6.253: Convex Analysis and Optimization Homework 2

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

(a) Let C be a nonempty convex cone. Show that $\operatorname{cl}(C)$ and $\operatorname{ri}(C)$ is also a convex cone.
(b) Let $C=\operatorname{cone}\left(\left\{x_{1}, \ldots, x_{m}\right\}\right)$. Show that

$$
r i(C)=\left\{\sum_{i=1}^{m} a_{i} x_{i} \mid a_{i}>0, i=1, \ldots, m\right\} .
$$

Problem 2

Let C_{1} and C_{2} be convex sets. Show that

$$
C_{1} \cap r i\left(C_{2}\right) \neq \emptyset \quad \text { if and only if } \quad r i\left(C_{1} \cap a f f\left(C_{2}\right)\right) \cap r i\left(C_{2}\right) \neq \emptyset .
$$

Problem 3

(a) Consider a vector x^{*} such that a given function $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ is convex over a sphere centered at x^{*}. Show that x^{*} is a local minimum of f if and only if it is a local minimum of f along every line passing through x^{*} [i.e., for all $d \in \mathbf{R}^{n}$, the function $g: \mathbf{R} \mapsto \mathbf{R}$, defined by $g(\alpha)=f\left(x^{*}+\alpha d\right)$, has $\alpha^{*}=0$ as its local minimum].
(b) Consider the nonconvex function $f: \mathbf{R}^{2} \mapsto \mathbf{R}$ given by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{2}-p x_{1}^{2}\right)\left(x_{2}-q x_{1}^{2}\right)
$$

where p and q are scalars with $0<p<q$, and $x^{*}=(0,0)$. Show that $f\left(y, m y^{2}\right)<0$ for $y \neq 0$ and m satisfying $p<m<q$, so x^{*} is not a local minimum of f even though it is a local minimum along every line passing through x^{*}.

Problem 4

(a) Consider the quadratic program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & 1 / 2|x|^{2}+c^{\prime} x \\
\text { subject to } & A x=0
\end{array}
$$

where $c \in \mathbf{R}^{n}$ and A is an $m \times n$ matrix of rank m. Use the Projection Theorem to show that

$$
x^{*}=-\left(I-A^{\prime}\left(A A^{\prime}\right)^{-1} A\right) c
$$

is the unique solution.
(b) Consider the more general quadratic program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & 1 / 2(x-\bar{x})^{\prime} Q(x-\bar{x})+c^{\prime}(x-\bar{x}) \\
\text { subject to } & A x=b
\end{array}
$$

where c and A are as before, Q is a symmetric positive definite matrix, $b \in \mathbf{R}^{m}$, and \bar{x} is a vector in \mathbf{R}^{n}, which is feasible, i.e., satisfies $A \bar{x}=b$. Use the transformation $y=Q^{1 / 2}(x-\bar{x})$ to write this problem in the form of part (a) and show that the optimal solution is

$$
x^{*}=\bar{x}-Q^{-1}\left(c-A^{\prime} \lambda\right),
$$

where λ is given by

$$
\lambda=\left(A Q^{-1} A^{\prime}\right)^{-1} A Q^{-1} c
$$

(c) Apply the result of part (b) to the program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \left.1 / 2 x^{\prime} Q x+c^{\prime} x\right) \\
\text { subject to } & A x=b
\end{array}
$$

and show that the optimal solution is

$$
x^{*}=-Q^{-1}\left(c-A^{\prime} \lambda-A^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} b\right) .
$$

Problem 5

Let X be a closed convex subset of \mathbf{R}^{n}, and let $f: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ be a closed convex function such that $X \cap \operatorname{dom}(f) \neq \emptyset$. Assume that f and X have no common nonzero direction of recession. Let X^{*} be the set of minima of f over X (which is nonempty and compact), and let $f^{*}=\inf _{x \in X} f(x)$. Show that:
(a) For every $\epsilon>0$ there exists a $\delta>0$ such that every vector $x \in X$ with $f(x) \leq f^{*}+\delta$ satisfies $\min _{x^{*} \in X^{*}}\left\|x-x^{*}\right\| \leq \epsilon$.
(b) If f is real-valued, for every $\delta>0$ there exists an $\epsilon>0$ such that every vector $x \in X$ with $\min _{x^{*} \in X^{*}}\left\|x-x^{*}\right\| \leq \epsilon$ satisfies $f(x) \leq f^{*}+\delta$.
(c) Every sequence $\left\{x_{k}\right\} \subset X$ satisfying $f\left(x_{k}\right) \rightarrow f^{*}$ is bounded and all its limit points belong to X^{*}.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

