6.253: Convex Analysis and Optimization Homework 1

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

(a) Let C be a nonempty subset of \mathbf{R}^{n}, and let λ_{1} and λ_{2} be positive scalars. Show that if C is convex, then $\left(\lambda_{1}+\lambda_{2}\right) C=\lambda_{1} C+\lambda_{2} C$. Show by example that this need not be true when C is not convex.
(b) Show that the intersection $\cap_{i \in I} C_{i}$ of a collection $\left\{C_{i} \mid i \in I\right\}$ of cones is a cone.
(c) Show that the image and the inverse image of a cone under a linear transformation is a cone.
(d) Show that the vector sum $C_{1}+C_{2}$ of two cones C_{1} and C_{2} is a cone.
(e) Show that a subset C is a convex cone if and only if it is closed under addition and positive scalar multiplication, i.e., $C+C \subset C$, and $\gamma C \subset C$ for all $\gamma>0$.

Solution.

(a) We always have $\left(\lambda_{1}+\lambda_{2}\right) C \subset \lambda_{1} C+\lambda_{2} C$, even if C is not convex. To show the reverse inclusion assuming C is convex, note that a vector x in $\lambda_{1} C+\lambda_{2} C$ is of the form $x=\lambda_{1} x_{1}+\lambda_{2} x_{2}$, where $x_{1}, x_{2} \in C$. By convexity of C, we have

$$
\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} x_{1}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} x_{2} \in C,
$$

and it follows that

$$
x=\lambda_{1} x_{1}+\lambda_{2} x_{2} \in\left(\lambda_{1}+\lambda_{2}\right) C,
$$

so $\lambda_{1} C+\lambda_{2} C \subset\left(\lambda_{1}+\lambda_{2}\right) C$.
For a counterexample when C is not convex, let C be a set in \mathbf{R}^{n} consisting of two vectors, 0 and $x \neq 0$, and let $\lambda_{1}=\lambda_{2}=1$. Then C is not convex, and $\left(\lambda_{1}+\lambda_{2}\right) C=2 C=\{0,2 x\}$, while $\lambda_{1} C+\lambda_{2} C=C+C=\{0, x, 2 x\}$, showing that $\left(\lambda_{1}+\lambda_{2}\right) C \neq \lambda_{1} C+\lambda_{2} C$.
(b) Let $x \in \cap_{i \in I} C_{i}$ and let α be a positive scalar. Since $x \in C_{i}$ for all $i \in I$ and each C_{i} is a cone, the vector αx belongs to C_{i} for all $i \in I$. Hence, $\alpha x \in \cap_{i \in I} C_{i}$, showing that $\cap_{i \in I} C_{i}$ is a cone.
(c) First we prove that $A \cdot C$ is a cone, where A is a linear transformation and $A \cdot C$ is the image of C under A. Let $z \in A \cdot C$ and let α be a positive scalar. Then, $A x=z$ for some $x \in C$, and since C is a cone, $\alpha x \in C$. Because $A(\alpha x)=\alpha z$, the vector αz is in $A \cdot C$, showing that $A \cdot C$ is a cone.

Next we prove that the inverse image $A^{-1} \cdot C$ of C under A is a cone. Let $x \in A^{-1} \cdot C$ and let α be a positive scalar. Then $A x \in C$, and since C is a cone, $\alpha A x \in C$. Thus, the vector $A(\alpha x) \in C$, implying that $\alpha x \in A^{-1} \cdot C$, and showing that $A^{-1} \cdot C$ is a cone.
(d) Let $x \in C_{1}+C_{2}$ and let α be a positive scalar. Then, $x=x_{1}+x_{2}$ for some $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$, and since C_{1} and C_{2} are cones, $\alpha x_{1} \in C_{1}$ and $\alpha x_{2} \in C_{2}$. Hence, $\alpha x=\alpha x_{1}+\alpha x_{2} \in C_{1}+C_{2}$,
showing that $C_{1}+C_{2}$ is a cone.
(e) Let C be a convex cone. Then $\gamma C \subset C$, for all $\gamma>0$, by the definition of cone. Furthermore, by convexity of C, for all $x, y \in C$, we have $z \in C$, where

$$
z=\frac{1}{2}(x+y) .
$$

Hence $(x+y)=2 z \in C$, since C is a cone, and it follows that $C+C \subset C$.
Conversely, assume that $C+C \subset C$, and $\gamma C \subset C$. Then C is a cone. Furthermore, if $x, y \in C$ and $\alpha \in(0,1)$, we have $\alpha x \in C$ and $(1-\alpha) y \in C$, and $\alpha x+(1-\alpha) y \in C($ since $C+C \subset C)$. Hence C is convex.

Problem 2

Let C be a nonempty convex subset of \mathbf{R}^{n}. Let also $f=\left(f_{1}, \ldots, f_{m}\right)$, where $f_{i}: C \mapsto \Re$, $i=1, \ldots, m$, are convex functions, and let $g: \mathbf{R}^{m} \mapsto \mathbf{R}$ be a function that is convex and monotonically nondecreasing over a convex set that contains the set $\{f(x) \mid x \in C\}$, in the sense that for all u_{1}, u_{2} in this set such that $u_{1} \leq u_{2}$, we have $g\left(u_{1}\right) \leq g\left(u_{2}\right)$. Show that the function h defined by $h(x)=g(f(x))$ is convex over C. If in addition, $m=1, g$ is monotonically increasing and f is strictly convex, then h is strictly convex.

Solution.

Let $x, y \in \mathbf{R}^{n}$ and let $\alpha \in[0,1]$. By the definitions of h and f, we have

$$
\begin{align*}
h(\alpha x+(1-\alpha) y) & =g(f(\alpha x+(1-\alpha) y)) \\
& =g\left(f_{1}(\alpha x+(1-\alpha) y), \ldots, f_{m}(\alpha x+(1-\alpha) y)\right) \\
& \leq g\left(\alpha f_{1}(x)+(1-\alpha) f_{1}(y), \ldots, \alpha f_{m}(x)+(1-\alpha) f_{m}(y)\right) \\
& =g\left(\alpha\left(f_{1}(x), \ldots, f_{m}(x)\right)+(1-\alpha)\left(f_{1}(y), \ldots, f_{m}(y)\right)\right) \\
& \leq \alpha g\left(f_{1}(x), \ldots, f_{m}(x)\right)+(1-\alpha) g\left(f_{1}(y), \ldots, f_{m}(y)\right) \\
& =\alpha g(f(x))+(1-\alpha) g(f(y)) \\
& =\alpha h(x)+(1-\alpha) h(y) \tag{1}
\end{align*}
$$

where the first inequality follows by convexity of each f_{i} and monotonicity of g, while the second inequality follows by convexity of g.

If $m=1, g$ is monotonically increasing, and f is strictly convex, then the first inequality is strict whenever $x \neq y$ and $\alpha \in(0,1)$, showing that h is strictly convex.

Problem 3

Show that the following functions from \mathbf{R}^{n} to $(-\infty, \infty]$ are convex:
(a) $f_{1}(x)=\ln \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$.
(b) $f_{2}(x)=\|x\|^{p}$ with $p \geq 1$.
(c) $f_{3}(x)=e^{\beta x^{\prime} A x}$, where A is a positive semidefinite symmetric $n \times n$ matrix and β is a positive scalar.
(d) $f_{4}(x)=f(A x+b)$, where $f: \mathbf{R}^{m} \mapsto \mathbf{R}$ is a convex function, A is an $m \times n$ matrix, and b is a vector in \mathbf{R}^{m}.

Solution.

(a) We show that the Hessian of f_{1} is positive semidefinite at all $x \in \mathbf{R}^{n}$. Let $(x)=e^{x_{1}}+\cdots+e^{x_{n}}$. Then a straightforward calculation yields

$$
z^{\prime} \nabla^{2} f_{1}(x) z=\frac{1}{(x)^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} e^{\left(x_{i}+x_{j}\right)}\left(z_{i}-z_{j}\right)^{2} \geq 0, \quad \forall z \in \mathbf{R}^{n} .
$$

Hence by the previous problem, f_{1} is convex.
(b) The function $f_{2}(x)=\|x\|^{p}$ can be viewed as a composition $g(f(x))$ of the scalar function $g(t)=t^{p}$ with $p \geq 1$ and the function $f(x)=\|x\|$. In this case, g is convex and monotonically increasing over the nonnegative axis, the set of values that f can take, while f is convex over \mathbf{R}^{n} (since any vector norm is convex). From problem 2, it follows that the function $f_{2}(x)=\|x\|^{p}$ is convex over \mathbf{R}^{n}.
(c) The function $f_{3}(x)=e^{\mathrm{x}^{\prime} A x}$ can be viewed as a composition $g(f(x))$ of the function $g(t)=e^{\underline{\mathrm{t}}}$ for $t \in \mathbf{R}$ and the function $f(x)=x^{\prime} A x$ for $x \in \mathbf{R}^{n}$. In this case, g is convex and monotonically increasing over \mathbf{R}, while f is convex over \mathbf{R}^{n} (since A is positive semidefinite). From problem 2, it follows that f_{3} is convex over \mathbf{R}^{n}.
(d) This part is straightforward using the definition of a convex function.

Problem 4

Let X be a nonempty bounded subset of \mathbf{R}^{n}. Show that

$$
\operatorname{cl}(\operatorname{conv}(X))=\operatorname{conv}(c l(X))
$$

In particular, if X is compact, then $\operatorname{conv}(X)$ is compact.

Solution.

The set $c l(X)$ is compact since X is bounded by assumption. Hence, its convex hull, $\operatorname{conv}(c l(X))$, is compact, and it follows that

$$
\operatorname{cl}(\operatorname{conv}(X)) \subset \operatorname{cl}(\operatorname{conv}(\operatorname{cl}(X)))=\operatorname{conv}(\operatorname{cl}(X)) .
$$

It is also true that

$$
\operatorname{conv}(c l(X)) \subset \operatorname{conv}(\operatorname{cl}(\operatorname{conv}(X)))=\operatorname{cl}(\operatorname{conv}(X)),
$$

since, the closure of a convex set is convex. Hence, the result follows.

Problem 5

Construct an example of a point in a nonconvex set X that has the prolongation property, but is not a relative interior point of X.

Solution.

Take two intersecting lines in the plane, and consider the point of intersection.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

