15.081J/6.251J Introduction to Mathematical Programming

Lecture 18: The Ellipsoid method

1 Outline

- Efficient algorithms and computational complexity
- The key geometric result behind the ellipsoid method
- The ellipsoid method for the feasibility problem
- The ellipsoid method for optimization

2 Efficient algorithms

- The LO problem

$$
\begin{aligned}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

- A LO instance

$$
\begin{aligned}
\min & 2 x+3 y \\
\mathrm{s.t.} & x+y \leq 1 \\
& x, y \geq 0
\end{aligned}
$$

- A problem is a collection of instances

2.1 Size

- The size of an instance is the number of bits used to describe the instance, according to a prespecified format
- A number $r \leq U$

$$
r=a_{k} 2^{k}+a_{k-1} 2^{k-1}+\cdots+a_{1} 2^{1}+a_{0}
$$

is represented by $\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ with $k \leq\left\lfloor\log _{2} U\right\rfloor$

- Size of r is $\left\lfloor\log _{2} U\right\rfloor+2$
- Instance of LO: $(\boldsymbol{c}, \boldsymbol{A}, \boldsymbol{b})$
- Size is

$$
(m n+m+n)\left(\left\lfloor\log _{2} U\right\rfloor+2\right)
$$

2.2 Running Time

Let A be an algorithm which solves the optimization problem Π.
If there exists a constant $\alpha>0$ such that A terminates its computation after at most $\alpha f(I)$ elementary steps for each instance I, then A runs in $\mathrm{O}(f)$ time.

- variable assignments
- comparison of numbers
- random access to variables
- arithmetic operations
- conditional jumps
- ...

Slide 5

A "brute force" algorithm for solving the min-cost flow problem:
Consider all spanning trees and pick the best tree solution among the feasible ones.
Suppose we had a computer to check 10^{15} trees in a second. It would need more than 10^{9} years to find the best tree for a 25 -node min-cost flow problem.
It would need 10^{59} years for a 50 -node instance.

That's not efficient!

Ideally, we would like to call an algorithm "efficient" when it is sufficiently fast to be usable in practice, but this is a rather vague and slippery notion.

The following notion has gained wide acceptance:
An algorithm is considered efficient if the number of steps it performs for any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n^{3}, or $10^{6} n^{8}$.

2.3 The Tyranny of Exponential Growth

	$100 n \log n$	$10 n^{2}$	$n^{3.5}$	2^{n}	$n!$	n^{n-2}
$10^{9} / \mathrm{sec}$	$1.19 \cdot 10^{9}$	600,000	3,868	41	15	13
$10^{10} / \mathrm{sec}$	$1.08 \cdot 10^{10}$	$1,897,370$	7,468	45	16	13

Maximum input sizes solvable within one hour.

2.4 Punch line

The equation

$$
\text { efficient }=\text { polynomial }
$$

has been accepted as the best available way of tying the empirical notion of a "practical algorithm" to a precisely formalized mathematical concept.

2.5 Definition

An algorithm runs in polynomial time if its running time is $\mathrm{O}\left(|I|^{k}\right)$, where $|I|$ is the input size, and all numbers in intermediate computations can be stored with $\mathrm{O}\left(|I|^{k}\right)$ bits.

3 The Ellipsoid method

- \boldsymbol{D} is an $n \times n$ positive definite symmetric matrix
- A set E of vectors in \Re^{n} of the form

$$
E=E(\boldsymbol{z}, \boldsymbol{D})=\left\{\boldsymbol{x} \in \Re^{n} \mid(\boldsymbol{x}-\boldsymbol{z})^{\prime} \boldsymbol{D}^{-1}(\boldsymbol{x}-\boldsymbol{z}) \leq 1\right\}
$$

is called an ellipsoid with center $\boldsymbol{z} \in \Re^{n}$

3.1 The algorithm intuitively

- Problem: Decide whether a given polyhedron

$$
P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}
$$

is nonempty

- Key property: We can find a new ellipsoid E_{t+1} that covers the halfellipsoid and whose volume is only a fraction of the volume of the previous ellipsoid E_{t}

3.2 Key Theorem

- $E=E(\boldsymbol{z}, \boldsymbol{D})$ be an ellipsoid in $\Re^{n} ; \boldsymbol{a}$ nonzero n-vector.
- $H=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{a}^{\prime} \boldsymbol{x} \geq \boldsymbol{a}^{\prime} \boldsymbol{z}\right\}$

$$
\begin{aligned}
\bar{z} & =\boldsymbol{z}+\frac{1}{n+1} \frac{\boldsymbol{D a}}{\sqrt{\boldsymbol{a}^{\prime} \boldsymbol{D a}}} \\
\overline{\boldsymbol{D}} & =\frac{n^{2}}{n^{2}-1}\left(\boldsymbol{D}-\frac{2}{n+1} \frac{\boldsymbol{D a a ^ { \prime }} \boldsymbol{D}}{\boldsymbol{a}^{\prime} \boldsymbol{D} \boldsymbol{a}}\right) .
\end{aligned}
$$

- The matrix $\overline{\boldsymbol{D}}$ is symmetric and positive definite and thus $E^{\prime}=E(\overline{\boldsymbol{z}}, \overline{\boldsymbol{D}})$ is an ellipsoid
- $E \cap H \subset E^{\prime}$
- $\operatorname{Vol}\left(E^{\prime}\right)<e^{-1 /(2(n+1))} \operatorname{Vol}(E)$

3.3 Illustration

3.4 Assumptions

- A polyhedron P is full-dimensional if it has positive volume
- The polyhedron P is bounded: there exists a ball $E_{0}=E\left(\boldsymbol{x}_{0}, r^{2} \boldsymbol{I}\right)$, with volume V, that contains P
- Either P is empty, or P has positive volume, i.e., $\operatorname{Vol}(P)>v$ for some $v>0$
- E_{0}, v, V, are a priori known
- We can make our calculations in infinite precision; square roots can be computed exactly in unit time

3.5 Input-Output

Input:

- A matrix \boldsymbol{A} and a vector \boldsymbol{b} that define the polyhedron $P=\left\{\boldsymbol{x} \in \Re^{n} \mid\right.$ $\left.\boldsymbol{a}_{i}^{\prime} \boldsymbol{x} \geq b_{i}, i=1, \ldots, m\right\}$
- A number v, such that either P is empty $\operatorname{or} \operatorname{Vol}(P)>v$
- A ball $E_{0}=E\left(\boldsymbol{x}_{0}, r^{2} \boldsymbol{I}\right)$ with volume at most V, such that $P \subset E_{0}$

Output: A feasible point $\boldsymbol{x}^{*} \in P$ if P is nonempty, or a statement that P is empty

3.6 The algorithm

1. (Initialization)

Let $t^{*}=\lceil 2(n+1) \log (V / v)\rceil ; E_{0}=E\left(\boldsymbol{x}_{0}, r^{2} \boldsymbol{I}\right) ; \boldsymbol{D}_{0}=r^{2} \boldsymbol{I} ; t=0$.
2. (Main iteration)

- If $t=t^{*}$ stop; P is empty.
- If $\boldsymbol{x}_{t} \in P$ stop; P is nonempty.
- If $\boldsymbol{x}_{t} \notin P$ find a violated constraint, that is, find an i such that $\boldsymbol{a}_{i}^{\prime} \boldsymbol{x}_{t}<b_{i}$.
- Let $H_{t}=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{a}_{i}^{\prime} \boldsymbol{x} \geq \boldsymbol{a}_{i}^{\prime} \boldsymbol{x}_{t}\right\}$. Find an ellipsoid E_{t+1} containing $E_{t} \cap H_{t}$: $E_{t+1}=E\left(\boldsymbol{x}_{t+1}, \boldsymbol{D}_{t+1}\right)$ with

$$
\begin{aligned}
\boldsymbol{x}_{t+1} & =\boldsymbol{x}_{t}+\frac{1}{n+1} \frac{\boldsymbol{D}_{t} \boldsymbol{a}_{i}}{\sqrt{\boldsymbol{a}_{i}^{\prime} \boldsymbol{D}_{t} \boldsymbol{a}_{i}}} \\
\boldsymbol{D}_{t+1} & =\frac{n^{2}}{n^{2}-1}\left(\boldsymbol{D}_{t}-\frac{2}{n+1} \frac{\boldsymbol{D}_{t} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\prime} \boldsymbol{D}_{t}}{\boldsymbol{a}_{i}^{\prime} \boldsymbol{D}_{t} \boldsymbol{a}_{i}}\right)
\end{aligned}
$$

- $t:=t+1$.

3.7 Correctness

Theorem: Let P be a bounded polyhedron that is either empty or full-dimensional and for which the prior information $\boldsymbol{x}_{0}, r, v, V$ is available. Then, the ellipsoid method decides correctly whether P is nonempty or not, i.e., if $\boldsymbol{x}_{t^{*}-1} \notin P$, then P is empty

3.8 Proof

- If $\boldsymbol{x}_{t} \in P$ for $t<t^{*}$, then the algorithm correctly decides that P is nonempty
- Suppose $\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{t^{*}-1} \notin P$. We will show that P is empty.
- We prove by induction on k that $P \subset E_{k}$ for $k=0,1, \ldots, t^{*}$. Note that $P \subset E_{0}$, by the assumptions of the algorithm, and this starts the induction.
- Suppose $P \subset E_{k}$ for some $k<t^{*}$. Since $\boldsymbol{x}_{k} \notin P$, there exists a violated inequality: $\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x} \geq \boldsymbol{b}_{i(k)}$ be a violated inequality, i.e., $\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x}_{k}<\boldsymbol{b}_{i(k)}$, where \boldsymbol{x}_{k} is the center of the ellipsoid E_{k}
- For any $\boldsymbol{x} \in P$, we have

$$
\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x} \geq \boldsymbol{b}_{i(k)}>\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x}_{k}
$$

- Hence, $P \subset H_{k}=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x} \geq \boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x}_{k}\right\}$
- Therefore, $P \subset E_{k} \cap H_{k}$

By key geometric property, $E_{k} \cap H_{k} \subset E_{k+1}$; hence $P \subset E_{k+1}$ and the induction is complete

$$
\begin{gathered}
\frac{\operatorname{Vol}\left(E_{t+1}\right)}{\operatorname{Vol}\left(E_{t}\right)}<e^{-1 /(2(n+1))} \\
\frac{\operatorname{Vol}\left(E_{t^{*}}\right)}{\operatorname{Vol}\left(E_{0}\right)}<e^{-t^{*} /(2(n+1))} \\
\operatorname{Vol}\left(E_{t^{*}}\right)<V e^{-\left\lceil 2(n+1) \log \frac{V}{v}\right\rceil /(2(n+1))} \leq V e^{-\log \frac{V}{v}}=v
\end{gathered}
$$

If the ellipsoid method has not terminated after t^{*} iterations, then $\operatorname{Vol}(P) \leq \operatorname{Vol}\left(E_{t^{*}}\right) \leq$ v. This implies that P is empty

3.9 Binary Search

- $P=\{x \in \Re \mid x \geq 0, x \geq 1, x \leq 2, x \leq 3\}$
- $E_{0}=[0,5]$, centered at $x_{0}=2.5$
- Since $x_{0} \notin P$, the algorithm chooses the violated inequality $x \leq 2$ and constructs E_{1} that contains the interval $E_{0} \cap\{x \mid x \leq 2.5\}=[0,2.5]$
- The ellipsoid E_{1} is the interval $[0,2.5]$ itself
- Its center $x_{1}=1.25$ belongs to P
- This is binary search

3.10 Boundedness of P

Let \boldsymbol{A} be an $m \times n$ integer matrix and let \boldsymbol{b} a vector in \Re^{n}. Let U be the largest absolute value of the entries in \boldsymbol{A} and \boldsymbol{b}.
Every extreme point of the polyhedron $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$ satisfies

$$
-(n U)^{n} \leq x_{j} \leq(n U)^{n}, \quad j=1, \ldots, n
$$

- All extreme points of P are contained in

$$
P_{B}=\left\{\boldsymbol{x} \in P| | x_{j} \mid \leq(n U)^{n}, j=1, \ldots, n\right\}
$$

- Since $P_{B} \subseteq E\left(\mathbf{0}, n(n U)^{2 n} \boldsymbol{I}\right)$, we can start the ellipsoid method with $E_{0}=$ $E\left(\mathbf{0}, n(n U)^{2 n} \boldsymbol{I}\right)$

$$
\operatorname{Vol}\left(E_{0}\right) \leq V=\left(2 n(n U)^{n}\right)^{n}=(2 n)^{n}(n U)^{n^{2}}
$$

3.11 Full-dimensionality

Let $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$. We assume that \boldsymbol{A} and \boldsymbol{b} have integer entries, which are bounded in absolute value by U. Let

$$
\epsilon=\frac{1}{2(n+1)}((n+1) U)^{-(n+1)} .
$$

Let

$$
P_{\epsilon}=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}-\epsilon \boldsymbol{e}\right\},
$$

where $\boldsymbol{e}=(1,1, \ldots, 1)$.
(a) If P is empty, then P_{ϵ} is empty.
(b) If P is nonempty, then P_{ϵ} is full-dimensional.

Slide 26
Let $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$ be a full-dimensional bounded polyhedron, where the entries of \boldsymbol{A} and \boldsymbol{b} are integer and have absolute value bounded by U. Then,

$$
\operatorname{Vol}(P)>v=n^{-n}(n U)^{-n^{2}(n+1)}
$$

3.12 Complexity

- $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$, where $\boldsymbol{A}, \boldsymbol{b}$ have integer entries with magnitude bounded by some U and has full rank. If P is bounded and either empty or full-dimensional, the ellipsoid method decides if P is empty in $O(n \log (V / v))$ iterations
- $v=n^{-n}(n U)^{-n^{2}(n+1)}, \quad V=(2 n)^{n}(n U)^{n^{2}}$
- Number of iterations $O\left(n^{4} \log (n U)\right)$
- If P is arbitrary, we first form P_{B}, then perturb P_{B} to form $P_{B, \epsilon}$ and apply the ellipsoid method to $P_{B, \epsilon}$
- Number of iterations is $O\left(n^{6} \log (n U)\right)$.
- It has been shown that only $O\left(n^{3} \log U\right)$ binary digits of precision are needed, and the numbers computed during the algorithm have polynomially bounded size
- The linear programming feasibility problem with integer data can be solved in polynomial time

4 The ellipsoid method for optimization

$$
\begin{aligned}
& \min \boldsymbol{c}^{\prime} \boldsymbol{x} \\
& \text { s.t. } \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \text {, } \\
& \max \boldsymbol{b}^{\prime} \boldsymbol{\pi} \\
& \text { s.t. } \quad \boldsymbol{A}^{\prime} \boldsymbol{\pi}=\boldsymbol{c} \\
& \boldsymbol{\pi} \geq \mathbf{0} .
\end{aligned}
$$

By strong duality, both problems have optimal solutions if and only if the following system of linear inequalities is feasible:

$$
b^{\prime} p=c^{\prime} x, \quad A x \geq b, \quad A^{\prime} p=c, \quad p \geq \mathbf{0}
$$

LO with integer data can be solved in polynomial time.

4.1 Sliding objective

- We first run the ellipsoid method to find a feasible solution $\boldsymbol{x}_{0} \in P=$ $\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$.
- We apply the ellipsoid method to decide whether the set

$$
P \cap\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{c}^{\prime} \boldsymbol{x}<\boldsymbol{c}^{\prime} \boldsymbol{x}_{0}\right\}
$$

is empty.

- If it is empty, then \boldsymbol{x}_{0} is optimal. If it is nonempty, we find a new solution \boldsymbol{x}_{1} in P with objective function value strictly smaller than $\boldsymbol{c}^{\prime} \boldsymbol{x}_{0}$.
- More generally, every time a better feasible solution \boldsymbol{x}_{t} is found, we take $P \cap\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{c}^{\prime} \boldsymbol{x}<\boldsymbol{c}^{\prime} \boldsymbol{x}_{t}\right\}$ as the new set of inequalities and reapply the ellipsoid method.

4.2 Performance in practice

- Very slow convergence, close to the worst case
- Contrast with simplex method
- The ellipsoid method is a tool for classifying the complexity of linear programming problems

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

