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1 Outline 
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•	 Efficient algorithms and computational complexity 

•	 The key geometric result behind the ellipsoid method 

•	 The ellipsoid method for the feasibility problem 

•	 The ellipsoid method for optimization 

2 Efficient algorithms 
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•	 The LO problem 
′min c x 

s.t. Ax = b 

x ≥ 0 

•	 A LO instance

min 2x + 3y

s.t. x + y ≤ 1 

x , y ≥ 0 

•	 A problem is a collection of instances 

2.1 Size 
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•	 The size of an instance is the number of bits used to describe the instance,

according to a prespecified format


•	 A number r ≤ U 

r = ak2k + ak−12
k−1 + + a12

1 + a0· · ·


is represented by (a0, a1, . . . , ak) with k ≤ ⌊log2 U⌋

•	 Size of r is ⌊log2 U⌋ + 2 

•	 Instance of LO: (c, A, b) 

Size is • 
(mn + m + n) ⌊log2 U⌋ + 2 

2.2 Running Time 
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Let A be an algorithm which solves the optimization problem Π.

If there exists a constant α > 0 such that A terminates its computation after at most

α f(I) elementary steps for each instance I , then A runs in O(f) time.


Elementary operations are 
•	 variable assignments • comparison of numbers 

•	 random access to variables • arithmetic operations 

•	 conditional jumps • . . . Slide 5 
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A “brute force” algorithm for solving the min-cost flow problem: 

Consider all spanning trees and pick the best tree solution among the feasible ones. 

Suppose we had a computer to check 1015 trees in a second. It would need more than 
109 years to find the best tree for a 25-node min-cost flow problem. 
It would need 1059 years for a 50-node instance. 

That’s not efficient! 

Ideally, we would like to call an algorithm “efficient” when it is sufficiently fast to be 
usable in practice, but this is a rather vague and slippery notion. 
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The following notion has gained wide acceptance: 

An algorithm is considered efficient if the number of steps it performs for 
any input is bounded by a polynomial function of the input size. 

Polynomials are, e.g., n, n 3, or 106 n 8 . 

2.3 The Tyranny of 

Exponential Growth 
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100 n log n 10 n 2 n 3.5 2n n! n n−2 

109/sec 1.19 109 600, 000 3, 868 41 15 13 · 
1010 /sec 1.08 1010 1, 897, 370 7, 468 45 16 13 · 

Maximum input sizes solvable within one hour. 

2.4 Punch line 
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The equation

efficient = polynomial


has been accepted as the best available way of tying the empirical

notion of a “practical algorithm” to a precisely formalized mathe

matical concept.


2.5 Definition 
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An algorithm runs in polynomial time if its running time is O(|I|k), where |I| 
is the input size, and all numbers in intermediate computations can be stored 
with O(|I|k) bits. 

3 The Ellipsoid method 
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• D is an n × n positive definite symmetric matrix 

• A set E of vectors in ℜn of the form 

E = E(z, D) = 
� 

x ∈ ℜn | (x − z) ′ D−1(x − z) ≤ 1 
� 

is called an ellipsoid with center z ∈ ℜn 
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3.1 The algorithm intuitively 

•	 Problem: Decide whether a given polyhedron 

P = x ∈ ℜn | Ax ≥ b 

is nonempty 

′ ′ a x ≥ a xt 

0011 0011 

Et+1 

Et 

xt 
xt+1 

P 

a x ≥ b′ 

•	 Key property: We can find a new ellipsoid Et+1 that covers the half
ellipsoid and whose volume is only a fraction of the volume of the previous 
ellipsoid Et 

3.2 Key Theorem 

•	 E = E(z, D) be an ellipsoid in ℜ n; a nonzero n-vector. 

•	 H = {x ∈ ℜ n | a ′ x ≥ a ′ z} 

1 Da 
z = z + , 

n + 1 
√

a ′ Da 

n 2 2 Daa ′ D 
D =	 . 

n2 − 1 
D −

n + 1 a ′ Da 

′ •	 The matrix D is symmetric and positive definite and thus E = E(z, D) is an 
ellipsoid 

′ • E ∩ H ⊂ E


Vol(E ′ ) < e −1/(2(n+1)) Vol(E)
• 
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x2 

x1 

E 

E' 

3.3 Illustration 
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3.4 Assumptions 
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•	 A polyhedron P is full-dimensional if it has positive volume 

•	 The polyhedron P is bounded: there exists a ball E0 = E(x0, r
2I), with


volume V , that contains P


•	 Either P is empty, or P has positive volume, i.e., Vol(P ) > v for some

v > 0


•	 E0, v, V , are a priori known 

•	 We can make our calculations in infinite precision; square roots can be

computed exactly in unit time


3.5 Input-Output 
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Input: 

•	 A matrix A and a vector b that define the polyhedron P = {x ∈ ℜn | 
′ aix ≥ bi, i = 1, . . . , m} 

•	 A number v, such that either P is empty or Vol(P ) > v 
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•	 A ball E0 = E(x0, r
2I) with volume at most V , such that P ⊂ E0 

Output: A feasible point x ∗ ∈ P if P is nonempty, or a statement that P is 
empty 

3.6 The algorithm 
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1. (Initialization) 
Let t ∗ = 2(n + 1) log(V/v) ; E0 = E(x0, r 

2I); D0 = r 2I; t = 0. 

2. (Main iteration) 
∗ •	 If t = t stop; P is empty. 

•	 If xt ∈ P stop; P is nonempty. 
′ •	 If xt ∈/ P find a violated constraint, that is, find an i such that aixt < bi. 

•	 Let Ht = {x ∈ ℜ n | ai
′ x ≥ ai

′ xt}. Find an ellipsoid Et+1 containing Et ∩ Ht:

Et+1 = E(xt+1, Dt+1) with


1 Dtai 
xt+1 = xt + � , 

n + 1 a ′ Dtaii

n 2 2 Dtaiai
′ Dt 

Dt+1 = 
n2 − 1 

Dt −
n + 1 a ′ iDtai 

. 

t := t + 1. • 

3.7 Correctness 
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Theorem: Let P be a bounded polyhedron that is either empty or full-dimensional 
and for which the prior information x0, r, v, V is available. Then, the ellipsoid 
method decides correctly whether P is nonempty or not, i.e., if xt∗−1 ∈/ P , then 
P is empty 

3.8 Proof 
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•	 If xt ∈ P for t < t ∗, then the algorithm correctly decides that P is

nonempty


•	 Suppose x0, . . . , xt∗−1 ∈/ P . We will show that P is empty. 

•	 We prove by induction on k that P ⊂ Ek for k = 0, 1, . . . , t ∗ . Note

that P ⊂ E0, by the assumptions of the algorithm, and this starts the

induction.


Slide 20 

•	 Suppose P ⊂ Ek for some k < t∗ . Since xk ∈/ P , there exists a violated 
′	 ′ inequality: ai(k)x ≥ bi(k) be a violated inequality, i.e., ai(k)xk < bi(k),


where xk is the center of the ellipsoid Ek
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•	 For any x ∈ P , we have 

′ ′ ai(k)x ≥ bi(k) > ai(k)xk 

•	 Hence, P ⊂ Hk = x ∈ ℜn | a ′ i(k)x ≥ a ′ i(k)xk 

•	 Therefore, P ⊂ Ek ∩ Hk 
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By key geometric property, Ek ∩ Hk ⊂ Ek+1; hence P ⊂ Ek+1 and the induction is 
complete 

Vol(Et+1) −1/(2(n+1)) < e 
Vol(Et) 

Vol(Et∗ ) −t ∗/(2(n+1)) < e 
Vol(E0) 

Vol(Et∗ ) < V e −⌈2(n+1) log V ⌉/(2(n+1)) ≤ V e − log V 
= vv	 v 

∗ If the ellipsoid method has not terminated after t iterations, then Vol(P ) ≤ Vol(Et∗ ) ≤ 
v. This implies that P is empty 

3.9 Binary Search 
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•	 P = x ∈ ℜ | x ≥ 0, x ≥ 1, x ≤ 2, x ≤ 3 

•	 E0 = [0, 5], centered at x0 = 2.5 

•	 Since x0 ∈/ P , the algorithm chooses the violated inequality x ≤ 2 and

constructs E1 that contains the interval E0 ∩ {x | x ≤ 2.5} = [0, 2.5]


•	 The ellipsoid E1 is the interval [0, 2.5] itself 

•	 Its center x1 = 1.25 belongs to P 

•	 This is binary search 

3.10 Boundedness of P 
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Let A be an m×n integer matrix and let b a vector in ℜn . Let U be the largest 
absolute value of the entries in A and b. 
Every extreme point of the polyhedron P = {x ∈ ℜn | Ax ≥ b} satisfies 

−(nU)n ≤ xj ≤ (nU)n , j = 1, . . . , n 
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•	 All extreme points of P are contained in 

PB = x ∈ P |xj | ≤ (nU)n, j = 1, . . . , n 

•	 Since PB ⊆ E 0, n(nU)2nI , we can start the ellipsoid method with E0 = 

E	 0, n(nU)2nI 

• 
� �n 2 

V ol(E0) ≤ V = 2n(nU)n = (2n)n(nU)n 
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3.11 Full-dimensionality 
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Let P = {x ∈ ℜn | Ax ≥ b}. We assume that A and b have integer entries, 
which are bounded in absolute value by U . Let 

1 � �

−(n+1) 
ǫ = (n + 1)U . 

2(n + 1) 

Let 
Pǫ = x ∈ ℜn | Ax ≥ b − ǫe , 

where e = (1, 1, . . . , 1). 

(a) If P is empty, then Pǫ is empty. 

(b) If P is nonempty, then Pǫ is full-dimensional.	 Slide 26 
Let P = x ∈ ℜn | Ax ≥ b be a full-dimensional bounded polyhedron, where 
the entries of A and b are integer and have absolute value bounded by U . Then, 

2

Vol(P ) > v = n −n(nU)−n (n+1) 

3.12 Complexity 
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•	 P = {x ∈ ℜn | Ax ≥ b}, where A, b have integer entries with magni

tude bounded by some U and has full rank. If P is bounded and either

empty or full-dimensional, the ellipsoid method decides if P is empty in

O	 n log(V/v) iterations 

•	 v = n−n(nU)−n 2 (n+1), V = (2n)n(nU)n 2 

•	 Number of iterations O n4 log(nU) 
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•	 If P is arbitrary, we first form PB , then perturb PB to form PB,ǫ and apply the

ellipsoid method to PB,ǫ


Number of iterations is O n 6 log(nU) .• 
•	 It has been shown that only O(n 3 log U) binary digits of precision are needed,


and the numbers computed during the algorithm have polynomially bounded

size


•	 The linear programming feasibility problem with integer data can be solved in

polynomial time


4 The ellipsoid method for optimization 
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min c ′ x	 max b ′ π 

s.t. Ax ≥ b, s.t. A ′ π = c 

π	 ≥ 0. 

By strong duality, both problems have optimal solutions if and only if the following 
system of linear inequalities is feasible: 

′ ′	 ′ 
b p = c x, Ax ≥ b, A p = c, p ≥ 0. 

LO with integer data can be solved in polynomial time. 
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4.1 Sliding objective 
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•	 We first run the ellipsoid method to find a feasible solution x0 ∈ P = 
x ∈ ℜn | Ax ≥ b . 

•	 We apply the ellipsoid method to decide whether the set 

P ∩ x ∈ ℜn | c ′ x < c ′ x0 

is empty. 

•	 If it is empty, then x0 is optimal. If it is nonempty, we find a new solution 
′ x1 in P with objective function value strictly smaller than c x0. 
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•	 More generally, every time a better feasible solution xt is found, we take

P ∩ {x ∈ ℜn | c ′ x < c ′ xt} as the new set of inequalities and reapply the

ellipsoid method.


. 

. xt+1 

xt 

P 

c' x <c ' xt+1 

c' x <c ' xt 

- c 

4.2 Performance in practice 
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•	 Very slow convergence, close to the worst case 

•	 Contrast with simplex method 

•	 The ellipsoid method is a tool for classifying the complexity of linear

programming problems
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