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1 Outline 
Slide 1 

• Modeling with integer variables 

• What is a good formulation? 

• Theme: The Power of Formulations 

2 Integer Programming 

2.1 Mixed IP 
Slide 2 

(MIP) max c ′ x + h ′ y 
s.t. Ax + By ≤ b 

nR+

n∈ Zx +(x ≥ 0, x integer) 
y ∈ (y ≥ 0) 

nZ+ 

2.2 Pure IP 
Slide 3 

′ (IP) max c x 
s.t. Ax ≤ b 

x ∈ 

Important special case: Binary IP 

′ (BIP) max c x 
s.t. Ax ≤ b 

x ∈ {0, 1}n 

2.3 LP 
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′ (LP) max c x 
s.t. By ≤ b 

y ∈ Rn 
+ 

3 Modeling with Binary Variables 

3.1 Binary Choice 
� 

Slide 5 
1, if event occurs 

x ∈ 
0, otherwise 

Example 1: IP formulation of the knapsack problem 
n : projects, total budget b 

aj : cost of project j 
cj : value of project j Slide 6 

1, if project j is selected. 
xj = 

0, otherwise. 

1 



� 

� 

� 

� 

� 

� 

� 

n 

max cjxj 
j=1 

s.t.	 ajxj ≤ b 
xj ∈ {0, 1} 

3.2	 Modeling relations 
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• At most one event occurs 
xj ≤ 1 

j 

• Neither or both events occur 

x2 − x1 = 0 

• If one event occurs then, another occurs 

0 ≤ x2 ≤ x1 

• If x = 0, then y = 0; if x = 1, then y is uncontrained 

0 ≤ y ≤ Ux, x ∈ {0, 1} 

3.3	 The assignment problem 
Slide 8 

n people

m jobs


cij : cost of assigning person j to job i.

1 person jis assigned to job i 

xij	 = 
0 

min cij xij

n


s.t. xij = 1 each job is assigned 
j=1

m


xij ≤ 1 each person can do at most one job.

i=1


xij ∈ {0, 1}


3.4	 Multiple optimal solutions 
Slide 9 

• Generate all optimal solutions to a BOP. 

′ max	 c x 
s.t.	 Ax ≤ b 

x ∈ {0, 1}n 

• Generate third best? 

• Extensions to MIO? 
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3.5 Nonconvex functions 

• How to model min c(x), where c(x) is piecewise linear but not convex? 

4	 What is a good formulation? 

4.1 Facility Location 

•	 Data

N = {1 . . . n} potential facility locations

I = {1 . . .m} set of clients

cj : cost of facility placed at j

hij : cost of satisfying client i from facility j.


• Decision variables 

1, a facility is placed at location j 
xij =

0, otherwise 
yij = fraction of demand of client i 

satisfied by facility j. 

n m n 

IZ1 = min cjxj + hijyij 
j=1 i=1 j=1 
n 

s.t.	 yij = 1 
j=1 

yij ≤ xj 

xj ∈ {0, 1}, 0 ≤ yij ≤ 1. 

Consider an alternative formulation. 

n m n 

IZ2 = min cjxj + hijyij 
j=1 i=1 j=1 
n 

s.t. yij = 1 
j=1 
m 

yij ≤ m · xj 
i=1 
xj ∈ {0, 1}, 0 ≤ yij ≤ 1. 

Are both valid?

Which one is preferable?


4.2 Observations 

• IZ1 = IZ2, since the integer points both formulations define are the same. 

• 
n	 � 

�	 0 ≤ xj ≤ 1 
P1 = {(x, y) : yij = 1, yij ≤ xj , 0 ≤ yij ≤ 1 

j=1 
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P2 = {(x, y) : yij = 1, 

j=1 

0 ≤ xj ≤ 1 

m 

yij ≤ m · xj , 

i=1 

0 ≤ yij ≤ 1 
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•	 Let 
Z1 = min cx + hy, Z2 = min cx + hy 

(x, y) ∈ P1 (x, y) ∈ P2 

•	 Z2 ≤ Z1 ≤ IZ1 = IZ2 

4.3 Implications 
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•	 Finding IZ1(= IZ2) is difficult. 

•	 Solving to find Z1, Z2 is an LP. Since Z1 is closer to IZ1 several methods

(branch and bound) would work better (actually much better).


•	 Suppose that if we solve min cx + hy, (x, y) ∈ P1 we find an integral

solution. Have we solved the facility location problem?


Slide 17 

•	 Formulation 1 is better than Formulation 2. (Despite the fact that 1 has

a larger number of constraints than 2.)


•	 What is then the criterion? 

4.4 Ideal Formulations 
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•	 Let P be an LP relaxation for a problem 

•	 Let

H = {(x, y) : x ∈ {0, 1}n} ∩ P


•	 Consider Convex Hull (H) 

= {x : x = λix i , λi = 1, λi ≥ 0, x i ∈ H} 
i i 

Slide 19 

•	 The extreme points of CH(H) have {0, 1} coordinates. 

•	 So, if we know CH(H) explicitly, then by solving min cx + hy, (x, y) ∈

CH(H) we solve the problem.


•	 Message: Quality of formulation is judged by closeness to CH(H).


CH(H) ⊆ P1 ⊆ P2
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5	 Minimum Spanning 
Tree (MST) 

Slide 20 
•	 How do telephone companies bill you? 

•	 It used to be that rate/minute: Boston → LA proportional to distance in

MST


•	 Other applications: Telecommunications, Transportation (good lower bound

for TSP)


Slide 21 

•	 Given a graph G = (V, E) undirected and Costs ce, e ∈ E. 

•	 Find a tree of minimum cost spanning all the nodes. 

1, if edge e is included in the tree 
•	 Decision variables xe = 

0, otherwise 
Slide 22 

•	 The tree should be connected. How can you model this requirement? 

•	 Let S be a set of vertices. Then S and V \ S should be connected 

i ∈ S 
•	 Let δ(S) = {e = (i, j) ∈ E : 

j ∈ V \ S 

•	 Then, 

xe ≥ 1 

e∈δ(S) 

•	 What is the number of edges in a tree? 

•	 Then, xe = n − 1 
e∈E 

5.1 Formulation 
Slide 23 

IZMST = min cexe 

 

 

 

 

H 
 

 

 

Is this a good formulation? 

e∈E 
� 

xe ≥ 1 ∀ S ⊆ V, S �= ∅, V 
e∈δ(S) 
� 

xe = n − 1 
e∈E 

xe ∈ {0, 1}. 

Slide 24 

Pcut = {x ∈ R|E| : 0 ≤ x ≤ e, 

xe = n − 1 
e∈E 

xe ≥ 1 ∀ S ⊆ V, S �= ∅, V } 
e∈δ(S) 

Is Pcut the CH(H)? 
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5.2 What is CH(H)? 
Slide 25 

Let 
Psub = {x ∈ R|E| : xe = n − 1 

e∈E 

xe ≤ |S| − 1 ∀ S ⊆ V, S � ∅, V }= 
e∈E(S) 

i ∈ S 
E(S) = e = (i, j) : 

j ∈ S 
Why is this a valid IP formulation?	 Slide 26 

•	 Theorem: Psub = CH(H). 

•	 ⇒ Psub is the best possible formulation. 

•	 MESSAGE: Good formulations can have an exponential number of con

straints.


6	 The Traveling Salesman 
Problem 

Slide 27 
Given G = (V, E) an undirected graph. V = {1, . . . , n}, costs ce ∀ e ∈ E. Find 
a tour that minimizes total length. 

6.1 Formulation I 
�	

Slide 28 
1, if edge e is included in the tour. 

xe = 
0, otherwise. 

min cexe

e∈E


s.t. xe ≥ 2, S ⊆ E 
e∈δ(S) 

xe = 2, i ∈ V 
e∈δ(i) 

xe ∈ {0, 1} 

6.2 Formulation II 
Slide 29 

min cexe 

s.t. xe ≤ |S| − 1, S ⊆ E 
e∈E(S) 

xe = 2, i ∈ V 
e∈δ(i) 

xe ∈ {0, 1} 
Slide 30 
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PTSP = {x ∈ R|E|; 
� 

xe ≥ 2, 
� 

xe = 2cut 
e∈δ(S) e∈δ(i) 

0 ≤ xe ≤ 1}

PTSP R|E|

�


sub = {x ∈ ; xe = 2

e∈δ(i)


xe ≤ |S| − 1 
e∈δ(S) 

0 ≤ xe ≤ 1} 
Slide 31 

•	 Theorem: PTSP = PTSP �⊇ CH(H)cut sub 

•	 Nobody knows CH(H) for the TSP 

7 Minimum Matching 
Slide 32 

•	 Given G = (V, E); ce costs on e ∈ E. Find a matching of minimum cost. 

•	 Formulation: 
min cexe 

s.t. xe = 1, i ∈ V 
e∈δ(i) 

xe ∈ {0, 1} 

•	 Is the LP ralaxation CH(H)? 

Slide 33 
Let 

PMAT = {x ∈ R|E| : 
� 

xe = 1 
e∈δ(i) 

xe ≥ 1 |S| = 2k + 1, S � ∅= 
e∈δ(S) 

xe ≥ 0} 

Theorem: PMAT = CH(H) 

8 Observations 
Slide 34 

•	 For MST, Matching there are efficient algorithms. CH(H) is known. 

•	 For TSP � ∃ efficient algorithm. TSP is an NP − hard problem. CH(H)

is not known.


•	 Conjuecture: The convex hull of problems that are polynomially solvable

are explicitly known.
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9 Summary 
Slide 35 

1. An IP formulation is better than another one if the polyhedra of their LP

relaxations are closer to the convex hull of the IP.


2. A good formulation can have an exponential number of constraints. 

3. Conjecture: Formulations characterize the complexity of problems. If a

problem is solvable in polynomial time, then the convex hull of solutions

is known.
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