6.253: Convex Analysis and Optimization Homework 1

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

(a) Let C be a nonempty subset of \mathbf{R}^{n}, and let λ_{1} and λ_{2} be positive scalars. Show that if C is convex, then $\left(\lambda_{1}+\lambda_{2}\right) C=\lambda_{1} C+\lambda_{2} C$. Show by example that this need not be true when C is not convex.
(b) Show that the intersection $\cap_{i \in I} C_{i}$ of a collection $\left\{C_{i} \mid i \in I\right\}$ of cones is a cone.
(c) Show that the image and the inverse image of a cone under a linear transformation is a cone.
(d) Show that the vector sum $C_{1}+C_{2}$ of two cones C_{1} and C_{2} is a cone.
(e) Show that a subset C is a convex cone if and only if it is closed under addition and positive scalar multiplication, i.e., $C+C \subset C$, and $\gamma C \subset C$ for all $\gamma>0$.

Problem 2

Let C be a nonempty convex subset of \mathbf{R}^{n}. Let also $f=\left(f_{1}, \ldots, f_{m}\right)$, where $f_{i}: C \mapsto \Re, i=$ $1, \ldots, m$, are convex functions, and let $g: \mathbf{R}^{m} \mapsto \mathbf{R}$ be a function that is convex and monotonically nondecreasing over a convex set that contains the set $\{f(x) \mid x \in C\}$, in the sense that for all u_{1}, u_{2} in this set such that $u_{1} \leq u_{2}$, we have $g\left(u_{1}\right) \leq g\left(u_{2}\right)$. Show that the function h defined by $h(x)=g(f(x))$ is convex over C. If in addition, $m=1, g$ is monotonically increasing and f is strictly convex, then h is strictly convex.

Problem 3

Show that the following functions from \mathbf{R}^{n} to $(-\infty, \infty]$ are convex:
(a) $f_{1}(x)=\ln \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$.
(b) $f_{2}(x)=\|x\|^{p}$ with $p \geq 1$.
(c) $f_{3}(x)=e^{\beta x^{\prime} A x}$, where A is a positive semidefinite symmetric $n \times n$ matrix and β is a positive scalar.
(d) $f_{4}(x)=f(A x+b)$, where $f: \mathbf{R}^{m} \mapsto \mathbf{R}$ is a convex function, A is an $m \times n$ matrix, and b is a vector in \mathbf{R}^{m}.

Problem 4

Let X be a nonempty bounded subset of \mathbf{R}^{n}. Show that

$$
\operatorname{cl}(\operatorname{conv}(X))=\operatorname{conv}(\operatorname{cl}(X)) .
$$

In particular, if X is compact, then $\operatorname{conv}(X)$ is compact.

Problem 5

Construct an example of a point in a nonconvex set X that has the prolongation property, but is not a relative interior point of X.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

