6.253: Convex Analysis and Optimization Homework 2

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

(a) Let C be a nonempty convex cone. Show that $\operatorname{cl}(C)$ and $r i(C)$ is also a convex cone.
(b) Let $C=\operatorname{cone}\left(\left\{x_{1}, \ldots, x_{m}\right\}\right)$. Show that

$$
r i(C)=\left\{\sum_{i=1}^{m} a_{i} x_{i} \mid a_{i}>0, i=1, \ldots, m\right\} .
$$

Solution.

(a) Let $x \in \operatorname{cl}(C)$ and let α be a positive scalar. Then, there exists a sequence $\left\{x_{k}\right\} \in C$ such that $x_{k} \rightarrow x$, and since C is a cone, $\alpha x_{k} \in C$ for all k. Furthermore, $\alpha x_{k} \rightarrow \alpha x$, implying that $\alpha x \in \operatorname{cl}(C)$. Hence, $\operatorname{cl}(C)$ is a cone, and it also convex since the closure of a convex set is convex.

By Prop.1.3.2, the relative interior of a convex set is convex. To show that $\operatorname{rin}(C)$ is a cone, let $x \in \operatorname{rin}(C)$. Then, $x \in C$ and since C is a cone, $\alpha x \in C$ for all $\alpha>0$. By the Line Segment Principle, all the points on the line segment connecting x and αx, except possibly αx, belong to $\operatorname{rin}(C)$. Since this is true for every $\alpha>0$, it follows that $\alpha x \in \operatorname{rin}(C)$ for all $\alpha>0$, showing that $\operatorname{rin}(C)$ is a cone.
(b) Consider the linear transformation A that maps $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbf{R}^{m}$ into $\sum_{i=1}^{m} \alpha_{i} x_{i} \in \mathbf{R}^{n}$. Note that C is the image of the nonempty convex set

$$
\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mid \alpha_{1} \geq 0, \ldots, \alpha_{m} \geq 0\right\}
$$

under A. Therefore, we have

$$
\begin{aligned}
\operatorname{rin}(C) & =\operatorname{rin}\left(A \cdot\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mid \alpha_{1} \geq 0, \ldots, \alpha_{m} \geq 0\right\}\right) \\
& =A \cdot \operatorname{rin}\left(\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mid \alpha_{1} \geq 0, \ldots, \alpha_{m} \geq 0\right\}\right) \\
& =A \cdot\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mid \alpha_{1}>0, \ldots, \alpha_{m}>0\right\} \\
& =\left\{\sum_{i=1}^{m} \alpha_{i} x_{i} \mid \alpha_{1}>0, \ldots, \alpha_{m}>0\right\} .
\end{aligned}
$$

Problem 2

Let C_{1} and C_{2} be convex sets. Show that

$$
C_{1} \cap r i\left(C_{2}\right) \neq \emptyset \quad \text { if and only if } \quad r i\left(C_{1} \cap a f f\left(C_{2}\right)\right) \cap r i\left(C_{2}\right) \neq \emptyset .
$$

Solution.

Let $x \in C_{1} \cap \operatorname{rin}\left(C_{2}\right)$ and $\bar{x} \in \operatorname{rin}\left(C_{1} \cap a f f\left(C_{2}\right)\right)$. Let L be the line segment connecting x and \bar{x}. Then L belongs to $C_{1} \cap a f f\left(C_{2}\right)$ since both of its endpoints belong to $C_{1} \cap a f f\left(C_{2}\right)$. Hence, by the Line Segment Principle, all points of L except possibly x, belong to $\operatorname{rin}\left(C_{1} \cap a f f\left(C_{2}\right)\right)$. On the other hand, by the definition of relative interior, all points of L that are sufficiently close to x belong to $\operatorname{rin}\left(C_{2}\right)$, and these points, except possibly for x belong to $\operatorname{rin}\left(C_{1} \cap a f f\left(C_{2}\right)\right) \cap \operatorname{rin}\left(C_{2}\right)$. The other direction is obvious.

Problem 3

(a) Consider a vector x^{*} such that a given function $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ is convex over a sphere centered at x^{*}. Show that x^{*} is a local minimum of f if and only if it is a local minimum of f along every line passing through x^{*} [i.e., for all $d \in \mathbf{R}^{n}$, the function $g: \mathbf{R} \mapsto \mathbf{R}$, defined by $g(\alpha)=f\left(x^{*}+\alpha d\right)$, has $\alpha^{*}=0$ as its local minimum].
(b) Consider the nonconvex function $f: \mathbf{R}^{2} \mapsto \mathbf{R}$ given by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{2}-p x_{1}^{2}\right)\left(x_{2}-q x_{1}^{2}\right)
$$

where p and q are scalars with $0<p<q$, and $x^{*}=(0,0)$. Show that $f\left(y, m y^{2}\right)<0$ for $y \neq 0$ and m satisfying $p<m<q$, so x^{*} is not a local minimum of f even though it is a local minimum along every line passing through x^{*}.

Solution.

(a) If x^{*} is a local minimum of f, evidently it is also a local minimum of f along any line passing through x^{*}.

Conversely, let x^{*} be a local minimum of f along any line passing through x^{*}. Assume, to arrive at a contradiction, that x^{*} is not a local minimum of f and that we have $f(\bar{x})<f\left(x^{*}\right)$ for some \bar{x} in the sphere centered at x^{*} within which f is assumed convex. Then, by convexity of f, for all $\alpha \in(0,1)$, we have

$$
f\left(\alpha x^{*}+(1-\alpha) \bar{x}\right) \leq \alpha f\left(x^{*}\right)+(1-\alpha) f(\bar{x})<f\left(x^{*}\right)
$$

so f decreases monotonically along the line segment connecting x^{*} and \bar{x}. This contradicts the hypothesis that x^{*} is a local minimum of f along any line passing through x^{*}.
(b) We first show that the function $g: \mathbf{R} \mapsto \mathbf{R}$ defined by $g(\alpha)=f\left(x^{*}+\alpha d\right)$ has a local minimum at $\alpha=0$ for all $d \in \mathbf{R}^{2}$. We have

$$
g(\alpha)=f\left(x^{*}+\alpha d\right)=\left(\alpha d_{2}-p \alpha^{2} d_{1}^{2}\right)\left(\alpha d_{2}-q \alpha^{2} d_{1}^{2}\right)=\alpha^{2}\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)
$$

Also,

$$
g^{\prime}(\alpha)=2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right)
$$

Thus $g^{\prime}(0)=0$. Furthermore,

$$
\begin{aligned}
g^{\prime \prime}(\alpha)= & 2\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+2 \alpha\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right) \\
& +2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right)+2 \alpha\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(-q d_{1}^{2}\right) \\
& +2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(-q d_{1}^{2}\right)
\end{aligned}
$$

Thus $g^{\prime \prime}(0)=2 d_{2}^{2}$, which is positive if $d_{2} \neq 0$. If $d_{2}=0, g(\alpha)=p q \alpha^{4} d_{1}^{4}$, which is clearly minimized at $\alpha=0$. Therefore, $(0,0)$ is a local minimum of f along every line that passes through $(0,0)$.

We now show that if $p<m<q, f\left(y, m y^{2}\right)<0$ if $y \neq 0$ and that $f\left(y, m y^{2}\right)=0$ otherwise. Consider a point of the form $\left(y, m y^{2}\right)$. We have $f\left(y, m y^{2}\right)=y^{4}(m-p)(m-q)$. Clearly, $f\left(y, m y^{2}\right)<0$ if and only if $p<m<q$ and $y \neq 0$. In any ϵ-neighborhood of $(0,0)$, there exists a $y \neq 0$ such that for some $m \in(p, q),\left(y, m y^{2}\right)$ also belongs to the neighborhood. Since $f(0,0)=0$, we see that $(0,0)$ is not a local minimum.

Problem 4

(a) Consider the quadratic program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & 1 / 2|x|^{2}+c^{\prime} x \tag{1}\\
\text { subject to } & A x=0
\end{array}
$$

where $c \in \mathbf{R}^{n}$ and A is an $m \times n$ matrix of rank m. Use the Projection Theorem to show that

$$
x^{*}=-\left(I-A^{\prime}\left(A A^{\prime}\right)^{-1} A\right) c
$$

is the unique solution.
(b) Consider the more general quadratic program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & 1 / 2(x-\bar{x})^{\prime} Q(x-\bar{x})+c^{\prime}(x-\bar{x}) \tag{2}\\
\text { subject to } & A x=b
\end{array}
$$

where c and A are as before, Q is a symmetric positive definite matrix, $b \in \mathbf{R}^{m}$, and \bar{x} is a vector in \mathbf{R}^{n}, which is feasible, i.e., satisfies $A \bar{x}=b$. Use the transformation $y=Q^{1 / 2}(x-\bar{x})$ to write this problem in the form of part (a) and show that the optimal solution is

$$
x^{*}=\bar{x}-Q^{-1}\left(c-A^{\prime} \lambda\right)
$$

where λ is given by

$$
\lambda=\left(A Q^{-1} A^{\prime}\right)^{-1} A Q^{-1} c
$$

(c) Apply the result of part (b) to the program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \left.1 / 2 x^{\prime} Q x+c^{\prime} x\right) \tag{3}\\
\text { subject to } & A x=b
\end{array}
$$

and show that the optimal solution is

$$
x^{*}=-Q^{-1}\left(c-A^{\prime} \lambda-A^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} b\right)
$$

Solution.

(a) By adding the constant term $1 / 2\|c\|^{2}$ to the cost function, we can equivalently write this problem as

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & 1 / 2\|c+x\|^{2} \\
\text { subject to } & A x=0
\end{array}
$$

which is the problem of projecting the vector $-c$ on the subspace $X=\{x \mid A x=0\}$. By the optimality condition for projection, a vector x^{*} such that $A x^{*}=0$ is the unique projection if and only if

$$
\left(c+x^{*}\right)^{\prime} x=0, \quad \forall x \text { with } A x=0
$$

It can be seen that the vector

$$
x^{*}=-\left(I-A^{\prime}\left(A A^{\prime}\right)^{-1} A\right) c
$$

satisfies this condition and is thus the unique solution of the quadratic programming problem in (a). (The matrix $A A^{\prime}$ is invertible because A has rank m.)
(b) By introducing the transformation $y=Q^{1 / 2}(x-\bar{x})$, we can write the problem as

$$
\begin{array}{ll}
\underset{y}{\operatorname{minimize}} & 1 / 2\|y\|^{2}+\left(Q^{-1 / 2} c\right)^{\prime} y \\
\text { subject to } & A Q^{-1 / 2} y=0
\end{array}
$$

Using part (a), we see that the solution of this problem is

$$
y^{*}=-\left(I-Q^{-1 / 2} A^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} A Q^{-1 / 2}\right) Q^{-1 / 2} c
$$

and by passing to the x-coordinate system through the inverse transformation $x^{*}-\bar{x}=Q^{-1 / 2} y^{*}$, we obtain the optimal solution

$$
x^{*}=\bar{x}-Q^{-1}\left(c-A^{\prime} \lambda\right),
$$

where λ is given by

$$
\begin{equation*}
\lambda=\left(A Q^{-1} A^{\prime}\right)^{-1} A Q^{-1} c \tag{4}
\end{equation*}
$$

(c) The quadratic program in part (b) contains as a special case the program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & 1 / 2 x^{\prime} Q x+c^{\prime} x \\
\text { subject to } & A x=b
\end{array}
$$

This special case is obtained when \bar{x} is given by

$$
\begin{equation*}
\bar{x}=Q^{-1} A^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} b \tag{5}
\end{equation*}
$$

Indeed \bar{x} as given above satisfies $A \bar{x}=b$ as required, and for all x with $A x=b$, we have

$$
x^{\prime} Q \bar{x}=x^{\prime} A^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} b=b^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} b,
$$

which implies that for all x with $A x=b$,

$$
1 / 2(x-\bar{x})^{\prime} Q(x-\bar{x})+c^{\prime}(x-\bar{x})=1 / 2 x^{\prime} Q x+c^{\prime} x+\left(1 / 2 \bar{x}^{\prime} Q \bar{x}-c^{\prime} \bar{x}-b^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} b\right)
$$

The last term in parentheses on the right-hand side above is constant, thus establishing that the programs (2) and (3) have the same optimal solution when \bar{x} is given by Eq. 5. Therefore, we obtain the optimal solution of program (3):

$$
x^{*}=-Q^{-1}\left(c-A^{\prime} \lambda-A^{\prime}\left(A Q^{-1} A^{\prime}\right)^{-1} b\right),
$$

where λ is given by Eq. 4 .

Problem 5

Let X be a closed convex subset of \mathbf{R}^{n}, and let $f: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ be a closed convex function such that $X \cap \operatorname{dom}(f) \neq \emptyset$. Assume that f and X have no common nonzero direction of recession. Let X^{*} be the set of minima of f over X (which is nonempty and compact), and let $f^{*}=\inf _{x \in X} f(x)$. Show that:
(a) For every $\epsilon>0$ there exists a $\delta>0$ such that every vector $x \in X$ with $f(x) \leq f^{*}+\delta$ satisfies $\min _{x^{*} \in X^{*}}\left\|x-x^{*}\right\| \leq \epsilon$.
(b) If f is real-valued, for every $\delta>0$ there exists an $\epsilon>0$ such that every vector $x \in X$ with $\min _{x^{*} \in X^{*}}\left\|x-x^{*}\right\| \leq \epsilon$ satisfies $f(x) \leq f^{*}+\delta$.
(c) Every sequence $\left\{x_{k}\right\} \subset X$ satisfying $f\left(x_{k}\right) \rightarrow f^{*}$ is bounded and all its limit points belong to X^{*}.

Solution.

(a) Let $\epsilon>0$ be given. Assume, to arrive at a contradiction, that for any sequence $\left\{\delta_{k}\right\}$ with $\delta_{k} \downarrow 0$, there exists a sequence $\left\{x_{k}\right\} \in X$ such that for all k

$$
f^{*} \leq f\left(x_{k}\right) \leq f^{*}+\delta_{k}, \quad \min _{x^{*} \in X^{*}}\left\|x_{k}-x^{*}\right\| \geq \epsilon
$$

It follows that, for all k, x_{k} belongs to the set $\left\{x \in X \mid f(x) \leq f^{*}+\delta_{0}\right\}$, which is compact since f and X are closed and have no common nonzero direction of recession. Therefore, the sequence $\left\{x_{k}\right\}$ has a limit point $\bar{x} \in X$, which using also the lower semicontinuity of f, satisfies

$$
f(\bar{x}) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right)=f^{*}, \quad\left\|\bar{x}-x^{*}\right\| \geq \epsilon, \quad \forall x^{*} \in X^{*}
$$

a contradiction.
(b) Let $\delta>0$ be given. Assume, to arrive at a contradiction, that there exist sequences $\left\{x_{k}\right\} \subset X$, $\left\{x_{k}^{*}\right\} \subset X^{*}$, and $\left\{\epsilon_{k}\right\}$ with $\epsilon_{k} \downarrow 0$ such that

$$
f\left(x_{k}\right)>f^{*}+\delta, \quad\left\|x_{k}-x_{k}^{*}\right\| \leq \epsilon_{k}, \quad \forall k=0,1, \ldots
$$

(here x_{k}^{*} is the projection of x_{k} on X^{*}). Since X^{*} is compact, there is a subsequence $\left\{x_{k}^{*}\right\}_{\mathcal{K}}$ that converges to some $x^{*} \in X^{*}$. It follows that $\left\{x_{k}\right\}_{\mathcal{K}}$ also converges to x^{*}. Since f is real-valued, it is continuous, so we must have $f\left(x_{k}\right) \rightarrow f\left(x^{*}\right)$, a contradiction.
(c) Let \bar{x} be a limit point of the sequence $\left\{x_{k}\right\} \subset X$ satisfying $f\left(x_{k}\right) \rightarrow f^{*}$. By lower semicontinuity of f, we have that

$$
f(\bar{x}) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right)=f^{*}
$$

Because $\left\{x_{k}\right\} \in X$ and X is closed, we have $\bar{x} \in X$, which in view of the preceding relation implies that $f(\bar{x})=f^{*}$, i.e., $\bar{x} \in X^{*}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

