15.081J/6.251J Introduction to Mathematical Programming

Lecture 25: Exact Methods for Discrete Optimization

1 Outline

- Cutting plane methods
- Branch and bound methods

2 Cutting plane methods

$$
\begin{array}{cl}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0} \\
& \boldsymbol{x} \text { integer, }
\end{array}
$$

LP relaxation

$$
\begin{aligned}
\min & c^{\prime} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

2.1 Algorithm

- Solve the LP relaxation. Let \boldsymbol{x}^{*} be an optimal solution.
- If \boldsymbol{x}^{*} is integer stop; \boldsymbol{x}^{*} is an optimal solution to IP.
- If not, add a linear inequality constraint to LP relaxation that all integer solutions satisfy, but \boldsymbol{x}^{*} does not; go to Step 1.

2.2 Example

- Let \boldsymbol{x}^{*} be an optimal BFS to LP ralxation with at least one fractional basic variable.
- N : set of indices of the nonbasic variables.
- Is this a valid cut?

$$
\sum_{j \in N} x_{j} \geq 1 .
$$

2.3 The Gomory cutting plane algorithm

- Let \boldsymbol{x}^{*} be an optimal BFS and \boldsymbol{B} an optimal basis.

$$
\boldsymbol{x}_{B}+\boldsymbol{B}^{-1} \boldsymbol{A}_{N} \boldsymbol{x}_{N}=\boldsymbol{B}^{-1} \boldsymbol{b} .
$$

- $\bar{a}_{i j}=\left(\boldsymbol{B}^{-1} \boldsymbol{A}_{j}\right)_{i}, \bar{a}_{i 0}=\left(\boldsymbol{B}^{-1} \boldsymbol{b}\right)_{i}$.

$$
x_{i}+\sum_{j \in N} \bar{a}_{i j} x_{j}=\bar{a}_{i 0} .
$$

- Since $x_{j} \geq 0$ for all j,

$$
x_{i}+\sum_{j \in N}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq x_{i}+\sum_{j \in N} \bar{a}_{i j} x_{j}=\bar{a}_{i 0} .
$$

- Since x_{j} integer,

$$
x_{i}+\sum_{j \in N}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{a}_{i 0}\right\rfloor .
$$

- Valid cut

2.4 Example

$$
\begin{array}{rr}
\min & x_{1}-2 x_{2} \\
\text { s.t. } & -4 x_{1}+6 x_{2} \leq 9 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer. }
\end{array}
$$

We transform the problem in standard form

$$
\begin{aligned}
\min & x_{1}-2 x_{2} \\
\text { s.t. } & -4 x_{1}+6 x_{2}+x_{3} \quad=9 \\
& x_{1}+x_{2}+x_{4}=4 \\
& x_{1}, \ldots, x_{4} \geq 0 \\
& x_{1}, \ldots, x_{4} \text { integer. }
\end{aligned}
$$

LP relaxation: $\boldsymbol{x}^{1}=(15 / 10,25 / 10)$.

$$
x_{2}+\frac{1}{10} x_{3}+\frac{1}{10} x_{4}=\frac{25}{10} .
$$

- Gomory cut

$$
x_{2} \leq 2 .
$$

- Add constraints $x_{2}+x_{5}=2, x_{5} \geq 0$
- New optimal $\boldsymbol{x}^{2}=(3 / 4,2)$.
- One of the equations in the optimal tableau is

$$
x_{1}-\frac{1}{4} x_{3}+\frac{6}{4} x_{5}=\frac{3}{4} .
$$

- New Gomory cut

$$
x_{1}-x_{3}+x_{5} \leq 0,
$$

- New optimal solution is $\boldsymbol{x}^{3}=(1,2)$.

3 Branch and bound

1. Branching: Select an active subproblem F_{i}
2. Pruning: If the subproblem is infeasible, delete it.
3. Bounding: Otherwise, compute a lower bound $b\left(F_{i}\right)$ for the subproblem.
4. Pruning: If $b\left(F_{i}\right) \geq U$, the current best upperbound, delete the subproblem.
5. Partitioning: If $b\left(F_{i}\right)<U$, either obtain an optimal solution to the subproblem (stop), or break the corresponding problem into further subproblems, which are added to the list of active subproblem.

3.1 LP Based

- Compute the lower bound $b(F)$ by solving the LP relaxation of the discrete optimization problem.
- From the LP solution \boldsymbol{x}^{*}, if there is a component x_{i}^{*} which is fractional, we create two subproblems by adding either one of the constraints

$$
x_{i} \leq\left\lfloor x_{i}^{*}\right\rfloor, \text { or } x_{i} \geq\left\lceil x_{i}^{*}\right\rceil .
$$

Note that both constraints are violated by \boldsymbol{x}^{*}.

- If there are more than 2 fractional components, we use selection rules like maximum infeasibility etc. to determine the inequalities to be added to the problem
- Select the active subproblem using either depth-first or breadth-first search strategies.

3.2 Example

$$
\begin{aligned}
\max & 12 x_{1}+8 x_{2}+7 x_{3}+6 x_{4} \\
\text { s.t. } & 8 x_{1}+6 x_{2}+5 x_{3}+4 x_{4} \leq 15 \\
& x_{1}, x_{2}, x_{3}, x_{4} \text { are binary. }
\end{aligned}
$$

LP relaxation

$$
\begin{aligned}
\max & 12 x_{1}+8 x_{2}+7 x_{3}+6 x_{4} \\
\text { s.t. } & 8 x_{1}+6 x_{2}+5 x_{3}+4 x_{4} \leq 15 \\
& x_{1} \leq 1, x_{2} \leq 1, x_{3} \leq 1, x_{4} \leq 1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

LP solution: $x_{1}=1, x_{2}=0, x_{3}=0.6, x_{4}=1$ Profit $=22.2$

3.2.1 Branch and bound tree

3.3 Pigeonhole Problem

- There are $n+1$ pigeons with n holes. We want to place the pigeons in the

Slide 16 holes in such a way that no two pigeons go into the same hole.

- Let $x_{i j}=1$ if pigeon i goes into hole $j, 0$ otherwise.
- Formulation 1:

$$
\begin{gathered}
\sum_{j} x_{i j}=1, \quad i=1, \ldots, n+1 \\
x_{i j}+x_{k j} \leq 1, \quad \forall j, i \neq k
\end{gathered}
$$

- Formulation 2:

$$
\begin{gathered}
\sum_{j} x_{i j}=1, \quad i=1, \ldots, n+1 \\
\sum_{i=1}^{n+1} x_{i j} \leq 1, \quad \forall j
\end{gathered}
$$

Which formulation is better for the problem?

- The pigeonhole problem is infeasible.
- For Formulation 1, feasible solution $x_{i j}=\frac{1}{n}$ for all $i, j . O\left(n^{3}\right)$ constraints. Nearly complete enumeration is needed for LP-based BB, since the problem remains feasible after fixing many variables.
- Formulation 2 Infeasible. $O(n)$ constraints.
- Mesage: Formulation of the problem is important!

3.4 Preprocessing

- An effective way of improving integer programming formulations prior to and during branch-and-bound.
- Logical Tests
- Removal of empty (all zeros) rows and columns;
- Removal of rows dominated by multiples of other rows;
- strengthening the bounds within rows by comparing individual variables and coefficients to the right-hand-side.
- Additional strengthening may be possible for integral variables using rounding.
- Probing : Setting temporarily a $0-1$ variable to 0 or 1 and redo the logical tests. Force logical connection between variables. For example, if $5 x+4 y+z \leq$ $8, x, y, z \in\{0,1\}$, then by setting $x=1$, we obtain $y=0$. This leads to an inequality $x+y \leq 1$.

4 Application

4.1 Directed TSP

4.1.1 Assignment Lower Bound

Given a directed graph $G=(N, A)$ with n nodes, and a cost $c_{i j}$ for every arc, find a tour (a directed cycle that visits all nodes) of minimum cost.

$$
\begin{array}{rc}
\min & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { s.t. : } & \sum_{i=1}^{n} x_{i j}=1, j=1, \ldots, n, \\
& \sum_{j=1}^{n} x_{i j}=1, i=1, \ldots, n, \\
& x_{i j} \in\{0,1\} .
\end{array}
$$

4.2 Improving BB

- Better LP solver
- Use problem structure to derive better branching strategy
- Better choice of lower bound $b(F)$ - better relaxation
- Better choice of upper bound U - heuristic to get good solution
- KEY: Start pruning the search tree as early as possible

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

