimization 

•	 Robust Approximation Algorithms 

Robust Network Flows • 

•	 Experimental Results 

•	 Summary and Conclusions 

3 Motivation 
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•	 The classical paradigm in optimization is to develop a model that assumes

that the input data is precisely known and equal to some nominal values.

This approach, however, does not take into account the influence of data

uncertainties on the quality and feasibility of the model.


•	 Can we design solution approaches that are immune to data uncertainty,

that is they are robust?


Slide 4 

•	 Ben-Tal and Nemirovski (2000): 

In real-world applications of Linear Optimization (Net Lib li
brary), one cannot ignore the possibility that a small uncer
tainty in the data can make the usual optimal solution com
pletely meaningless from a practical viewpoint. 
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3.1 Literature 
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•	 Ellipsoidal uncertainty; Robust convex optimization Ben-Tal and Nemirovski

(1997), El-Ghaoui et. al (1996)


•	 Flexible adjustment of conservativism 

•	 Nonlinear convex models 

•	 Not extendable to discrete optimization 

4 Goal 
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Develop an approach to address data uncertainty for optimization problems 
that: 

•	 It allows to control the degree of conservatism of the solution; 

•	 It is computationally tractable both practically and theoretically. 

5 Data Uncertainty 
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′minimize c x 
subject to Ax ≤ b 

l ≤ x ≤ u 
xi ∈ Z, i = 1, . . . , k, 

WLOG data uncertainty affects only A and c, but not the vector b. Slide 8 

•	 (Uncertainty for matrix A): aij , j ∈ Ji is independent, symmetric

and bounded random variable (but with unknown distribution) ãij , j ∈ Ji


that takes values in [aij − âij , aij + âij ].


•	 (Uncertainty for cost vector c): cj , j ∈ J0 takes values in [cj , cj +dj ]. 

6 Robust MIP 
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•	 Consider an integer Γi ∈ [0, |Ji|], i = 0, 1, . . . , m. 

•	 Γi adjusts the robustness of the proposed method against the level of

conservativeness of the solution.


•	 Speaking intuitively, it is unlikely that all of the aij , j ∈ Ji will change.

We want to be protected against all cases that up to Γi of the aij ’s are

allowed to change.
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•	 Nature will be restricted in its behavior, in that only a subset of the

coefficients will change in order to adversely affect the solution.
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•	 We will guarantee that if nature behaves like this then the robust solution

will be feasible deterministically. Even if more than Γi change, then the

robust solution will be feasible with very high probability.


6.1 Problem 
{ }	 Slide 11 

′ minimize c x + max dj xj
{S0| S0⊆J0,|S0|≤Γ0} 

| |
j∈S0 

subject to	 max ˆ xjaijxj + 
{Si| Si⊆Ji ,|Si|≤Γi} 

aij | | ≤ bi, ∀i 

j j∈Si 

ul ≤ x ≤

xi ∈ Z, ∀i = 1, . . . k.


6.2 Theorem 1 
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The robust problem can be reformulated has an equivalent MIP: 

′ minimize c x + z0Γ0 + 
j∈J0 

p0j 

subject to aijxj + ziΓi + pij ≤ bi ∀i 

j j∈Ji 

z0 + p0j ≥ djyj ∀j ∈ J0 

zi + pij ≥ âijyj ∀i =� 0, j ∈ Ji 

pij , yj , zi ≥ 0 ∀i, j ∈ Ji 

−yj ≤ xj ≤ yj ∀j 
lj ≤ xj ≤ ∀juj 

xi ∈ Z i = 1, . . . , k. 

6.3 Proof 
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∗Given a vector x , we define: 

∗	 ∗ βi(x ) = max âij xj . 
{Si| Si⊆Ji,|Si|=Γi} 

| |
j∈Si 

This equals to: 
∗	 ∗ βi(x ) = max âij xj zij | |

j∈Ji 

s.t. zij ≤ Γi 

j∈Ji 

0 ≤ zij ≤ 1 ∀i, j ∈ Ji.	
Slide 14 

Dual: 
βi(x ∗ ) = min pij + Γizi 

j∈Ji 
∗ s.t. zi + pij ≥ âij |xj | ∀j ∈ Ji 

pij ≥ 0 ∀j ∈ Ji 

zi ≥ 0 ∀i. 
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|Ji| 
5 
10 
100 
200 

Γi


5

8.3565

24.263

33.899


Table 1: Choice of Γi as a function of |Ji| so that the probability of constraint 
violation is less than 1%. 

6.4 Size 
Slide 15 

•	 Original Problem has n variables and m constraints 

m 
•	 Robust counterpart has 2n + m + l variables, where l = i=0 |Ji| is the


number of uncertain coefficients, and 2n + m + l constraints.


6.5 Probabilistic Guarantee 

6.5.1 Theorem 2 
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∗Let x be an optimal solution of robust MIP. 
(a) If A is subject to the model of data uncertainty U: 

	  
 n n 



Pr ãijxj > bi ≤

2n 
 

(1 − µ) 
l 

+ µ
l 
 

,

∑ 

∗ 1 ∑ n ∑ n 

j	 l=⌊ν⌋ l=⌊ν⌋+1 

n = |Ji|, ν = Γi+n and µ = ν − ⌊ν⌋; bound is tight. 
2 

(b) As n → ∞ 
	  
 n n 

 

2

1 
n 

(1 − µ) 
n

l 
+ µ 

n

l 
∼ 1 − Φ

Γi √−
n 

1 
. 

	  
l=⌊ν⌋ l=⌊ν⌋+1 

Slide 17 
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7 Experimental Results 

7.1 Knapsack Problems 
Slide 19 • 

maximize cixi 

i∈N 

subject to wixi ≤ b 
i∈N 

x ∈ {0, 1}n . 
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Approx bound 
Bound 2 

Γ

Γ Violation Probability 
0 0.5 

2.8 4.49 × 10−1 

36.8 5.71 × 10−3 

82.0 5.04 × 10−9 

200 0 

i 

Optimal Value 
5592 
5585 
5506 
5408 
5283 

Reduction 
0% 

0.13% 
1.54% 
3.29% 
5.50% 

•	 w̃i are independently distributed and follow symmetric distributions in

[wi − δi, wi + δi];


•	 c is not subject to data uncertainty. 

7.1.1 Data 
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•	 |N | = 200, b = 4000, 

•	 wi randomly chosen from {20, 21, . . . , 29}. 

•	 ci randomly chosen from {16, 17, . . . , 77}. 

•	 δi = 0.1wi. 
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7.1.2 Results 

8 Robust 0-1 Optimization 

•	 Nominal combinatorial optimization: 

′ minimize c x 

subject to x ∈ X ⊂ {0, 1} n . 

•	 Robust Counterpart: 

′ Z ∗ = minimize c x + max djxj 
{S| S⊆J,|S|=Γ} 

j∈S 

subject to x ∈ X, 

•	 WLOG d1 ≥ d2 ≥ . . . ≥ dn. 

8.1 Remarks 

•	 Examples: the shortest path, the minimum spanning tree, the minimum 
assignment, the traveling salesman, the vehicle routing and matroid inter
section problems. 

•	 Other approaches to robustness are hard. Scenario based uncertainty: 

′ ′minimize max(c
1
x, c

2
x) 

subject to x ∈ X. 

is NP-hard for the shortest path problem. 

8.2 Approach 
′Primal :Z∗ = min c x + max djxjuj 

x∈X 
j 

s.t. 0 ≤ uj ≤ 1, ∀ j 

uj ≤ Γ 
j 

′Dual :Z ∗ = min c x + min θΓ + yj 
x∈X 

j 

s.t. yj + θ ≥ djxj , ∀ j 

yj, θ ≥ 0 
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8.3 Algorithm A 
Slide 25 

•	 Solution: yj = max(djxj − θ, 0) 

• 
Z ∗ = min θΓ + (cjxj + max(djxj − θ, 0)) 

x∈X,θ≥0 
j 

•	 Since X ⊂ {0, 1}n , 

max(djxj − θ, 0) = max(dj − θ, 0) xj 

• 
Z ∗ = min θΓ + (cj + max(dj − θ, 0))xj 

x∈X,θ≥0 
j 

Slide 26 
•	 d1 ≥ d2 ≥ . . . ≥ dn ≥ dn+1 = 0. 

•	 For dl ≥ θ ≥ dl+1, 

n l 

min θΓ + cjxj + (dj − θ)xj = 
x∈X,dl≥θ≥dl+1 

j=1 j=1 

n l 

dlΓ + min cjxj + (dj − dl)xj = Zl 
x∈X 

j=1 j=1 

•	
n l 

∗ Z = min dlΓ + min cjxj + (dj − dl)xj . 
l=1,...,n+1 x∈X 

j=1 j=1 

8.4 Theorem 3 
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•	 Algorithm A correctly solves the robust 0-1 optimization problem. 

•	 It requires at most |J | + 1 solutions of nominal problems. Thus, If the

nominal problem is polynomially time solvable, then the robust 0-1 coun

terpart is also polynomially solvable.


•	 Robust minimum spanning tree, minimum assignment, minimum match

ing, shortest path and matroid intersection, are polynomially solvable.


9 Experimental Results 

9.1 Robust Sorting 
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minimize cixi 

i∈N 

subject to xi = k 

i∈N 

.x ∈ {0, 1}n 
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¯Γ Z(Γ) 

0 8822 

10 8827 

20 8923 

30 9059 

40 9627 

50 10049 

60 10146 

70 10355 

80 10619 

100 10619 

Z ∗ (Γ) = 

9.1.1 Data 

• |N | = 200; 

• k = 100; 

¯% change in Z(Γ)


0 %


0.056 %


1.145 %


2.686 %


9.125 %


13.91 %


15.00 %


17.38 %


20.37 %


20.37 %


′ minimize c x + 

σ(Γ) 

501.0 

493.1 

471.9 

454.3 

396.3 

371.6 

365.7 

352.9 

342.5 

340.1 

% change in σ(Γ) 

0.0 % 

-1.6 % 

-5.8 % 

-9.3 % 

-20.9 % 

-25.8 % 

-27.0 % 

-29.6 % 

-31.6 % 

-32.1 % 

max djxj 
{S| S⊆J,|S|=Γ} 

j∈S 

subject to xi = k 

i∈N 

.x ∈ {0, 1}n 
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•	 cj ∼ U [50, 200]; dj ∼ U [20, 200]; 

•	 For testing robustness, generate instances such that each cost component

independently deviates with probability ρ = 0.2 from the nominal value

cj to cj + dj .


9.1.2 Results 
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10 Robust Network Flows 
Slide 31 

Nominal 

min cijxij


(i,j)∈A


s.t. xij − xji = bi ∀i ∈ N 
{j:(i,j)∈A} {j:(j,i)∈A}


0 ≤ xij ≤ uij ∀(i, j) ∈ A.


X set of feasible solutions flows. • 
Robust •	

′ Z ∗ = min c x + max dijxij 
{S| S⊆A,|S|≤Γ} 

(i,j)∈S 

subject to x ∈ X. 
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10.1 Reformulation 
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•	
∗ Z = min Z(θ), 

θ≥0 

′ Z(θ) = Γθ + min c x + pij 

(i,j)∈A 

subject to	 pij ≥ dijxij − θ ∀(i, j) ∈ A 
pij ≥ 0 ∀(i, j) ∈ A 
x ∈ X. 

Equivalently • 
∑	 θ

′ Z(θ) = Γθ + min c x + dij max xij − , 0 
dij 

(i,j)∈A 

subject to	 x ∈ X. 

10.2 Network Reformulation 
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Theorem: For fixed θ we can solve the robust problem as a network flow problem 

10.3 Complexity 
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• Z(θ) is a convex function and for all θ1, θ2 ≥ 0, we have 

|Z(θ1) − Z(θ2)| ≤ |A||θ1 − θ2|. 

For any fixed Γ ≤ and every ǫ > 0, we can find a solution ˆ X with robust
• 
objective value 

|A| x ∈


Ẑ = c ′ x̂ + max dij x̂ij 
{S| S⊆A,|S|≤Γ} 

(i,j)∈S 

such that

Z ∗ ≤ Ẑ ≤ (1 + ǫ)Z ∗


by solving 2⌈log2(|A|θ/ǫ)⌉ + 3 network flow problems, where θ = max{uijdij : 
(i, j) ∈ A}. 
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11 Experimental Results 
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12 Conclusions 
Slide 36 

Robust counterpart of a MIP remains a MIP, of comparable size. • 
Approach permits flexibility of adjusting the level of conservatism in terms of • 
probabilistic bound of constraint violation


For polynomial solvable 0-1 optimization problems with cost uncertainty, the
• 
robust counterpart is polynomial solvable. 

Slide 37 

Robust network flows are solvable as a series of nominal network flow problems. • 
Robust optimization is tractable for stochastic optimization problems without • 
the curse of dimensionality 
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